Print This Article

Total Page:16

File Type:pdf, Size:1020Kb

Print This Article 107 Changes in numbers of staging and wintering geese in Sweden: 1977/78–2019/20 LEIF NILSSON1,* & HAKON KAMPE-PERSSON2 1Department of Biology, Biodiversity, University of Lund, Ecology Building, SE-223 62 Lund, Sweden. 2Pulma i, Gl das pagasts, Jelgavas novads, LV-3040 N kotne, Latvia. *Correspondence author. E-mail: [email protected] Abstract Regular goose counts made throughout Sweden since 1977/78 show that the total numbers staging and wintering in the country have increased markedly over the decades. October totals were of 51,000 geese in 1977, rising to c. 600,000 in 2018, during which time January totals also increased from 31,000 to 252,000 birds. The greatest change recorded was for the Greylag Goose Anser anser, numbers of which rose from 20,000 to > 250,000 individuals over a 35-year period. Changes in migration and wintering habits have also been recorded, with mid-winter (January) Greylag Goose numbers now amounting to 20–33% of the September totals in recent years, illustrating increases in the proportion of the population now wintering in the country. Moreover, large numbers of Barnacle Geese Branta leucopsis have started to stage and over-winter in Sweden, and are now becoming the commonest species, with 365,000 recorded in autumn 2019. Key words: autumn, goose counts, migration patterns, population increase, winter. During recent decades, most Northwest which was formerly widespread across European goose populations have increased the Scandinavian mountain chain but is markedly (Madsen et al. 1999; Fox et al. now reduced to very few breeding pairs, 2010; Fox & Madsen 2017; Fox & Leafloor mainly in Norway, with a re-introduced 2018), with some reaching levels where population occurring in Sweden (Andersson they have come into conflict with & Holmqvist 2010; Fox & Leafloor agriculture when feeding on crops causes 2018). The Taiga Bean Goose Anser fabalis economic losses for farmers (Fox et al. fabalis also has declined in recent years. 2017). In contrast to the majority of goose International Single Species Action Plans species, however, a few of the European (ISSAPs) developed for the conservation populations have decreased over the same both of the Lesser White-fronted Goose period. This is most apparent for the (Jones et al. 2008) and the Taiga Bean Lesser White-fronted Goose Anser erythropus, Goose (Marjakangas et al. 2015; cf. for © Wildfowl & Wetlands Trust Wildfowl (2020) 70: 107–126 108 Numbers of geese staging and wintering in Sweden Swedish data Mathiasson 1963; Nilsson & Since the IWC programme was founded Persson 1984; Nilsson 2013), have been during the 1960s, there have been marked adopted by the African-Eurasian Waterbird changes in the distribution patterns of Agreement (AEWA) under the auspices of different species, which largely seem to be the Convention on Migratory Species. related to climate change with milder In response to decreasing populations of winters enabling the birds to remain in more Taiga Bean Geese and Lesser White-fronted northerly parts of their wintering range. For Geese, the Nordic Council for Wildlife several Anatidae species, this pattern has Research (NKV) established a Goose been established at the international scale Working Group for the region. The main (Lehikoinen et al. 2013; Pavon-Jordan et al. aim of the group was to study the two 2015; Ramo et al. 2015; Nilsson & Kampe- decreasing taxa in the Nordic countries but, Persson 2018; Nuijten et al. 2020) but also following reports of mass mortality among within Sweden (Nilsson & Haas 2016). In Greylag Geese Anser anser wintering in other species, changes in migratory patterns southwest Spain (e.g. in drought conditions; have occurred where habitat management Nilsson & Persson 1996), the Greylag has affected food resources for the geese, Goose was also included in the study e.g. the reduction in cattle grazing in the (Nilsson & Fog 1984). One important Baltic States which consequently reduced task for the working group was to start feeding areas available to Barnacle Geese regular national censuses of staging and Branta leucopsis in this part of the flyway wintering geese; thus, regular goose counts (Eichhorn et al. 2009). commenced in 1977/78. During the first In the present paper, we use the Swedish years of the goose counts, the primary goose counts to describe how the numbers objective was to cover all sites for focal of geese staging and wintering in Sweden species, e.g. the Bean Goose in Sweden have changed since the late 1970s. We also (Nilsson & Persson 1984), but all species aim to evaluate the importance of Sweden were counted at the sites visited. With the as a staging and wintering area for its most initiation of the Greylag Goose studies in abundant goose species – the Bean Goose, 1984, a special September count was added Greylag Goose, White-fronted Goose to cover this species more effectively, Anser albifrons, Pink-footed Goose Anser because a proportion of the Greylag Geese brachyrhynchus, Canada Goose Branta summering in Sweden left the