Elucidating Molecular Mechanism of Antiglycation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant Life MagillS Encyclopedia of Science
MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D. -
Palindromic Genes in the Linear Mitochondrial Genome of the Nonphotosynthetic Green Alga Polytomella Magna
GBE Palindromic Genes in the Linear Mitochondrial Genome of the Nonphotosynthetic Green Alga Polytomella magna David Roy Smith1,y,JimengHua2,3,y, John M. Archibald2, and Robert W. Lee3,* 1Department of Biology, University of Western Ontario, London, Ontario, Canada 2Department of Biochemistry and Molecular Biology, Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, Dalhousie University, Halifax, Nova Scotia, Canada 3Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada *Corresponding author: E-mail: [email protected]. yThese authors contributed equally to this work. Accepted: August 8, 2013 Data deposition: Sequence data from this article have been deposited in GenBank under the accession KC733827. Abstract Organelle DNA is no stranger to palindromic repeats. But never has a mitochondrial or plastid genome been described in which every coding region is part of a distinct palindromic unit. While sequencing the mitochondrial DNA of the nonphotosynthetic green alga Polytomella magna, we uncovered precisely this type of genic arrangement. The P. magna mitochondrial genome is linear and made up entirely of palindromes, each containing 1–7 unique coding regions. Consequently, every gene in the genome is duplicated and in an inverted orientation relative to its partner. And when these palindromic genes are folded into putative stem-loops, their predicted translational start sites are often positioned in the apex of the loop. Gel electrophoresis results support the linear, 28-kb monomeric conformation of the P. magna mitochondrial genome. Analyses of other Polytomella taxa suggest that palindromic mitochondrial genes were present in the ancestor of the Polytomella lineage and lost or retained to various degrees in extant species. -
Molecular and Phylogenetic Analysis Reveals New Diversity of Dunaliella
Journal of the Marine Molecular and phylogenetic analysis reveals Biological Association of the United Kingdom new diversity of Dunaliella salina from hypersaline environments cambridge.org/mbi Andrea Highfield1 , Angela Ward1, Richard Pipe1 and Declan C. Schroeder1,2,3 1The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; Original Article 2School of Biological Sciences, University of Reading, Reading RG6 6LA, UK and 3Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA Cite this article: Highfield A, Ward A, Pipe R, Schroeder DC (2021). Molecular and Abstract phylogenetic analysis reveals new diversity of Dunaliella salina from hypersaline Twelve hyper-β carotene-producing strains of algae assigned to the genus Dunaliella salina environments. Journal of the Marine Biological have been isolated from various hypersaline environments in Israel, South Africa, Namibia Association of the United Kingdom 101,27–37. and Spain. Intron-sizing of the SSU rDNA and phylogenetic analysis of these isolates were https://doi.org/10.1017/S0025315420001319 undertaken using four commonly employed markers for genotyping, LSU rDNA, ITS, rbcL Received: 9 June 2020 and tufA and their application to the study of Dunaliella evaluated. Novel isolates have Revised: 21 December 2020 been identified and phylogenetic analyses have shown the need for clarification on the tax- Accepted: 21 December 2020 onomy of Dunaliella salina. We propose the division of D. salina into four sub-clades as First published online: 22 January 2021 defined by a robust phylogeny based on the concatenation of four genes. This study further Key words: demonstrates the considerable genetic diversity within D. -
Christensen, Fam. Monadoïdes, Solitaria, Induta, Phycearum
Two new families and some new names and combinations in the Algae Tyge Christensen Universitetets Institut for Sporeplanter, Kobenhavn, Denmark of Danish In a recent survey of algal taxonomy published for the use university author and students, the (1962, 1966) has introduced some new taxa names. A few for. The of them express new systematic opinions, and will be separately accounted have been made for formal and established here majority reasons only, are in accordance with the code of nomenclature. Dunaliellaceae T. Christensen, fam. nov. Cellula monadoïdes, solitaria, nulla membrana vel lorica induta, notas Chloro- phycearum praecipue flagella nuda exhibens. Dunaliella Genus typificum: E. C. Teodoresco 1905, p. 230, Platymonadaceae T. Christensen, fam. nov. membrana Cellula monadoides, solitaria, induta, notas Prasinophycearum praecipue flagella squamis et appendicibus filiformibus crassioribus vestita exhibens. Genus G. typificum: Platymonas S. West 1916, p. 3. In the Chlorophyta the author has followed Chadefaud (1950) in excluding the allies ofPrasinocladus from and them the the Chlorophyceae placing in a separate class, Prasino- Such of former the phyceae. separation