Synthesis of Sro–Al2o3 Solid Base Catalysts from Strontium Hydroxide and Aluminum Alkoxide by a Solid-Liquid Interface Reaction

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of Sro–Al2o3 Solid Base Catalysts from Strontium Hydroxide and Aluminum Alkoxide by a Solid-Liquid Interface Reaction Journal of the Japan Petroleum Institute, 64, (2), 103-111 (2021) 103 [Regular Paper] Synthesis of SrO–Al2O3 Solid Base Catalysts from Strontium Hydroxide and Aluminum Alkoxide by a Solid-liquid Interface Reaction Hiromi MATSUHASHI†1)*, Asako IWAMOTO†1), Misaho SASAKI†1), Kana YOSHIDA†1), and Hirofumi ARITANI†2) †1) Dept. of Science, Hokkaido University of Education, 1-2 Hachiman-cho, Hakodate, Hokkaido 040-8567, JAPAN †2) Dept. of Life Science & Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690 Fusaiji, Fukaya, Saitama 369-0293, JAPAN (Received October 19, 2020) _ Highly dispersed SrO in amorphous Al2O3, SrO Al2O3, was synthesized by solid-liquid interface reaction of Sr(OH)2・8H2O in the solid phase with Al(OCH(CH3)2)3 dissolved in 2-propanol. The water of crystallization in _ Sr(OH)2・8H2O was consumed for the hydrolysis of Al(OCH(CH3)2)3. SrO Al2O3 catalyst synthesized by solid-liquid interface reaction of equimolar amounts of Sr(OH)2・8H2O and Al(OCH(CH3)2)3, then heat treated at 673 K, exhibited the highest activity among the prepared catalysts for the base-catalyzed retro-aldol reaction of _ _ diacetone alcohol. Catalytic activity of SrO Al2O3 catalyst calcined at 673 K was twice that of SrO Al2O3 cata- _ lyst prepared by physical mixing of Sr(OH)2・8H2O with Al2O3. Active SrO Al2O3 catalyst was obtained by heating at a temperature just below that of Sr3Al2O6 crystallization. Formation of SrO by heat treatment at 673 K was confirmed using X-ray absorption near edge structure analysis. The SrO particle size was too small for detection by powder X-ray diffraction. We found that interface reaction of a metal hydroxide in the solid phase with an alkoxide in the liquid phase is useful for the preparation of well-dispersed mixed metal oxides under mild conditions. Keywords Strontium oxide, Solid base, Solid-liquid interface, Retro-aldol reaction 1. Introduction been carried out with SrO than MgO as the base cata- lyst, particularly the preparation and application of SrO Alkaline earth metal oxides such as MgO are well as a base catalyst, partially because of the difficulties known to show activities as solid base catalysts. The associated with the preparation of SrO. preparation, active site structure, and application of Alkaline earth metal oxides are usually obtained by MgO to numerous base-catalyzed organic reactions thermal decomposition of the corresponding hydroxide have been extensively investigated1)~4). Strontium or carbonate at elevated temperatures2),3). For exam- oxide (SrO) has a higher base strength among the alka- ple, Mg(OH)2 is converted to MgO by thermal decom- line earth metal oxides, because strontium (Sr) has position around 650 K22),23). However, the melting lower electronegativity within the group of alkaline point of Sr(OH)2 is slightly lower than the decomposi- earth metals. The base strength increases in the order tion temperature of the hydroxide24). Consequently, 5),6) MgO < CaO < SrO < BaO . Therefore, SrO is Sr(OH)2 first melts and then decomposes as the tem- expected to achieve higher catalytic activity in various perature increases. The decomposition of Sr(OH)2 in organic reactions. SrO catalysts are applicable to the liquid phase results in solid SrO with low surface many base-catalyzed reactions, such as aldol condensa- area. In contrast, thermal decomposition of SrCO3 to tion5), nitroaldol reaction7), Michel addition8),9), Canniz- SrO requires very high temperatures (>1073 K) be- 10) 11)~18) 7),10),25)~29) zaro reaction , transesterification , Tishchenko cause of the high thermal stability of SrCO3 . reaction19),20), diacetone alcohol decomposition6), and Therefore, the conventional thermal decomposition amination of alkene21). However, fewer studies have method is not appropriate for SrO catalyst preparation from the hydroxide or carbonate. To overcome these DOI: doi.org/10.1627/jpi.64.103 problems, we investigated solid-liquid interface reaction * To whom correspondence should be addressed. for the preparation of SrO base catalyst. * E-mail: [email protected] In general, a metal alkoxide with high reactivity to- J. Jpn. Petrol. Inst., Vol. 64, No. 2, 2021 104 ward H2O is converted into the corresponding metal hy- Wako Pure Chemical Corp.) was used as received, or droxide and alcohol by hydrolysis. The water of crys- heated in an oven at 373 K for 12 h to eliminate the tallization contained in the metal hydroxide would be water of crystallization to form Sr(OH)2. Treatment of consumed by this hydrolysis reaction in a nonaqueous Sr(OH)2・8H2O or Sr(OH)2 with Al(OCH(CH3)2)3 was solvent. Water molecules are necessary to maintain performed as follows30). The required amount of the crystalline structure of the metal hydroxide. Sr(OH)2・8H2O or Sr(OH)2 was kneaded in a mortar to- Therefore, the crystalline structure will be disrupted as gether with an equimolar amount of Al(OCH(CH3)2)3 water molecules are removed from the lattice. Metal FUJIFILM Wako Pure Chemical Corp.). An appropri- hydroxide molecules are likely to be displaced from a ate volume of 2-propanol was added to the mixture in solid surface if the surrounding water molecules are the mortar and kneaded for a further 10 min. The consumed by hydrolysis of the metal alkoxide. Such 2-propanol suspension was then transferred to an Erlen- displaced metal hydroxide molecules are insoluble in meyer flask and stirred at 333-343 K for 12 h. The an organic solvent so can be expected to precipitate. precipitate was separated by filtration, to yield the SrO_ Therefore, newly formed metal hydroxide solids will be Al2O3 precursor. The solid product (after filtration) obtained as precipitates as results of both displacement was dried at 373 K for 2 h and then heat treated for ac- and hydrolysis. tivation at 573-1073 K for 1 h. Heat-treated catalysts Displacement of metal hydroxide molecules from the were kept in sealed ampoules until use. solid surface will expose a new hydrated metal hydrox- The mole ratio of Al/Sr was 1 in the sample prepared ide surface, and so further hydrolysis of the metal from anhydrous Sr(OH)2. The mole ratios of Al/Sr alkoxide by the water molecules in the crystal structure was 1, 2, and 3 in samples prepared from Sr(OH)2・ will continue. Both hydroxide precipitates are formed 8H2O. In addition, pure Sr(OH)2 catalyst heat treated simultaneously by the reaction on the hydroxide sur- at 673 K was also used for comparison. face, and no solvation by 2-propanol is expected. The physically mixed sample was prepared as fol- 31) Therefore, the solid-liquid interface reaction would pro- lows . The required quantities of Sr(OH)2・8H2O and vide hydroxide precipitates well mixed on the molecu- γ-Al2O3 (JRC-ALO-6, Catalysis Society of Japan) were lar level. mixed by kneading in a mortar together with a small Water of crystallization contained in Sr(OH)2・8H2O volume of ethanol for 15 min, in a glove box. The can be eliminated by heating at 373 K. Therefore, the mixture was allowed to stand at room temperature until water molecules formed by dehydration of Sr(OH)2 to all solvent had evaporated. The obtained solid was form SrO would also be consumed by hydrolysis of the heated in a muffle furnace at 673-873 K for 1 h. The metal alkoxide. Consequently, dehydration of Sr(OH)2 mole ratio of Al/Sr was fixed at 1.17. _ should be promoted by mixing with a metal alkoxide. The SrO Al2O3 samples prepared from Sr(OH)2, _ We previously reported the synthesis of BaO Al2O3 Sr(OH)2・8H2O (Al/Sr=1), Sr(OH)2・8H2O (Al/Sr=2), solid base catalyst under mild conditions using the Sr(OH)2・8H2O (Al/Sr=3) are named SAA, SAH1, solid-liquid interface reaction of Ba(OH)2・H2O in the SAH2, and SAH3, respectively, and the physical mix- solid phase with Al(OCH(CH3)2)3 dissolved in ethyl ing sample is named SAP. acetate30). The prepared catalyst consisted of catalyti- 2. 