country canadensis and Barnacle Goose – in a before the October count. The Swedish European context. Regional distributions of goose counts are now a part of the geese within Sweden have been published European Goose Management Platform previously (Nilsson 1988, 2000, 2013) so, census programme, established under AEWA along with information on rare species in 2016, and also contribute to the long- occurring in the country (i.e. Lesser White- term International Waterbird Count (IWC) fronted Geese and Red-breasted Geese programme coordinated by Wetlands Branta ruficollis) these will not be discussed in International. detail here. Likewise the Brent Goose Branta © Wildfowl & Wetlands Trust Wildfowl (2020) 70: 107–126 Numbers of geese staging and wintering in Sweden 109 bernicla, which, although a common passage were covered on the ground, with these migrant, stages in the country in small field counts sometimes supplemented by numbers for only short periods. observations of the birds’ morning flights from the roost to their feeding areas. Methods Intensive fieldwork during a study of the The Swedish goose counts commenced as ecology of non-breeding ecology in part of the joint Nordic Goose Programme southern Sweden provided the basis for in 1977/78 (Nilsson & Fog 1984), with the determining the survey area in southwest main aim of covering all important sites for Scania (Nilsson & Persson 1984), with new Bean Goose at monthly intervals from sites identified and included following September–April inclusive, but with all observations of geese flying to their feeding other goose species present counted as well. areas. In southwest Scania (Fig. 1a), the The surveys were made in the middle of counts were mostly undertaken by the each month, on dates coinciding with second author covering all important international waterbird counts determined feeding areas in the region, whilst in by Wetlands International. September northeast Scania the feeding grounds for counts were added from 1984 onwards, geese were covered by a team from the local following the development of the second bird club over the years (Kampe-Persson Nordic Goose Programme focussing on 2014; Kampe-Persson et al. 2017). Greylag Geese, which aimed to cover all Further north, at three of the larger sites potentially of importance for this goose staging areas in south-central Sweden species. Although during the first ten years – Tåkern, Östen and Kvismaren (Fig. 1a) – of the study (in winters 1977/78–1986/87) counts were made by teams of voluntary the counts were undertaken each month, observers counting the geese during the subsequently only four surveys were morning flights from the roost. In recent organised each year, in September, October, years, c. 300–350 sites have been covered November (supplementing the October annually in these areas during September counts) and January (coinciding with the and October. Elsewhere, in addition to these mid-winter count undertaken of all important goose sites, voluntary observers waterbirds for the IWCs). All goose species counted geese across the country during the present were counted on each occasion. selected months each year. Many of these During the first year, however, it transpired sites were included in the annual sample of that October was the most suitable month sites covered during the national waterbird for counting staging geese in Sweden except surveys undertaken in September, and also for the Greylag Goose, which to a large extent during the mid-winter (January) counts in had already left the country in October, but Sweden recorded for the IWCs. Additional had not yet started their migration at the goose counts were reported via the Swedish time of the September count. Bird Observation Portal (www.artportalen.se), In Scania, the southernmost province which was checked regularly for information. of Sweden, all important feeding areas When we found new goose sites in the bird © Wildfowl & Wetlands Trust Wildfowl (2020) 70: 107–126 110 Numbers of geese staging and wintering in Sweden (a) (b) Figure 1. Map of the study area showing (a) the count areas and locations of important goose sites in southern Sweden mentioned in the text, and (b) sites where goose counts were reported in Sweden during winter 2019/20. reports, we tried to contact the observers to abundance of these two subspecies (Kampe- recruit them to the network, asking them to Persson 2017). In order to obtain some make and report their counts on an annual indication of the timing of passage basis. migration for geese in southern Sweden, we Most counts of Bean Geese at larger sites compared the counts of geese at their in Sweden, north of Scania, were also made autumn staging sites with the numbers of during the birds’ morning flights from the geese seen migrating past the Falsterbo Bird roosting lakes to the feeding grounds, and Observatory at the south-westernmost it was not possible to separate the Tundra point of Sweden (Kjellén 2019, and the Bird Bean Goose Anser fabalis rossicus from the Observatory homepage: www.falsterbofagel Taiga Bean Geese on these occasions.
