RUPPERT, DAVID STRATER. a Study of Osseointegration of Additively Manufactured Implants in Rats Through Vibration and Ultrasound

Total Page:16

File Type:pdf, Size:1020Kb

RUPPERT, DAVID STRATER. a Study of Osseointegration of Additively Manufactured Implants in Rats Through Vibration and Ultrasound Abstract: RUPPERT, DAVID STRATER. A Study of Osseointegration of Additively Manufactured Implants in Rats through Vibration and Ultrasound. (Under the direction of Paul S. Weinhold, PhD and Ola L.A. Harrysson, PhD) Amputees frequently develop soft tissue problems on their residual limb due to increased pressure and shear-forces generated at the socket-limb interface. Direct skeletal attachment of prostheses via percutaneous osseointegrated implants provides stable connections while eliminating skin lesions. However, effective osseointegration of implants remains a major clinical challenge. Hastening rehabilitation, as-well-as providing implants for patient specific anatomy, would greatly increase the feasibility of percutaneous osseointegrated prostheses as an alternative to socket prosthetics. Previous studies indicate that vibration and low-intensity pulsed ultrasound (LIPUS) are beneficial for bone healing. However, the optimal vibration amplitude hasn’t been identified nor has it been shown that LIPUS has a beneficial effect in an intramedullary model to stimulate healing at the bone-implant interface. The primary objective of this work was identifying therapies for accelerating implant osseointegration. Whole body vibration at various amplitudes was investigated to identify the optimal stimuli. Locally applied vibration and LIPUS were studied separately and cumulatively. Non-patient specific threaded implants are being used in FDA clinical osseointegrated prostheses trials. Additive manufacturing can cost effectively create custom implants to better interface with amputees’ residual bones. A secondary objective of this study was evaluating additive manufacturing as an alternative to commonly used Brånemark threaded implant to produce patient specific implants. This objective was broken into two phases: compare osseointegration of additive manufactured (AM) implants to threaded implants; compare osseointegration strength of coarse and fine textured AM implants. The two objectives were carried out through three studies. The first study was split into two cohorts of Sprague-Dawley rats receiving bilateral, titanium implants (AM vs. threaded) in their tibiae. One cohort, comprising five groups vibrated at 45Hz: 0.0 (control), 0.15, 0.3, 0.6 or 1.2g, was followed for 6weeks. A second cohort, divided into two groups (control and 0.6g), was followed for 24 days. Osseointegration was evaluated through mechanical, µCT and histological evaluations. Bone-volume fraction around the implant increased at 0.6g compared to control. The AM implants exhibited significantly improved mechanical stability relative to their threaded counterparts. The second study comprised of two cohorts receiving bilateral, titanium implants in their distal femurs and were followed for 4weeks. The first cohort received coarse AM implants produced by electron-beam melting (EBM) transcortically in one femur and a direct melt laser- sintered (DMLS) fine textured AM implant in the contralateral femur. The second cohort received DMLS implants (either fine textured or coarse textured to mimic EBM) in the intramedullary canal of each femur. Osseointegration was evaluated through mechanical and µCT evaluation. The fixation strength of coarse textured implants provided superior interlocking relative to fine textured implants without affecting bone morphology in both cohorts. The bilateral femoral intramedullary implant model of the third study looked at effects of local vibration and LIPUS on early osseointegration (4weeks) and the separate and combined effects of these treatments on midterm osseointegration (8weeks). Osseointegration was evaluated through mechanical, µCT and histological evaluations. LIPUS produced increased pushout load relative to control at 4weeks. Both µCT and histology revealed treatment with either LIPUS or vibration increased bone around the implant relative to controls at 4weeks. No differences were noted in pushout loads at 8weeks. The bone gained with LIPUS at 4weeks was no longer present at 8weeks. Vibration treatment resulted in greater bone around the implant than all other groups at 8weeks. These studies demonstrate