2. Retro-aldol Reaction of Diacetone Alcohol cally active BaO highly dispersed in amorphous Al2O3. All reactions were carried out under atmospheric The present investigation applied a catalyst-prepara- conditions. The base-catalyzed decomposition reac- tion technique using a solid-liquid interface reaction to tion of diacetone alcohol (4-hydroxy-4-methyl-2-penta- the following system: Sr(OH)2, with and without water none, FUJIFILM Wako Pure Chemical Corp., DAA) to of crystallization, and Al(OCH(CH3)2)3. This research form acetone (the retro-aldol reaction) was performed aimed to show that the interface reaction of a metal hy- in a batch reaction system at 299 K for 3 h (Scheme 1). droxide in the solid phase with an alkoxide in the liquid First, the catalyst 50 mg was removed from its sealed phase, carried out under mild conditions, is useful for ampoule, then immediately placed in a round-bottom the formation of catalytically active and well-dispersed flask together with the substrate 50 mmol DAA (used as mixed metal oxides. received). Samples of the reaction mixture were re- moved from the reaction flask at intervals of 30 min and 2. Experimental analyzed by gas-liquid chromatography (GLC). 2. 3. Catalyst Characterization 2. 1. Catalyst Preparation Thermogravimetry and differential thermal analysis All catalysts were prepared under atmospheric condi- (TG-DTA) was performed on the prepared samples tions. Strontium hydroxide, with and without water of under nitrogen before heat treatment to observe the crystallization, was used in the solid-liquid interface re- thermal decomposition profiles.
Recommended publications
  • Writing Total and Net Ionic Equations
    WRITING TOTAL AND NET IONIC EQUATIONS http://www.csun.edu/~hcchm001/FreshChemHandouts.html 1. Write the overall equation including the correct designations for the physical state of the substances (s, l, g, aq). Balance this equation. Most of these kinds of equations are double displacement reactions: AX + BY 6 AY + BX 2. For the total ionic equations, write strong electrolytes in solution in the form of aqueous ions. (a) Strong acids. The common strong acids and their aqueous ions are: HI Hydroiodic acid H+-(aq) + I (aq) HBr Hydrobromic acid H+-(aq) + Br (aq) HCl Hydrochloric acid H+-(aq) + Cl (aq) +- HNO33Nitric acid H (aq) + NO (aq) +- HClO44Perchloric acid H (aq) + ClO (aq) +-2 H24SO Sulfuric acid 2 H (aq) + SO4(aq) (b) Strong bases. Strong bases are the hydroxides of the alkali (Group IA) and alkaline earth (Group IIA) metals ions which are sufficiently soluble. The common strong bases and their aqueous ions are: LiOH Lithium hydroxide Li+-(aq) + OH (aq) NaOH Sodium hydroxide Na+-(aq) + OH (aq) KOH Potassium hydroxide K+-(aq) + OH (aq) +2 - Sr(OH)2Strontium hydroxide Sr (aq) + 2 OH (aq) +2 - Ba(OH)2 Barium hydroxide Ba (aq) + 2 OH (aq) (c) Soluble salts. Determinations of the solubility of a salt may be made by reference to SOLUBILITIES OF IONIC COMPOUNDS. Soluble salts are written as their aqueous ions: NaCl(aq) Sodium chloride Na+-(aq) + Cl (aq) +-2 K24SO (aq) Potassium sulfate 2 K (aq) + SO4(aq) +-2 Li23CO (aq) Lithium carbonate 2 Li (aq) + CO3(aq) +-3 Na34PO (aq) Sodium phosphate 3 Na (aq) + PO4(aq) +-2 (NH42) SO4(aq) Ammonium sulfate 2 NH4(aq) + SO4 (aq) 3.