Recommended publications
  • Wild Species 2010 the GENERAL STATUS of SPECIES in CANADA
    Wild Species 2010 THE GENERAL STATUS OF SPECIES IN CANADA Canadian Endangered Species Conservation Council National General Status Working Group This report is a product from the collaboration of all provincial and territorial governments in Canada, and of the federal government. Canadian Endangered Species Conservation Council (CESCC). 2011. Wild Species 2010: The General Status of Species in Canada. National General Status Working Group: 302 pp. Available in French under title: Espèces sauvages 2010: La situation générale des espèces au Canada. ii Abstract Wild Species 2010 is the third report of the series after 2000 and 2005. The aim of the Wild Species series is to provide an overview on which species occur in Canada, in which provinces, territories or ocean regions they occur, and what is their status. Each species assessed in this report received a rank among the following categories: Extinct (0.2), Extirpated (0.1), At Risk (1), May Be At Risk (2), Sensitive (3), Secure (4), Undetermined (5), Not Assessed (6), Exotic (7) or Accidental (8). In the 2010 report, 11 950 species were assessed. Many taxonomic groups that were first assessed in the previous Wild Species reports were reassessed, such as vascular plants, freshwater mussels, odonates, butterflies, crayfishes, amphibians, reptiles, birds and mammals. Other taxonomic groups are assessed for the first time in the Wild Species 2010 report, namely lichens, mosses, spiders, predaceous diving beetles, ground beetles (including the reassessment of tiger beetles), lady beetles, bumblebees, black flies, horse flies, mosquitoes, and some selected macromoths. The overall results of this report show that the majority of Canada’s wild species are ranked Secure.
    [Show full text]
  • Egg Retrieval by Blue Geese.--Lorenz and Tinbergen (1938)
    202 General Notes [Auk, Vol. 90 Egg retrieval by Blue Geese.--Lorenz and Tinbergen (1938) used egg-retrieval behavior of Greylag Geese (Anser anser) to study simple instinctive motor patterns with an orienting component (taxis). They consideredthat such innate motor patterns "may have great taxonomic value for a species,a gentis, or even for a whole phylum." Poulsen (1953), finding the behavior to be present in several distinct systematicgroups concludedthat egg-retrieval behavior had evolved convergently in these groupsand could not be used as a taxonomiccharacter. He listed 42 species representing12 orders that rolled displacedeggs back into nests and only 2 orders (Pelecaniformes,Passedformes) that did not. There was no variation between species within an order; either all speciestested retrieved eggs or none did. Poulsen (1953: 32) and Sowks (1955: 101-102) together list 12 speciesof Anseriformesthat re- trieved eggs (Cygnus 2, Anser 4, Tadorna 1, Anas 3, Aythya 2). It is thus of interest that no female Blue Geese (Anser caerulescens) of 10 tested by Gooch (1958: 102) retrieved displaced eggs. As Gooch pointed out, the absenceof egg- retrieval behavior in the Blue Goose, a speciesthat has been included in the New World genus Chen (A.O.U., 1957) might have taxonomic significanceat the generic level. The observations reported here show that the proclivity and ability to re- trieve eggs is well-developed in Blue Geese. Several authorities (e.g. Delacour and Mayr, 1945; Johnsgard, 1965) have regarded Chen as invalid, placing it in Anser. Both Blue and LesserSnow Geeseare regardedin this paper as color phasesof the polymorphic subspeciesAnser c.