entails a splitting two Chlorophycean families, Polyblepharidaceae comprising naked monads, and the Chlamydomonadaceae comprising similar forms with cell wall. which is the of the former provided a Polyblepharides, type has been studied but the Prasinocladus family, not yet adequately probably represents assumed that the should be type as by Chadefaud, so family name Polyblepharidaceae applied to naked forms placed in thePrasinophyceae. Chlamydomonas, on the other hand, shows a typical Chlorophycean construction. The family name Chlamydomonadaceae, forms therefore, must be applied to walled remaining in the Chlorophyceae. For previous the and for members of Polyblepharidaceae now left behind in the Chlorophyceae, previous members of the Chlamydomonadaceae now placed in the Prasinophyceae, new family names have been introduced in the Danish text. -
Chilling Out: the Evolution and Diversification of Psychrophilic Algae with a Focus on Chlamydomonadales
Polar Biol (2017) 40:1169–1184 DOI 10.1007/s00300-016-2045-4 REVIEW Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales 1 1 1 Marina Cvetkovska • Norman P. A. Hu¨ner • David Roy Smith Received: 20 February 2016 / Revised: 20 July 2016 / Accepted: 10 October 2016 / Published online: 21 October 2016 Ó Springer-Verlag Berlin Heidelberg 2016 Abstract The Earth is a cold place. Most of it exists at or Introduction below the freezing point of water. Although seemingly inhospitable, such extreme environments can harbour a Almost 80 % of the Earth’s biosphere is permanently variety of organisms, including psychrophiles, which can below 5 °C, including most of the oceans, the polar, and withstand intense cold and by definition cannot survive at alpine regions (Feller and Gerday 2003). These seemingly more moderate temperatures. Eukaryotic algae often inhospitable places are some of the least studied but most dominate and form the base of the food web in cold important ecosystems on the planet. They contain a huge environments. Consequently, they are ideal systems for diversity of prokaryotic and eukaryotic organisms, many of investigating the evolution, physiology, and biochemistry which are permanently adapted to the cold (psychrophiles) of photosynthesis under frigid conditions, which has (Margesin et al. 2007). The environmental conditions in implications for the origins of life, exobiology, and climate such habitats severely limit the spread of terrestrial plants, change. Here, we explore the evolution and diversification and therefore, primary production in perpetually cold of photosynthetic eukaryotes in permanently cold climates. environments is largely dependent on microbes. -
Ultrastructural Studies of Microalgae
Ultrastructural Studies of Microalgae Alanoud Jaber Rawdhan A thesis submitted for the degree of Doctor of Philosophy (Integrated) October, 2015 School of Agriculture, Food and Rural Development, Newcastle University Newcastle upon Tyne, UK Abstract Ultrastructural Studies of Microalgae The optimization of fixation protocols was undertaken for Dunaliella salina, Nannochloropsis oculata and Pseudostaurosira trainorii to investigate two different aspects of microalgal biology. The first was to evaluate the effects of the infochemical 2, 4- decadienal as a potential lipid inducer in two promising lipid-producing species, Dunaliella salina and Nannochloropsis oculata, for biofuel production. D. salina fixed well using 1% glutaraldehyde in 0.5 M cacodylate buffer prepared in F/2 medium followed by secondary fixation with 1% osmium tetroxide. N. oculata fixed better with combined osmium- glutaraldehyde prepared in sea water and sucrose. A stereological measuring technique was used to compare lipid volume fractions in D. salina cells treated with 0, 2.5, and 50 µM and N. oculata treated with 0, 1, 10, and 50 µM with the lipid volume fraction of naturally senescent (stationary) cultures. There were significant increases in the volume fractions of lipid bodies in both D. salina (0.72%) and N. oculata (3.4%) decadienal-treated cells. However, the volume fractions of lipid bodies of the stationary phase cells were 7.1% for D. salina and 28% for N. oculata. Therefore, decadienal would not be a suitable lipid inducer for a cost-effective biofuel plant. Moreover, cells treated with the highest concentration of decadienal showed signs of programmed cell death. This would affect biomass accumulation in the biofuel plant, thus further reducing cost effectiveness. -
Effects of Phosphorus on the Growth and Chlorophyll Fluorescence of A