the potential benefit of LIPUS as a therapeutic tool for reducing amputees’ rehabilitation period and the use of vibration for preventing bone resorption during the rehabilitation period while the limb isn’t yet loaded. Additive manufacturing was also shown as a viable alternative to current production methods, opening the way to fabrication of patient specific implants. A Study of Osseointegration of Additively Manufactured Implants in Rats through Vibration and Ultrasound By David Strater Ruppert A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Biomedical Engineering Raleigh, North Carolina 2017 APPROVED BY: _______________________________ _______________________________ Denis J. Marcellin-Little, DEDV He Huang, PhD _______________________________ Richard Wysk, PhD _______________________________ _______________________________ Ola L.A. Harrysson, PhD Paul S. Weinhold, PhD Committee Chair Committee Co-Chair Biography: David Ruppert is a PhD candidate in the NCSU/UNC joint BME program. He has a Masters in mechanical engineering from Virginia Tech where he focused in biomechanics and equine rehabilitation. Ruppert also has over 10 years of experience developing novel technologies for industry. His current research is in improving mechanical stability and accelerating osseointegration of titanium implants. After earning his Bachelor of Science in Mechanical Engineering from the University of Maine in Orono in 1997 he started his career at Steag Hamatech. As a mechanical engineer he supported designers through analytical calculations, FEA, and experimentation. In 1998 he joined the research and development department where he designed and completed research projects for various processes, designed solutions to improve yields and reliability of machines and managed the summer engineering interns. While at Steag Hamatech he developed a thermal management system to robustly manufacture the emerging DVD technology. He designed a robot handling system to create the most compact CD manufacturing machine on the market. He also worked with a team to produce a repeatable coating process for bonding the DVD substrates. In 2000 he was invited as a fully funded graduate student to attend Virginia Tech’s Mechanical Engineering Master’s program to focus in biomechanics. He performed equine gait analyses and designed a robotic simulator to test a rehabilitation device he had also conceptualized to earn his degree. While at Virginia Tech, he also conducted undergraduate labs and graded reports for Junior and Senior level students. He was responsible for maintaining the undergraduate laboratory equipment and trained fellow teacher’s assistants. ii In 2003 Ruppert joined D2 Inline Solutions, a small startup company, as the senior mechanical engineer providing design-leadership to designers for product development. During his two years there he created revolutionary equipment for the vacuum metallization process. As the senior engineer, he developed the primary intellectual property for the company including a novel valve sealing surface and a helium cooling process for vacuum metallization equipment that went on to be patented and acquired by an international company. In 2005 he started his own engineering consulting service where he provided to industry: thermal, fluid, and structural analysis, kinematic and dynamic analysis, specification of mechanical components based on load calculations. He recommended initial designs and design modifications to draftspersons in order to document and modify designs. He also checked detail and assembly drawings for correct design intent. Later in 2005, Ruppert went to Clyde Bergemann Bachmann as their Finite Element Analyst where he provided finite element analysis for all of the engineering teams designing stack, diverter, louvers and dampers for various industries. The analysis included structural analysis per customer specified standards and codes; thermal and fluid flow models; hand calculations as well as checking other engineers’ hand calculations; and providing the knowledge base for technical analysis of structures to engineering teams. He moved from industry to academia in 2012 to pursue a PhD in Biomedical Engineering through the joint program of the University of North Carolina and the North Carolina State University. He investigated the effects of various amplitudes of whole body vibration, locally applied vibration and low intensity pulsed ultrasound on bone