    [Show full text]
  • Recent Introgression Between Taiga Bean Goose and Tundra Bean Goose Results in a Largely Homogeneous Landscape of Genetic Differentiation
    Heredity (2020) 125:73–84 https://doi.org/10.1038/s41437-020-0322-z ARTICLE Recent introgression between Taiga Bean Goose and Tundra Bean Goose results in a largely homogeneous landscape of genetic differentiation 1 2 3 1 Jente Ottenburghs ● Johanna Honka ● Gerard J. D. M. Müskens ● Hans Ellegren Received: 12 December 2019 / Revised: 11 May 2020 / Accepted: 12 May 2020 / Published online: 26 May 2020 © The Author(s) 2020. This article is published with open access Abstract Several studies have uncovered a highly heterogeneous landscape of genetic differentiation across the genomes of closely related species. Specifically, genetic differentiation is often concentrated in particular genomic regions (“islands of differentiation”) that might contain barrier loci contributing to reproductive isolation, whereas the rest of the genome is homogenized by introgression. Alternatively, linked selection can produce differentiation islands in allopatry without introgression. We explored the influence of introgression on the landscape of genetic differentiation in two hybridizing goose taxa: the Taiga Bean Goose (Anser fabalis) and the Tundra Bean Goose (A. serrirostris). We re-sequenced the whole 1234567890();,: 1234567890();,: genomes of 18 individuals (9 of each taxon) and, using a combination of population genomic summary statistics and demographic modeling, we reconstructed the evolutionary history of these birds. Next, we quantified the impact of introgression on the build-up and maintenance of genetic differentiation. We found evidence for a scenario of allopatric divergence (about 2.5 million years ago) followed by recent secondary contact (about 60,000 years ago). Subsequent introgression events led to high levels of gene flow, mainly from the Tundra Bean Goose into the Taiga Bean Goose.
    [Show full text]
  • 4 East Dongting Lake P3-19
    3 The functional use of East Dongting Lake, China, by wintering geese ANTHONY D. FOX1, CAO LEI2*, MARK BARTER3, EILEEN C. REES4, RICHARD D. HEARN4, CONG PEI HAO2, WANG XIN2, ZHANG YONG2, DOU SONG TAO2 & SHAO XU FANG2 1Department of Wildlife Ecology and Biodiversity, National Environmental Research Institute, University of Aarhus, Kalø, Grenåvej 14, DK-8410 Rønde, Denmark. 2School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China. 321 Chivalry Avenue, Glen Waverley, Victoria 3150, Australia. 4Wildfowl and Wetlands Trust, Slimbridge, Gloucestershire GL2 7BT, UK. *Correspondence author. E-mail: [email protected] Abstract A survey and study of geese wintering at the East Dongting Lake National Nature Reserve, China, in February 2008 revealed internationally important numbers of Lesser White-fronted Geese Anser erythropus, Greater White-fronted Geese Anser albifrons and Bean Geese Anser fabilis using the site, as well as small numbers of Greylag Geese Anser anser. Only five Swan Geese Anser cygnoides were recorded, compared with several hundreds in the 1990s. Globally important numbers of Lesser White-fronted Geese spend the majority of daylight hours feeding on short grassland and sedge meadows within the core reserve areas of the National Nature Reserve, and also roost there at night. Greater White-fronted Geese were not studied in detail, but showed similar behaviour. Large numbers of Bean Geese of both serrirostris and middendorffi races showed differing feeding strategies. The small numbers of serrirostris tended to roost and feed in or near the reserve on short grassland, as did small proportions of middendorffi. However, the majority of middendorffi slept within the confines of the reserve by day and flew out at dusk, to nocturnal feeding areas at least 40 km north on the far side of the Yangtze River, returning 40–80 min after first light.
    [Show full text]
  • The History of Potato- Eating by Wildfowl in Britain
    The history of potato- eating by wildfowl in Britain Janet Kear Summary T h e development of potato-eating and swede turnip-eating b y wildfowl is linked to agricultural changes and climatic conditions in Britain. The tradition of taking waste potatoes from harvested fields began in Scotland among Mallard at least a century ago. A few Lancashire Pink-footed Geese acquired the habit about 30 years later, although potato-eating did not bccomc widespread until the 1920’s. On the other hand, Scottish Greylag Geese and some Whooper Swans have selected a regular diet of potatoes for only 20-30 years. Turnip-eating has been sporadic in bad weather among Whooper Swans in Aberdeenshire and became traditional after 1947 in the Greylag flocks on the Isle of Bute. The techniques used by the birds in dealing w’ith roots are briefly described. Land drainage and the shift of arable cultivation, so much a part of agricultural history in Britain, are not wholly inimical to wildfowl. Indeed the ease with which many species have accommodated themselves to new foods is both remarkable and worthy of detailed study in the context of conservation. An undisturbed roost, generally a body of water, remains essential but wildfowl have shown increasing readiness to forage many miles away. Further, the flooding of new reservoirs has enabled the birds to exploit areas in which hitherto they were seldom present. Agricultural changes There is little doubt that the first product of agriculture to be utilised by wildfowl was spilled grain from the stubbles of harvested cereal fields.