    [Show full text]
  • Determination of the Solubility Product of Groupii Hydroxides
    DETERMINATION OF THE SOLUBILITY PRODUCT OF GROUPII HYDROXIDES INTRODUCTION SOLUBILTY EQUILIBRIA Many systems in chemistry appear to be static when in fact they are in (dynamic) equilibrium. When a system is in dynamic equilibrium the rate of the forward process is equal to the rate of the reverse process. One of these equilibrium systems is solubility equilibrium. When an ionic salt is placed in water if the salt is soluble then the salt will break apart (dissociate) into ions and the solution will contain hydrated positive ions and hydrated negative ions. An example is the formation of Na+ (aq) and Cl- (aq) when NaCl is dissolved in water. Consulting solubility tables tell us that most hydroxides are insoluble and therefore do not dissociate into ions when in solution. For example the net ionic equation for the reaction between MgCl2 and KOH is shown below. (Equation 1, Figure 1). 2+ - Mg (aq) + 2(OH ) (aq) Mg(OH)2 (Equation 1) Figure (1) However, even compounds considered insoluble will form a small amount of ions in solution. If a salt is “insoluble” what is really happening is that the equilibrium for the formation of hydrated ions from the reaction between the solid salt and water lies very far to the left (toward the solid). The formation of this small amount of ions and their recombination make up a system in dynamic equilibrium. The equilibrium constant for this process is called the solubility product, Ksp. The equilibrium reaction and equilibrium constant expression for Mg(OH)2 is shown below. (Note that the Mg(OH)2 does not appear in the equilibrium expression since it is a solid.
    [Show full text]
  • Example Exercise 8.1 Evidence for a Reaction
    Example Exercise 8.1 Evidence for a Reaction Which of the following is experimental evidence for a chemical reaction? (a) Pouring vinegar on baking soda gives foamy bubbles. (b) Mixing two solutions produces insoluble particles. (c) Mixing two colorless solutions gives a yellow solution. (d) Mixing two solutions produces a temperature increase. Solution We can analyze each of these observations based on the criteria for a chemical reaction. (a) The bubbles produced indicate a chemical reaction is occurring. (b) The insoluble particles formed indicate a chemical reaction. (c) The yellow color produced indicates a chemical reaction. (d) The temperature increase indicates heat energy is being released and, thus, an exothermic chemical reaction. Practice Exercise What are four observations that a chemical reaction has occurred? Answers: (a) a gas is released; (b) a precipitate is produced; (c) a permanent color change is observed; (d) an energy change is noted Concept Exercise What four observations are evidence for a chemical reaction? Answer: See Appendix G. Introductory Chemistry: Concepts and Critical Thinking, 6th Edition © 2011 Pearson Education, Inc. Charles H. Corwin Example Exercise 8.2 Writing Chemical Equations Write a chemical equation for each of the following chemical reactions: (a) Mercury liquid and fluorine gas react to give solid mercury(II) fluoride. (b) Zinc metal reacts with sulfuric acid to give aqueous zinc sulfate and hydrogen gas. Solution To write the chemical equation, we must provide formulas and symbols for each substance. We can describe each of the preceding chemical reactions as follows: (a) Hg(l) + F2(g) → HgF2(s) (b) Zn(s) + H2SO4(aq) → ZnSO4(aq) + H2(g) Practice Exercise Write a chemical equation for each of the following chemical reactions: (a) Aqueous solutions of sodium iodide and silver nitrate yield silver iodide precipitate and aqueous sodium nitrate.