ongrowth in an osseointegration rodent model. His research also spread into the evaluation of various additive manufacturing iii processes for improving mechanical stability of osseointegrated implants. His research was funded by the Dean’s Fellowship, a NC Tracs grant, an NSF grant and a teaching assistantship. He functioned as the lead lecturer for the course Biomedical Engineering Design and Manufacturing II in the spring of 2017. In that role he redesigned the course syllabus from a reverse engineering project to needs-based innovation project. He also organized guest lecturers on various topics from Modern Manufacturing Techniques to Market Analysis and FDA Regulatory Pathways. Ruppert intends to transition back into industry to develop and design assistive technology for the rehabilitation engineering flied. iv
Recommended publications
  • Chondrogenesis of Mesenchymal Stem Cells in a Novel Hyaluronate-Collagen-Tricalcium Phosphate Scaffolds for Knee Repair F.G
    EuropeanF Meng et Cells al. and Materials Vol. 31 2016 (pages 79-94) DOI: 10.22203/eCM.v031a06 TCP-COL-HA scaffolds for cartilage ISSN regeneration 1473-2262 CHONDROGENESIS OF MESENCHYMAL STEM CELLS IN A NOVEL HYALURONATE-COLLAGEN-TRICALCIUM PHOSPHATE SCAFFOLDS FOR KNEE REPAIR F.G. Meng§, Z.Q. Zhang§, G.X. Huang, W.S. Chen, Z.J. Zhang, A.S. He and W.M. Liao* Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China §These two authors contributed equally to this work. Abstract Introduction Scaffolds are expected to play a key role in the induction Damaged articular cartilage has poor self-repair capability of chondrogenesis of mesenchymal stem cells (MSCs) owing to the low metabolic rate of chondrocytes (Chen for cartilage tissue regeneration. Here, we report the et al., 2009; Hunziker, 2002; Steadman et al., 2002). development of a novel tricalcium phosphate-collagen- Tissue engineering is considered a potential strategy hyaluronate (TCP-COL-HA) scaffold that can function as for regenerating damaged tissue (Jackson and Simon, a stem cell carrier to induce chondrogenesis and promote 1999). Mesenchymal stem cells (MSCs) are an especially cartilage repair, and the investigation of chondroinductive promising tool since they can be easily isolated from bone properties of scaffolds containing varying amounts of TCP, marrow and expanded in vitro without the loss of their COL and HA. TCP-COL-HA scaffolds, as well as TCP- capacity to differentiate into various cell types, including COL scaffolds at two different TCP/COL ratios (50:50 and chondrocytes and osteoblasts (Caplan, 2005).
    [Show full text]
  • Mesenchymal Stem Cells in Combination with Hyaluronic Acid
    www.nature.com/scientificreports OPEN Mesenchymal Stem Cells in Combination with Hyaluronic Acid for Articular Cartilage Defects Received: 1 August 2017 Lang Li1, Xin Duan1, Zhaoxin Fan2, Long Chen1,3, Fei Xing1, Zhao Xu4, Qiang Chen2,5 & Accepted: 19 April 2018 Zhou Xiang1 Published: xx xx xxxx Mesenchymal stem cells (MSCs) and hyaluronic acid (HA) have been found in previous studies to have great potential for medical use. This study aimed to investigate the therapeutic efects of bone marrow mesenchymal stem cells (BMSCs) combined with HA on articular cartilage repair in canines. Twenty-four healthy canines (48 knee-joints), male or female with weight ranging from 5 to 6 kg, were operated on to induce cartilage defect model and divided into 3 groups randomly which received diferent treatments: BMSCs plus HA (BMSCs-HA), HA alone, and saline. Twenty-eight weeks after treatment, all canines were sacrifced and analyzed by gross appearance, magnetic resonance imaging (MRI), hematoxylin-eosin (HE) staining, Masson staining, toluidine blue staining, type II collagen immunohistochemistry, gross grading scale and histological scores. MSCs plus HA regenerated more cartilage-like tissue than did HA alone or saline. According to the macroscopic evaluation and histological assessment score, treatment with MSCs plus HA also lead to signifcant improvement in cartilage defects compared to those in the other 2 treatment groups (P < 0.05). These fndings suggested that allogeneic BMSCs plus HA rather than HA alone was efective in promoting the formation of cartilage-like tissue for repairing cartilage defect in canines. Articular cartilage is composed of chondrocyte and extracellular matrix and has an important role in joint move- ment including lubrication, shock absorption and conduction.