    [Show full text]
  • (Icelandic-Breeding & Feral Populations) in Ireland
    An assessment of the distribution range of Greylag (Icelandic-breeding & feral populations) in Ireland Helen Boland & Olivia Crowe Final report to the National Parks and Wildlife Service and the Northern Ireland Environment Agency December 2008 Address for correspondence: BirdWatch Ireland, 1 Springmount, Newtownmountkennedy, Co. Wicklow. Phone: + 353 1 2819878 Fax: + 353 1 2819763 Email: [email protected] Table of contents Summary ....................................................................................................................................................... 1 Introduction.................................................................................................................................................... 2 Methods......................................................................................................................................................... 2 Results........................................................................................................................................................... 3 Coverage................................................................................................................................................... 3 Distribution ................................................................................................................................................ 5 Site accounts............................................................................................................................................
    [Show full text]
  • The Mystery of Anser Neglectus Sushkin, 1897. Victim of the Tunguska Disaster? a Hungarian Story
    Ornis Hungarica 2019. 27(2): 20–58. DOI: 10.2478/orhu-2019-0014 The mystery of Anser neglectus Sushkin, 1897. Victim of the Tunguska disaster? A Hungarian story Jacques VAN IMPE Received: April 08, 2019 – Revised: August 10, 2019 – Accepted: October 31, 2019 Van Impe, J. 2019. The mystery of Anser neglectus Sushkin, 1897. Victim of the Tunguska dis- aster? A Hungarian story. – Ornis Hungarica 27(2): 20–58. DOI: 10.2478/orhu-2019-0014 Abstract The well-known Russian ornithologist Prof. Peter Sushkin described it as a distinct species from Bashkortostan (Bashkiria) in 1897, a highly acclaimed discovery. However, its breeding grounds never been discovered. Since then, there has been a long-standing debate over the taxonom- ic position of Anser neglectus. Taxonomists have argued that Anser neglectus belongs to the group of A. fabalis Lath. because of its close resemblance with A. f. fabalis. At the beginning of the 20th century, large numbers of the Sushkin’s goose were observed in three winter quar- ters: on two lakes in the Republic of Bachkortostan, in the surroundings of the town of Tashkent in the Republic Uzbekistan, and in the puszta Hortobágy in eastern Hungary. It is a pity that taxonomists did not thoroughly com- pare the Russian and Hungarian ornithological papers concerning the former presence of Anser neglectus in these areas, because these rich sources refer to characteristics that would cast serious doubt on the classification ofAns - er neglectus as a subspecies, an individual variation or mutation of A. f. fabalis. Sushkin’s goose, though a typical Taiga Bean Goose, distinguished itself from other taxa of the Bean Goose by its plumage, its field identification, by its specific “Gé-gé” call, the size of its bill, and by its preference for warm and dry winter haunts.
    [Show full text]
  • A Molecular Phylogeny of Anseriformes Based on Mitochondrial DNA Analysis
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 23 (2002) 339–356 www.academicpress.com A molecular phylogeny of anseriformes based on mitochondrial DNA analysis Carole Donne-Goussee,a Vincent Laudet,b and Catherine Haanni€ a,* a CNRS UMR 5534, Centre de Genetique Moleculaire et Cellulaire, Universite Claude Bernard Lyon 1, 16 rue Raphael Dubois, Ba^t. Mendel, 69622 Villeurbanne Cedex, France b CNRS UMR 5665, Laboratoire de Biologie Moleculaire et Cellulaire, Ecole Normale Superieure de Lyon, 45 Allee d’Italie, 69364 Lyon Cedex 07, France Received 5 June 2001; received in revised form 4 December 2001 Abstract To study the phylogenetic relationships among Anseriformes, sequences for the complete mitochondrial control region (CR) were determined from 45 waterfowl representing 24 genera, i.e., half of the existing genera. To confirm the results based on CR analysis we also analyzed representative species based on two mitochondrial protein-coding genes, cytochrome b (cytb) and NADH dehydrogenase subunit 2 (ND2). These data allowed us to construct a robust phylogeny of the Anseriformes and to compare it with existing phylogenies based on morphological or molecular data. Chauna and Dendrocygna were identified as early offshoots of the Anseriformes. All the remaining taxa fell into two clades that correspond to the two subfamilies Anatinae and Anserinae. Within Anserinae Branta and Anser cluster together, whereas Coscoroba, Cygnus, and Cereopsis form a relatively weak clade with Cygnus diverging first. Five clades are clearly recognizable among Anatinae: (i) the Anatini with Anas and Lophonetta; (ii) the Aythyini with Aythya and Netta; (iii) the Cairinini with Cairina and Aix; (iv) the Mergini with Mergus, Bucephala, Melanitta, Callonetta, So- materia, and Clangula, and (v) the Tadornini with Tadorna, Chloephaga, and Alopochen.