Journal of Biological Research 2016; volume 89:5866 Effects of phosphorus on the growth and chlorophyll fluorescence of a Dunaliella salina strain isolated from saline soil under nitrate limitation Tassnapa Wongsnansilp,1 Niran Juntawong,2 Zhe Wu1,3 1Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok; 2Department of Botany, Kasetsart University, Thailand; 3Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Plan Genetic Engineering Center of Hebei Province, China chlorophyll and beta-carotene content, retarded the decrease of Fv/Fm Abstract value. The optimal phosphate concentration for the growth of D. salina KU XI was above 72.6 µM. The maximum biomass and beta-carotene -1 -1 An isolated Dunaliella salina (D. salina) KU XI from saline soils in were 0.24 g L and 17.4 mg L respectively when NaH2PO4 was 290.4 northeastern Thailand was cultured in f/2 medium in column photo- µM. The algae growth was restrained by phosphate or nitrate when bioreactor. The variations of the growth, chlorophyll and beta-carotene NaH2PO4 below 12.1 µM or above 72.6 µM. It indicated that properly sup- content and the maximum quantum yield of PS II photochemistry plementing nitrate in the late growth stage with high phosphate concen- (Fv/Fm) under different NaH2PO4 concentrations were studied. Based on tration was favored for enhancing the growth and biomass production. the results, the growth kinetics of D. salina KU XI was established, only which could simulate the algae growth rate under different phosphate concentrations and temperatures. The phosphorus could significantly affect the growth and pigments accumulations of this isolated strain. -
Structural Variation and Evolution of Chloroplast Trnas in Green Algae
Structural variation and evolution of chloroplast tRNAs in green algae Fangbing Qi, Yajing Zhao, Ningbo Zhao, Kai Wang, Zhonghu Li and Yingjuan Wang State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotech- nology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China ABSTRACT As one of the important groups of the core Chlorophyta (Green algae), Chlorophyceae plays an important role in the evolution of plants. As a carrier of amino acids, tRNA plays an indispensable role in life activities. However, the structural variation of chloroplast tRNA and its evolutionary characteristics in Chlorophyta species have not been well studied. In this study, we analyzed the chloroplast genome tRNAs of 14 species in five categories in the green algae. We found that the number of chloroplasts tRNAs of Chlorophyceae is maintained between 28–32, and the length of the gene sequence ranges from 71 nt to 91 nt. There are 23–27 anticodon types of tRNAs, and some tRNAs have missing anticodons that are compensated for by other types of anticodons of that tRNA. In addition, three tRNAs were found to contain introns in the anti-codon loop of the tRNA, but the analysis scored poorly and it is presumed that these introns are not functional. After multiple sequence alignment, the 9-loop is the most conserved structural unit in the tRNA secondary structure, containing mostly U-U-C-x-A-x-U conserved sequences. The number of transitions in tRNA is higher than the number of transversions. In the replication loss analysis, it was found that green algal chloroplast tRNAs may have undergone substantial gene loss during the course of evolution. -
Accumulation of Lipid in Dunaliella Salina Under Nutrient Starvation Condition
American Journal of Food and Nutrition, 2017, Vol. 5, No. 2, 58-61 Available online at http://pubs.sciepub.com/ajfn/5/2/2 ©Science and Education Publishing DOI:10.12691/ajfn-5-2-2 Accumulation of lipid in Dunaliella salina under Nutrient Starvation Condition Truc Mai1,2,*, Phuc Nguyen3, Trung Vo3,*, Hieu Huynh3, Son Tran3, Tran Nim3, Dat Tran3, Hung Nguyen3, Phung Bui3 1Department of Molecular Biology, New Mexico State University, New Mexico, USA 2Department of Plant and Environmental Sciences, New Mexico State University, New Mexico, USA 3Department of Biochemistry and Toxicology, Nguyen Tat Thanh University, Viet Nam *Corresponding author: [email protected] Abstract The effect of nutrient starvation on lipid accumulation of Dunaliella salina A9 was studied. In nutrient starvation, cell colour changed from green to yellow (or orange) and cell growth reached stationary phase after 9 days of the culture. The study showed that under nutrient stress, decreased in cell growth is accompanied by carotenoid biosynthesis and lipid content of Dunaliella salina. The results of this study can be used to increase carotenoid and lipid production in microalgae for functional food and biofuel in the future. Keywords: Dunaliell salina A9, Dunaliella bardawil and Sulfo-phospho-vanillin reagent Cite This Article: Truc Mai, Phuc Nguyen, Trung Vo, Hieu Huynh, Son Tran, Tran Nim, Dat Tran, Hung Nguyen, and Phung Bui, “Accumulation of lipid in Dunaliella salina under Nutrient Starvation Condition.” American Journal of Food and Nutrition, vol. 5, no. 2 (2017): 58-61. doi: 10.12691/ajfn-5-2-2. of β-carotene is suppressed when lipid metabolism pathway is inhibited [30]. -
Genomic Adaptations of the Green Alga Dunaliella Salina to Life Under High Salinity