    [Show full text]
  • Effectiveness of Antibacterial Surfaces in Osseointegration of Titanium Dental Implants: a Systematic Review
    antibiotics Review Effectiveness of Antibacterial Surfaces in Osseointegration of Titanium Dental Implants: A Systematic Review Nansi López-Valverde 1 , Bruno Macedo-de-Sousa 2 , Antonio López-Valverde 1,* and Juan Manuel Ramírez 3 1 Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; [email protected] 2 Institute for Occlusion and Orofacial Pain, Faculty of Medicine, University of Coimbra, Polo I-Edifício Central Rua Larga, 3004-504 Coimbra, Portugal; [email protected] 3 Department of Morphological Sciences, University of Cordoba, Avenida Menéndez Pidal S/N, 14071 Cordoba, Spain; [email protected] * Correspondence: [email protected] Abstract: Titanium (Ti) dental implant failure as a result of infection has been established at 40%, being regarded as one of the most habitual and untreatable problems. Current research is focused on the design of new surfaces that can generate long-lasting, infection-free osseointegration. The purpose of our study was to assess studies on Ti implants coated with different antibacterial surfaces, assessing their osseointegration. The PubMed, Web of Science and Scopus databases were electronically searched for in vivo studies up to December 2020, selecting six studies that met the inclusion criteria. The quality of the selected studies was assessed using the ARRIVE (Animal Research: Reporting of In Vivo Experiments) criteria and Systematic Review Center for Laboratory animal Experimentation’s (SYRCLE’s) risk of bias tool. Although all the included studies, proved greater osseointegration Citation: López-Valverde, N.; capacity of the different antibacterial surfaces studied, the methodological quality and experimental Macedo-de-Sousa, B.; models used in some of them make it difficult to draw predictable conclusions.
    [Show full text]
  • Knee MACI Procedure Rehabilitation Protocol
    REHABILITATION MANUAL Guidelines for the functional recovery of patients following MACI for the treatment of cartilage defects of the knee Written by: Jay Ebert, PhD, AEP ESSAM Hollywood Functional Rehabilitation Clinic School of Sport Science, Exercise and Health University of Western Australia Please see Important Safety Information on page 21 and accompanying full Prescribing Information 2 INTRODUCTION The purpose of this manual is to provide guidance for the development of a KEY POINTS OF CONSIDERATION physician-prescribed rehabilitation program to foster early mobilization and load • Patient adherence to the prescribed rehabilitation protection, promote graft maturation, and reduce the risk of graft delamination, program is critical. postoperative thromboembolic events, and joint stiffness. • Consider lesion size, location and patient characteristics when determining a The MACI® (autologous cultured chondrocytes on porcine collagen membrane) rehabilitation program. Rehabilitation Manual is based on clinical experience* that supports the use of a controlled rehabilitation program to promote a progressive return to full range • Emphasis should be placed on reaching the goals of a given phase over rigid adherence to time schedule. of motion (ROM) and weight bearing (WB), as well as muscle strengthening and conditioning. The rehabilitation program was designed using the knowledge of • It is important to avoid excessive load/WB on the graft site to allow proper healing. basic science, anatomy, and the biomechanics of articular cartilage, as well as the natural course of healing following implantation. It is not intended as a • Pain and swelling must be carefully monitored throughout the rehabilitation process. Ignoring substitute for individual clinical judgment, and a patient-specific rehabilitation these symptoms may compromise the success of program should be implemented.
    [Show full text]
  • Evaluation of Functional Dynamics During Osseointegration And
    Review Po-Chun Chang Evaluation of functional dynamics Niklaus P. Lang William V. Giannobile during osseointegration and regeneration associated with oral implants Authors’ affiliations: Key words: bone–implant interactions, finite element analysis, growth factor Po-Chun Chang, William V. Giannobile, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Abstract Ann Arbor, MI, USA Objectives: The aim of this paper is to review current investigations on functional Po-Chun Chang, William V. Giannobile, assessments of osseointegration and assess correlations to the peri-implant structure. Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Material and methods: The literature was electronically searched for studies of promoting MI, USA dental implant osseointegration, functional assessments of implant stability, and finite Po-Chun Chang, Department of Preventive Dentistry, Division of Periodontology, Faculty of element (FE) analyses in the field of implant dentistry, and any references regarding Dentistry, National University of Singapore, biological events during osseointegration were also cited as background information. Singapore Niklaus P. Lang, Faculty of Dentistry, The Results: Osseointegration involves a cascade of protein and cell apposition, vascular University of Hong Kong, Hong Kong, China SAR invasion, de novo bone formation and maturation to achieve the primary and secondary William V. Giannobile, Michigan Center for Oral dental implant stability.