    [Show full text]
  • Variation in the Belly Barrings of the Greenland White-Fronted Goose Anser Albifrons Flavirostris
    B e l l y b a r r i n g o f W h it e -f r o n t s 21 Variation in the belly barrings of the Greenland White-fronted Goose Anser albifrons flavirostris J. N. Kristiansen12 A. J. Walsh3, A. D. Fox2 H. Boyd4 & D. A. Stroud5 'University of Copenhagen, Zoological Institute, Dept, of Population Ecology, Universitetsparken 15, DK-2100 Copenhagen 0 , Denmark, e-mail: [email protected] 2National Environmental Research Institute, Dept, of Coastal Zone Ecology, Kalo, Grenâvej 12, DK-8410 Ronde, Denmark, e-mail: [email protected] 3Dúchas Heritage Service National Parks & Wildlife, Wexford Wildlife Reserve, North Slob Wexford, Ireland, e-mail: [email protected] 4Canadian Wildlife Service, Ottawa, Ontario, Canada K IA OH3 5Joint Nature Conservation Committee, Monkstone House, City Road, Peterborough PEI IJY, United Kingdom Based on data from seven successive years from the wintering grounds in Ireland and one year from the breeding grounds in West Greenland, the variation in the black striation on the abdomen and breast, the so-called belly barring, of the Greenland White-fronted Geese Anser albifrons flavirostis was assessed. We analysed for sexual variation, age variation, year to year variation and seasonal variation ¡early winter (1 October - 31 December) and late winter (1 January - 31 April)]. Geese showed no sexual difference, no change with age after the first winter and no clear pattern in year to year variation. However, there was a highly significant seasonal variation, since individual birds became consistently darker in late winter. Keywords: Greenland W hite-fronted Geese, Plumage variation (belly barring) mong geese (A n se r & B ra n ta ) is highly variable between individual A highly pronounced individual birds, a feature which can be so plumage variation only occurs in the distinct that it has been used to Lesser White-fronted Goose A nser identify individual birds within winters erythropus, the White-fronted Goose (Boyd 1953, D.
    [Show full text]
  • Why Should Greylag Goose Anser Anser Parents Rear Offspring of Others?
    25 Why should Greylag Goose Anser anser parents rear offspring of others? L. Nilsson & H. Kampe-Persson Department of Animal Ecology, Lund University, Ecology Building, SE-223 62 Lund, Sweden. leif. nilsson@zooekol. lu. se, hakonpersson@hotmail. com The benefits and costs of rearing large broods were studied in a popula­ tion of neck collared Greylag Geese in Scania, southernmost Sweden. Families were divided into four groups according to brood size: 1-4, 5-8, 9-12 and >12 young. Gosling survival showed a significant positive rela­ tionship with brood size on arrival at the rearing area. First-year and third-year local survival, as well as breeding recruitment, showed a sig­ nificant positive relationships with brood size at fledging. For adults rearing large broods, no costs were detected during the year following that when they fledged >8 young; both survival rate and reproductive success exceeded the long-term averages. Key Words: neck collared population, adoption, survival, recruitment, south Sweden Greylag Geese Anser anser are 1983). In addition to these very large sometimes seen with very large broods broods, there are also many cases of small young, some broods being so where just one or two eggs are added to large (up to 55 young) that it is impossi­ a clutch, or one or a few young are ble for a single female to have adopted into a brood. incubated so many eggs (Karlsson et al. The habit of intra- and inter-specific 1982; Jensen 2000; Persson 2002). It is egg parasitism and the adoption of well-known that Greylag Geese, like a small young is widespread among dif­ number of other waterfowl species, ferent species of waterfowl (Eadie et ai sometimes lay their eggs in the nest of 1988; Lank et ai 1989; Weigmann & another female, but excessively large Lamprecht 1991; Williams 1994; clutches laid by two or more females Beauchamp 1997; Andersson & Åhlund rarely hatch (Hauff 1982; Witkowski 2001).