    [Show full text]
  • United States Patent Office Patented Nov
    3,848,055 United States Patent Office Patented Nov. 12, 1974 2 (f) recovering strontium values from the separated solu 3,848,055 tion. EXTRACTION OF STRONTUMWALUES DETAILED DESCRIPTION FROM CELESTTE Allan C. Kelly, Pleasanton, Calif., assignor to Kaiser The celestite used may be either a natural ore, or an Aluminum & Chemical Corporation, Oakland, Calif. 5 ore which has been beneficiated, for example by froth No Drawing. Filed July 13, 1973, Ser. No. 379,125 flotation. Preferably all the celestite passes a 100 mesh Int. Cl. C22b 3/00, 29/00, C01f 1/00, 11/00 screen and at least 30% passes a 325 mesh screen. This U.S. C. 423-158 0 Clains sizing may be achieved by grinding a high purity natural O ore, or may result from the grinding performed prior to ABSTRACT OF THE DISCLOSURE froth flotation of a lower grade ore. It will be under stood that generally the finer the celestite ore, the more Strontium hydroxide is produced directly from celestite rapidly it will react with the sodium hydroxide to form (SrSO4) by forming a slurry of finely divided celestite in strontium hydroxide. a sodium hydroxide solution of such concentration that The amount of the sodium hydroxide solution used to it contains at least 10 g./l. NaOH after reaction of the 15 slurry the celestite will be adequate to produce a readily celestite with sodium hydroxide to form strontium hy agitated slurry. While relatively dilute slurries can be used, droxide. The strontium hydroxide formed is washed to for efficiency one will use as high a concentration of solids remove any sodium sulfate also precipitated, and then as is consistent with getting good stirring action.
    [Show full text]
  • Strontium Hexafluoro-2,4-Pentanedionate
    AKS786 - STRONTIUM HEXAFLUORO-2,4-PENTANEDIONATE STRONTIUM HEXAFLUORO-2,4-PENTANEDIONATE Safety Data Sheet AKS786 Issue date: 12/30/2014 Revision date: 04/01/2021 Version: 2.2 SECTION 1: Identification 1.1. Identification Product name : STRONTIUM HEXAFLUORO-2,4-PENTANEDIONATE Product code : AKS786 Product form : Substance Physical state : Solid Formula : C10H2F12O4Sr Synonyms : STRONTIUM HFAC STRONTIUM HEXAFLUOROACETYLACETONE Chemical family : METAL COMPOUND 1.2. Recommended use and restrictions on use Recommended use : Chemical intermediate 1.3. Supplier GELEST, INC. 11 East Steel Road Morrisville, PA 19067 USA T 215-547-1015 - F 215-547-2484 - (M-F): 8:00 AM - 5:30 PM EST [email protected] - www.gelest.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International) SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS US classification Skin corrosion/irritation Category 2 H315 Causes skin irritation Serious eye damage/eye irritation Category 2A H319 Causes serious eye irritation Full text of H statements : see section 16 2.2. GHS Label elements, including precautionary statements GHS US labeling Hazard pictograms (GHS US) : Signal word (GHS US) : Warning Hazard statements (GHS US) : H315 - Causes skin irritation H319 - Causes serious eye irritation Precautionary statements (GHS US) : P280 - Wear protective gloves/protective clothing/eye protection/face protection. P264 - Wash hands thoroughly after handling. P302+P352 - If on skin: Wash with plenty of soap and water. P332+P313 - If skin irritation occurs: Get medical advice/attention. P305+P351+P338 - IF IN EYES: Rinse cautiously with water for several minutes.