    [Show full text]
  • Adult Chondrogenesis and Spontaneous Cartilage Repair in the Skate, Leucoraja Erinacea Aleksandra Marconi1, Amy Hancock-Ronemus2,3, J Andrew Gillis1,3*
    RESEARCH ARTICLE Adult chondrogenesis and spontaneous cartilage repair in the skate, Leucoraja erinacea Aleksandra Marconi1, Amy Hancock-Ronemus2,3, J Andrew Gillis1,3* 1Department of Zoology, University of Cambridge, Cambridge, United Kingdom; 2Charles River Laboratories, Wilmington, Massachusetts, United States; 3Marine Biological Laboratory, Woods Hole, Massachusetts, United States Abstract Mammalian articular cartilage is an avascular tissue with poor capacity for spontaneous repair. Here, we show that embryonic development of cartilage in the skate (Leucoraja erinacea) mirrors that of mammals, with developing chondrocytes co-expressing genes encoding the transcription factors Sox5, Sox6 and Sox9. However, in skate, transcriptional features of developing cartilage persist into adulthood, both in peripheral chondrocytes and in cells of the fibrous perichondrium that ensheaths the skeleton. Using pulse-chase label retention experiments and multiplexed in situ hybridization, we identify a population of cycling Sox5/6/9+ perichondral progenitor cells that generate new cartilage during adult growth, and we show that persistence of chondrogenesis in adult skates correlates with ability to spontaneously repair cartilage injuries. Skates therefore offer a unique model for adult chondrogenesis and cartilage repair and may serve as inspiration for novel cell-based therapies for skeletal pathologies, such as osteoarthritis. Introduction Hyaline cartilage is a skeletal tissue that consists of a single cell type (the chondrocyte) embedded *For correspondence: [email protected] within a homogeneous, collagenous extracellular matrix (reviewed in Gillis, 2018). In mammals, hya- line cartilage is predominantly an embryonic tissue, making up the anlage of the axial (chondrocra- Competing interests: The nial, vertebral and rib) and appendicular (limb) endoskeleton. The vast majority of mammalian authors declare that no hyaline cartilage is replaced by bone during the process of endochondral ossification, with cartilage competing interests exist.
    [Show full text]
  • Developmentally Inspired Programming of Adult Human Mesenchymal Stromal Cells Toward Stable Chondrogenesis
    Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis Paola Occhettaa, Sebastien Pigeota, Marco Rasponib, Boris Dasena, Arne Mehrkensa, Thomas Ullrichc, Ina Kramerd, Sabine Guth-Gundeld, Andrea Barberoa, and Ivan Martina,1 aDepartment of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; bDepartment of Electronics, Information, and Bioengineering, Politecnico di Milano, 20133 Milano, Italy; cGlobal Discovery Chemistry, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland; and dMusculoskeletal Disease Area, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland Edited by Robert Langer, Massachusetts Institute of Technology, Cambridge, MA, and approved March 26, 2018 (received for review December 19, 2017) It is generally accepted that adult human bone marrow-derived bone ossicles when transplanted in vivo (8, 9). “Re-programming” mesenchymal stromal cells (hMSCs) are default committed toward hMSCs fate by exposure to specific signals has been postulated as a osteogenesis. Even when induced to chondrogenesis, hMSCs typically potential strategy to reverse this tendency and maintain the stability form hypertrophic cartilage that undergoes endochondral ossifica- of cartilage formed by hMSCs (10). In this direction, signaling fac- tion. Because embryonic mesenchyme is obviously competent to tors directly mediating chondrocyte hypertrophy [i.e., parathyroid generate phenotypically stable cartilage, it is questioned whether hormone-related protein (PTHrP)/Ihh regulatory loop] have been there is a correspondence between mesenchymal progenitor com- extensively considered (11–13). However, upon removal of the sig- partments during development and in adulthood. Here we tested nal, cells typically proceed toward hypertrophy in vitro and to en- whether forcing specific early events of articular cartilage develop- dochondral ossification in vivo.