    [Show full text]
  • ASAB Changes in Plumage in Canada Goose Goslings
    Canada geese ASAB Changes in plumage in Canada goose goslings Dr. Les May Manchester Metropolitan University 1 Canada geese ASAB Introduction References This resource pack from ASAB (Association for the Study of Animal Behaviour) focuses Lorenz, K. 1991. Here Am I - Where Are You? The behaviour of the Greylag Goose. on the role of judgment in animal behaviour studies. It is aimed at students following Harcourt Brace Jovanovich. GCSE Biology, AS/A2 Biology, Advanced Higher Biology and AS/A2 Psychology courses. It consists of: Martin, P. & Bateson, P. 2008. Measuring Behaviour: An introductory guide. Third Edition. Cambridge University Press. • background information for teachers; Ogilvie, M. & Young, S. 1998. Wildfowl of the World. New Holland. • a CD containing more than 50 images of Canada goose, Branta canadensis, goslings at various stages of development and images of seven of the Veen, J. 1977. The Sandwich Tern: functional and causal aspects of nest distribution. behaviours of Canada geese; Behaviour Supplement XX. Leiden. • two differentiated keys which describe the plumage development at the various stages; • drawings of Canada goose goslings with the diagnostic features highlighted; Website • two differentiated exercises requiring students to allocate individual images to Recording Animal Behaviour (can be downloaded from www.mmu.myzen.co.uk) the appropriate developmental stage; • a computer program to calculate the Kappa statistic, if desired; [for AS/A2 and [On this website you will also find video clips of animal behaviour
    [Show full text]
  • Response of Herbivorous Geese to Wintering Habitat Changes: Conservation Insights from Long-Term Population Monitoring in the East Dongting Lake, China
    Reg Environ Change (2017) 17:879–888 DOI 10.1007/s10113-016-1087-z ORIGINAL ARTICLE Response of herbivorous geese to wintering habitat changes: conservation insights from long-term population monitoring in the East Dongting Lake, China 1,2,3 1,2 1,2 4 Ye-Ai Zou • Yue Tang • Yong-Hong Xie • Qi-Hong Zhao • Hong Zhang4 Received: 18 October 2015 / Accepted: 24 November 2016 / Published online: 2 December 2016 Ó Springer-Verlag Berlin Heidelberg 2016 Abstract The majority of Eastern China’s herbivorous fronted Geese were more sensitive to habitat changes. No geese overwinter in the East Dongting Lake, China, and significant correlations were observed between goose there is growing concern about how changes in their abundances and both mean water levels and sedge meadow habitats can affect the goose populations. General linear areas. Results indicate that the variations in herbivorous regressions were used to analyze the relationship between goose abundances may be caused by changes in the NDVI changes in the abundances of three herbivorous geese of sedge meadows and the interval durations between (Eastern Tundra Bean Goose Anser fabalis serrirostris, sedge meadow exposure and goose arrival. The earlier Lesser White-fronted Geese Anser erythropus, and Greater flood recession can accelerate the exposure, growth, and White-fronted Goose Anser albifrons frontalis) and their withering of sedge meadows (low NDVI in late January), wintering habitats in the East Dongting Lake during thereby creating unsuitable feeding conditions for the geese 2002/2003–2014/2015. The fluctuations in three herbivo- in the wintering seasons. These findings are important as rous goose abundances exhibited negative correlations with efforts are made to protect these valuable species from the changes in interval duration (i.e., days between complete effects of human intervention, and in particular, the Three sedge meadow exposure and goose arrival in the study Gorges Dam project.
    [Show full text]