    [Show full text]
  • Thermodynamic Properties of the Alkaline Earth Metal Hydroxides (MOH) L Literature Citations
    NBS PUBLICATIONS A111D5 7SaflT^ NATL INST OF STANDARDS & TECH R.I.C. F COMMERCE A1 11 02752899 Chase, Malcolm W/Thermodynamic propertle ndards QC100 .U5753 N0.1243 1987 V198 C.I NBS-P NBS Technical Note 1243 Thermodynamic Properties of the Altcaline Earth Metal Hydroxides (MOH) L Literature Citations Malcolm W. Chase NBb NBS NBS NBS NBS NBS NBS NBS NBS NBS ^BS NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS NBS V/?^ NR<=i WBS NBS NP"^ NBS NBS NBS^ W:^ NBS NBS NBS NBS NBS NBS NBS NBS NB: 'BS NBS NBS NBS NBS NBS NBS NBS NBS /vi. M National Bureau ofStandards NBS NBS NRS \ f?^: v/?9 WBS NP"^ NBS ^ BS NB: !\t NB^ .'BS NBS NBS i\BS NBS NBS '^-^ NB NB'-' ^ \BS NBS NBS NBS NB^ .% Center for Radiation Research The Center for Radiation Research is a major component of the National Measurement Laboratory in the National Bureau of Standards. The Center provides the Nation with standards and measurement services for ionizing radiation and for ultraviolet, visible, and infrared radiation; coordinates and furnishes essential support to the National Measurement Support Systemfor ionizing radiation; conducts research in radiation related fields to develop improved radiation measurement methodology; and generates, conpiles, and critically evaluates data to meet major national needs. The Center consists of five Divisions and one Group. Atomic and Plasma Radiation Division Carries out basic theoretical and experimental research into the • Atomic Spectroscopy spectroscopic and radiative properties of atoms and highly ionized • Atomic Radiation Data species; develops well-defined atomic radiation sources as radiometric • Plasma Radiation or wavelength standards; develops new measurement techniques and methods for spectral analysis and plasma properties; and collects, compiles, and critically evaluates spectroscopic data.
    [Show full text]
  • CHM122 Chemicals by Experiment Thursday, December 03, 2015 8:42:50 AM Experiment Title Chemical Name Concentration Vinegar Analysis Sodium Hydroxide 0.5 M
    CHM122 Chemicals by Experiment Thursday, December 03, 2015 8:42:50 AM Experiment Title Chemical Name Concentration Vinegar Analysis Sodium hydroxide 0.5 M Vinegar Analysis Phenolphthalein indicator 0.1% w/v Lab Review Challenge Strontium hydroxide solid Lab Review Challenge Hydrochloric acid 3 M Lab Review Challenge Hydrochloric acid 6 M Lab Review Challenge Phenolphthalein indicator 0.1% v/v Qualitative Kinetics Hydrochloric acid 6 M Qualitative Kinetics Hydrochloric acid 3 M Qualitative Kinetics Hydrochloric acid 1.5 M Qualitative Kinetics Hydrochloric acid 0.75 M Qualitative Kinetics Magnesium strips solid Qualitative Kinetics Zinc strips solid Qualitative Kinetics Copper strips solid Qualitative Kinetics Sodium chloride (rock salt) solid Qualitative Kinetics Sodium thiosulfate 0.1 M Qualitative Kinetics Hydrochloric acid 0.1 M Qualitative Kinetics Starch indicator solution 0.1% w/v Qualitative Kinetics Potassium iodide 0.01 M Qualitative Kinetics Hydrochloric acid 0.1 M Qualitative Kinetics Sodium thiosulfate 0.001 M Qualitative Kinetics Potassium bromate 0.04 M Qualitative Kinetics Ammonium molybdate reagent n/a Quantitative Kinetics Potassium iodate 0.0240 M Quantitative Kinetics Sodium bisulfite 0.0160 M Quantitative Kinetics Starch indicator solution 0.1% w/v Equlibrium/Le Chatelier Principle Ammonium chloride saturated Equlibrium/Le Chatelier Principle Hydrochloric acid 12 M Equlibrium/Le Chatelier Principle Acetic acid 1 M Equlibrium/Le Chatelier Principle Ammonium chloride solid Equlibrium/Le Chatelier Principle Sodium acetate
    [Show full text]
  • Synthesis and Characterization of Strontia Nanoparticles