    [Show full text]
  • Mesenchymal Stem Cells and Articular Cartilage Repair: Clinical Studies and Future Direction Shahid Punwar1 and Wasim S
    296 The Open Orthopaedics Journal, 2011, 5, (Suppl 2-M11) 296-301 Open Access Mesenchymal Stem Cells and Articular Cartilage Repair: Clinical Studies and Future Direction Shahid Punwar1 and Wasim S. Khan*,2 1Department of Trauma and Orthopaedics, Frenchay Hospital, North Bristol NHS Trust, Bristol, BS16 1LE, UK 2University College London Institute of Orthopaedics and Musculoskeletal Sciences, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK Abstract: Cartilage is frequently injured but shows little capacity for repair. Current treatment options include the use of procedures that stimulate repair through the stimulation of subchondral bone marrow and result in the formation of fibrocartilage. There is considerable interest in the use of cell-based treatment strategies and there are limited studies describing the use of mesenchymal stem cells for cartilage repair with promising early results. This paper reviews the current treatment strategies for articular cartilage, describes use of mesenchymal stem cells for articular cartilage repair along with the results of clinical studies, and describes the future direction that these strategies are likely to take. Keywords: Cartilage repair, chondrogenesis, mesenchymal stem cells, osteoarthritis, tissue engineering. Hyaline articular cartilage is a highly specialized tissue. osteochondral grafting (mosaicplasty) and autologous It is characteristically avascular and depends on diffusion chondrocyte implantation (ACI). Recently autologous from cyclical loading during joint movement for nutrient chondrocytes have been cultured on collagen membranes acquisition [1]. As well as its shock absorbing function it prior to re- implantation, a technique known as MACI enables synovial joints to articulate with extremely low (matrix assisted autologous chondrocyte implantation). frictional forces. Despite the best efforts of man to engineer These procedures are limited to small and medium sized smooth bearing surfaces, prosthetic joints cannot recreate focal chondral and osteochondral defects.
    [Show full text]
  • Chondrogenesis, Studied with the Electron Microscope
    CHONDROGENESIS, STUDIED WITH THE ELECTRON MICROSCOPE GABRIEL C. GODMAN, M.1)., and KEITH R. PORTER, Ph.I). From The Rockefeller Institute. Dr. Godman's present address is Department of Microbiology, Columbia University, New York ABSTRACT The role of the cells in the fabrication of a connective tissue matrix, and the structural modifications which accompany cytodifferentiation have been investigated in developing epiphyseal cartilage of fetal rat by means of electron microscopy. Differentiation of the pre- chondral mesenchymal cells to chondroblasts is marked by the acquisition of an extensive endoplasmic reticulum, enlargement and concentration of the Golgi apparatus, the ap- pearance of membrane-bounded cytoplasmic inclusions, and the formation of specialized foci of increased density in the cell cortex. These modifications are related to the secretion of the cartilage matrix. The matrix of young hyaline cartilage consists of groups of rela- tively short, straight, banded collagen fibrils of 10 to 20 m# and a dense granular component embedded in an amorphous ground substance of moderate electron density. It is postu- lated that the first phase of fibrillogenesis takes place at the cell cortex in dense bands or striae within the ectoplasm subjacent to the cell membrane. These can be resolved into sheaves of "primary" fibrils of about 7 to 10 m#. They are supposedly shed (by excortica- tion) into the matrix space between the separating chondroblasts, where they may serve as "cores" of the definitive matrix fibrils. The diameter of the fibrils may subsequently increase up to threefold, presumably by incorporation of "soluble" or tropocollagen units from the ground substance. The chondroblast also discharges into the matrix the electron- dense amorphous or granular contents of vesicles derived from the Golgi apparatus, and the mixed contents of large vacuoles or blebs bounded by distinctive double membranes.
    [Show full text]
  • Derived Cells Express Cartilage- Like
    ll Scienc Ce e f & o T l h a e n r a r a Hoz-Rodriguez et al. J Cell Sci Ther 2016, 7:4 p p u u y y o o J J Journal of Cell Science & Therapy DOI: 10.4172/2157-7013.1000248 ISSN: 2157-7013 Research Article Open Access Human Cementoblastoma- Derived Cells Express Cartilage- Like Phenotype In vitro and In vivo and Induce Bone Formation Lia Hoz-Rodriguez1, Ana L Garcia-Hernandez2, Enrique RomoArevalo1, Fabiola Salgado-Chavarria1, Gonzalo Montoya-Ayala1, Margarita Zeichner-David3, Rodrigo Correa-Prado1, Sonia Lopez-Letayf1 and Higinio Arzate1* 1Periodontal Biology Laboratory, Faculty of Dentistry, National Autonomous University of Mexico, Mexico 2Iztacala School of Higher Studies, National Autonomous University of Mexico, Mexico 3Ostrow School of Dentistry, University of Southern California, USA Abstract The molecular mechanisms that regulate proliferation and differentiation of cementoblasts, have not been elucidated to date. In this paper, it is shown that human cementoblastoma-derived cells (HCDC) express greater levels of cartilage markers such as type II and X collagens, aggrecan (ACAN) and SRY-box 9 (SOX9) stem cell markers; MCAM (melanoma cell adhesion molecule; synonym: CD146) and STRO-1 than human gingival fibroblasts (HGF). Our in vivo studies demonstrate that HCDC induce bone formation through endochondral ossification as observed 14 days after HCDC were implanted in rat critical-size calvarial defects. At 30 and 60 days post-implantation, the defects treated with HCDC were filled with 70 ± 1.6 and 91 ± 1.3% of newly formed bone. To confirm the identity of this tissue, we analyzed the newly formed bone using histomorphology and immunostaining.