Genomic adaptations of the green alga Dunaliella salina to life under high salinity. Jürgen E.W. Polle1,2,3* Sara Calhoun3 Zaid McKie-Krisberg1,4 Simon Prochnik3,5 Peter Neofotis6 Won C. Yim7 Leyla T. Hathwaik7 Jerry Jenkins3,8 Henrik Molina9 Jakob Bunkenborg10 Igor GrigorieV3,11 Kerrie Barry3 Jeremy Schmutz3,8 EonSeon Jin12 John C. Cushman7 Jon K. Magnusson13 1Department of Biology, Brooklyn College of the City UniVersity of New York, Brooklyn, NY 11210, USA 2The Graduate Center of the City UniVersity of New York, New York, NY 10016 USA 3U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 4Current address: Department of Information SerVices and Technology, SUNY Downstate Health Sciences UniVersity, Brooklyn, NY 11203, USA 5Current address: MBP Titan LLC, South San Francisco, CA 94080, USA 6Current address: U.S. Department of Energy – Plant Research Laboratory, Michigan State UniVersity, East Lansing, MI, 48824 USA 7UniVersity of NeVada, Department of Biochemistry and Molecular Biology, Reno, NeVada, USA 8HudsonAlpha Institute for Biotechnology, HuntsVille, Alabama, USA 9The Proteomics Resource Center, The Rockefeller UniVersity, New York, New York, USA 10Alphalyse A/S, Odense, Denmark 11Department of Plant and Microbial Biology, UniVersity of California - Berkeley, 111 Koshland Hall, Berkeley, CA 94720, USA 12Department of Life Science, Hanyang UniVersity, Research Institute for Natural Sciences, Seoul, Republic of Korea 13Pacific Northwest National Laboratory, Richland, Washington, USA * Corresponding author: Dr. Jürgen E.W. Polle, [email protected] 1 Abstract Life in high salinity enVironments poses challenges to cells in a Variety of ways: maintenance of ion homeostasis and nutrient acquisition, often while concomitantly enduring saturating irradiances. -
The Dunaliella Salina Organelle Genomes: Large Sequences, Inflated with Intronic and Intergenic DNA BMC Plant Biology 2010, 10:83
Smith et al. BMC Plant Biology 2010, 10:83 http://www.biomedcentral.com/1471-2229/10/83 RESEARCH ARTICLE Open Access TheResearch Dunaliella article salina organelle genomes: large sequences, inflated with intronic and intergenic DNA David Roy Smith*1, Robert W Lee1, John C Cushman2, Jon K Magnuson3, Duc Tran4 and Jürgen EW Polle4 Abstract Background: Dunaliella salina Teodoresco, a unicellular, halophilic green alga belonging to the Chlorophyceae, is among the most industrially important microalgae. This is because D. salina can produce massive amounts of β- carotene, which can be collected for commercial purposes, and because of its potential as a feedstock for biofuels production. Although the biochemistry and physiology of D. salina have been studied in great detail, virtually nothing is known about the genomes it carries, especially those within its mitochondrion and plastid. This study presents the complete mitochondrial and plastid genome sequences of D. salina and compares them with those of the model green algae Chlamydomonas reinhardtii and Volvox carteri. Results: The D. salina organelle genomes are large, circular-mapping molecules with ~60% noncoding DNA, placing them among the most inflated organelle DNAs sampled from the Chlorophyta. In fact, the D. salina plastid genome, at 269 kb, is the largest complete plastid DNA (ptDNA) sequence currently deposited in GenBank, and both the mitochondrial and plastid genomes have unprecedentedly high intron densities for organelle DNA: ~1.5 and ~0.4 introns per gene, respectively. Moreover, what appear to be the relics of genes, introns, and intronic open reading frames are found scattered throughout the intergenic ptDNA regions -- a trait without parallel in other characterized organelle genomes and one that gives insight into the mechanisms and modes of expansion of the D. -
7 Systematics of the Green Algae
7989_C007.fm Page 123 Monday, June 25, 2007 8:57 PM Systematics of the green 7 algae: conflict of classic and modern approaches Thomas Pröschold and Frederik Leliaert CONTENTS Introduction ....................................................................................................................................124 How are green algae classified? ........................................................................................125 The morphological concept ...............................................................................................125 The ultrastructural concept ................................................................................................125 The molecular concept (phylogenetic concept).................................................................131 Classic versus modern approaches: problems with identification of species and genera.....................................................................................................................134 Taxonomic revision of genera and species using polyphasic approaches....................................139 Polyphasic approaches used for characterization of the genera Oogamochlamys and Lobochlamys....................................................................................140 Delimiting phylogenetic species by a multi-gene approach in Micromonas and Halimeda .....................................................................................................................143 Conclusions ....................................................................................................................................144