    International Journal of Pure and Applied Mathematics Volume 119 No. 15 2018, 1299-1305 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ Special Issue http://www.acadpubl.eu/hub/ SYNTHESIS AND CHARACTERIZATION OF STRONTIA NANOPARTICLES S. Vijayalakshmi, P. Anupriya, P. Surya, *Vijayalakshmi C *Assistant Professor, Department of Biomedical Engineering Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College Avadi, Chennai- 600062. [email protected], [email protected], [email protected], [email protected] ABSTRACT Biomaterial is defined as any substance which is fabricated to work with the biological system either for therapeutic or diagnostic application in medical field. Strontia nanopowder is synthesized by wet process. Strontia is obtained by the reaction of Strontium chloride hexahydrate and Potassium hydroxide pellets followed by dehydration and calcination. The obtained nanopowder is characterized by XRD and tested for anti- microbial activity. XRD helps to show the unit cell dimensions and is used for phase identification of crystalline materials. The prepared nanopowder size is determined using Scherrer equation. The Strontia synthesized is biocompatible, has anti- inflammatory, anti- microbial and osseointegration properties which can be used for making implants. Keywords: Anti- microbial activity, Fourier Transform Infrared Spectroscopy, Strontia nanopowder, X- ray diffraction. 1. INTRODUCTION The study of biomaterials is called biomaterial science or biomaterial engineering. It includes elements of medicine, biology, chemistry, tissue engineering and material science. It is available both naturally and can also be prepared by chemical synthesis. It must be biocompatible in order to replace the natural function of the body. It is widely employed in dental applications, medical applications and drug delivery.
    [Show full text]
  • Sr( Oh) 2 Soluble Or Insoluble
    Sr( oh) 2 soluble or insoluble Continue The question is: Is sr (OH)2 (strontium hydroxy) soluble or insoluble in water? Answer: Sr(OH)2 (Strontium Hydroxide) soluble in water What is soluble and insoluble? Solubility Solubility is a property of a solid, liquid or gas-eating chemical called soluble solvent in solid, liquid or gas-vulnerable solvents. The soluble of the substance depends on the physical and chemical properties of the solvent, as well as on the temperature, pressure and pH of the solution. The degree of solubility of the substance in a particular solvent is measured as the concentration of saturation, in which the addition of the solution does not increase the concentration of the solution and begins to precipitate the excess amount of the solution. The soluble of the substance is completely different from the speed of the solution, which is how quickly it dissolves. Insoluble Term insoluble often applied to bad or very poorly soluble compounds. The overall threshold for describing something as insoluble is less than 0.1 grams per 100 ml of solvent. Soluble List KClO3 ( Potassium chlorate ) KNO3 ( Potassium nitrate ) K2CO3 ( Potassium carbonate ) LiNO3 ( Lithium nitrate ) MgBr2 ( Magnesium bromide ) NaI ( Sodium iodide ) KC2H3O2 ( potassium acetate ) FeSO4 ( Iron(II) sulfate ) CuSO4 ( Copper sulfate ) Na2S ( sodium sulfide ) Na3PO4 ( Trisodium phosphate ) RbCl ( Rubidium chloride ) BaBr2 ( Barium bromide ) AlCl3 ( Aluminium chloride ) HNO3 ( Nitric acid ) FeCl2 ( Iron dichloride ) BaI2 ( Barium iodide ) MnCl2 ( Manganous
    [Show full text]
  • Toxicological Profile for Strontium
    TOXICOLOGICAL PROFILE FOR STRONTIUM U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry April 2004 STRONTIUM ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. STRONTIUM iii UPDATE STATEMENT A Toxicological Profile for strontium, Draft for Public Comment was released in July 2001. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE, Mailstop F-32 Atlanta, Georgia 30333 vi Background Information The toxicological profiles are developed by ATSDR pursuant to Section 104(i) (3) and (5) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund) for hazardous substances found at Department of Energy (DOE) waste sites. CERCLA directs ATSDR to prepare toxicological profiles for hazardous substances most commonly found at facilities on the CERCLA National Priorities List (NPL) and that pose the most significant potential threat to human health, as determined by ATSDR and the EPA. ATSDR and DOE entered into a Memorandum of Understanding on November 4, 1992 which provided that ATSDR would prepare toxicological profiles for hazardous substances based upon ATSDR=s or DOE=s identification of need. The current ATSDR priority list of hazardous substances at DOE NPL sites was announced in the Federal Register on July 24, 1996 (61 FR 38451).