    [Show full text]
  • Regulation of Chondrogenesis in Human Mesenchymal Stem Cells by Cartilage Extracellular Matrix and Therapeutic Applications An
    Regulation of Chondrogenesis in Human Mesenchymal Stem Cells by Cartilage Extracellular Matrix and Therapeutic Applications Ang Li Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences Columbia University 2018 © 2018 Ang Li All Rights Reserved ABSTRACT Regulation of Chondrogenesis in Human Mesenchymal Stem Cells by Cartilage Extracellular Matrix and Therapeutic Applications Ang Li Cartilage has limited intrinsic healing potential upon injury, due to the low cell density and the lack of blood supply. Degenerative disease of the cartilage, such as osteoarthritis (OA), is challenging to treat without clear mechanistic understandings of cartilage development. With over 90% of the cartilage tissue occupied by extracellular matrix (ECM), understanding the cellular and molecular effects of cartilage ECM on chondrogenesis and chondrocyte behavior is crucial for therapeutic development. The focus of this work is to study the regulation of chondrogenesis and hypertrophic maturation of human mesenchymal stem cells (MSCs) by cartilage ECM in the context of potential therapeutic applications. To study the cartilage ECM, we created a decellularized ECM digest from native porcine cartilage and examined its effects on MSCs. Since native cartilage ECM maintains chondrocyte homeostasis without progressing to hypertrophic degeneration, we hypothesized that the decellularized ECM would promote MSC chondrogenesis and inhibit hypertrophy. Indeed, we showed that ECM promoted MSC chondrogenesis and matrix production, and inhibited hypertrophy and endochondral ossification. The chondrogenic effect was shown to potentially involve the PI3K-Akt-Foxo1 and Hif1 pathways. By recapitulating the activated Hif1 pathway, roxadustat, a small molecule stabilizer of Hif, was able to reproduce the chondrogenic and anti- hypertrophic effects of the cartilage ECM.
    [Show full text]
  • Advanced Strategies for Articular Cartilage Defect Repair
    Materials 2013, 6, 637-668; doi:10.3390/ma6020637 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Review Advanced Strategies for Articular Cartilage Defect Repair Amos Matsiko 1,2, Tanya J. Levingstone 1,2 and Fergal J. O’Brien 1,2,* 1 Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland; E-Mails: [email protected] (A.M.); [email protected] (T.J.L.) 2 Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel: +353-1402-2149; Fax: +353-1402-2355. Received: 7 January 2013; in revised form: 6 February 2013 / Accepted: 16 February 2013 / Published: 22 February 2013 Abstract: Articular cartilage is a unique tissue owing to its ability to withstand repetitive compressive stress throughout an individual’s lifetime. However, its major limitation is the inability to heal even the most minor injuries. There still remains an inherent lack of strategies that stimulate hyaline-like articular cartilage growth with appropriate functional properties. Recent scientific advances in tissue engineering have made significant steps towards development of constructs for articular cartilage repair. In particular, research has shown the potential of biomaterial physico-chemical properties significantly influencing the proliferation, differentiation and matrix deposition by progenitor cells. Accordingly, this highlights the potential of using such properties to direct the lineage towards which such cells follow. Moreover, the use of soluble growth factors to enhance the bioactivity and regenerative capacity of biomaterials has recently been adopted by researchers in the field of tissue engineering.
    [Show full text]