    [Show full text]
  • Group 2 Exam Pack
    Name: ________________________ Group 2 exam pack Class: ________________________ Date: ________________________ Time: 306 minutes Marks: 259 marks Comments: Page 1 of 71 Q1. An aqueous solution Y is known to contain one type of group 2 metal ion and one type of negative ion. Aqueous solutions of sulfuric acid and magnesium nitrate are added to separate samples of solution Y. The observations are shown in the table. Solution added Observation with solution Y Sulfuric acid A white precipitate forms Magnesium nitrate A white precipitate forms (a) Suggest the identity of the group 2 metal ion present in solution Y. Write an ionic equation, including state symbols, for the reaction that takes place when sulfuric acid is added to solution Y. Group 2 metal ion ____________________________________________________ Ionic equation _______________________________________________________ (2) (b) Suggest the identity of the negative ion present in solution Y. Write an ionic equation, including state symbols, for the reaction that takes place when magnesium nitrate is added to solution Y. Negative ion ________________________________________________________ Ionic equation _______________________________________________________ (2) (Total 4 marks) Q2. This question is about ion testing. (a) Describe how a student could distinguish between aqueous solutions of potassium nitrate, KNO3, and potassium sulfate, K2SO4, using one simple test-tube reaction. Reagent ___________________________________________________________ Observation with KNO3(aq) _____________________________________________
    [Show full text]
  • Hydrogen Bonds in the Crystal Structure of Strontium Hydroxide
    Hydrogen Bonds in the Crystal Structure of Strontium Hydroxide Octahydrate Sr(OH)2 ·8H2O Hans Reuter, Shouassi Kamaha, and Otmane Zerzouf Universit¨at Osnabr¨uck, Institut f¨ur Chemie, Barbarastr. 7, D-49069 Osnabr¨uck, Germany Reprint requests to Prof. Dr. Hans Reuter. E-mail: [email protected] Z. Naturforsch. 2007, 62b, 215 – 219; received October 12, 2006 Dedicated to Prof. Dr. Roger Blachnik on the occasion of his 70 th birthday Strontium hydroxide octahydrate Sr(OH)2 · 8H2O crystallizes in the tetragonal space group P4/ncc with cell constants a = 9.017(1) and c = 11.603(1) A.˚ The crystal structure has been re- fined from 2656 diffractometer data up to 2ϑ =60◦ to an R value of 0.0303. With the new diffraction data it was possible to localize the positions of all hydrogen atoms for the first time and to describe the hydrogen bonding scheme in detail. The Sr2+ ions are square antiprismatically coordinated by 2+ eight water molecules. These {Sr(H2O)8} coordination polyhedra are linked with each other via hydrogen bonds in a way that linear columns parallel to the c axis result. The two hydroxyl anions of the asymmetric unit are linked by weak hydrogen bonds and are not coordinated to strontium atoms. 2+ Like the strontium atoms, they form linear chains parallel to the c axis. Both, {Sr(H2O)8} columns and OH− chains, are interconnected through two types of additional hydrogen bonds. Key words: Hydrogen Bonds, Coordination Chemistry, Hydrates, Hydroxides, Strontium Introduction Results and Discussion During our attempts to prepare strontium com- Structure determination pounds of the hexahydroxostannate(IV) ion we often observed the formation of well defined single crystals The structure was solved by standard Patterson of strontium hydroxide octahydrate, Sr(OH)2 · 8H2O, Methods with subsequent difference Fourier synthe- as the most insoluble species in our reaction mixtures.
    [Show full text]