Unitary Representations of the Virasoro Algebra and a Conjecture of Kac Compositio Mathematica, Tome 67, No 3 (1988), P
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Group of Diffeomorphisms of the Unite Circle As a Principle U(1)-Bundle
Group of diffeomorphisms of the unite circle as a principle U(1)-bundle Irina Markina, University of Bergen, Norway Summer school Analysis - with Applications to Mathematical Physics Gottingen¨ August 29 - September 2, 2011 Group of diffeomorphisms of the unite circle as a principle U(1)-bundle – p. 1/49 String Minkowski space-time moving in time woldsheet string string Worldsheet as an imbedding of a cylinder C into the Minkowski space-time with the induced metric g. 2 Nambu-Gotô action SNG = −T dσ | det gαβ| ZC p T is the string tension. Group of diffeomorphisms of the unite circle as a principle U(1)-bundle – p. 2/49 Polyakov action Change to the imbedding independent metric h on worldsheet. 2 αβ Polyakov action SP = −T dσ | det hαβ|h ∂αx∂βx, ZC p 0 1 δSP α, β = 0, 1, x = x(σ ,σ ). Motion satisfied δhαβ = 0. −1 δSP Energy-momentum tensor Tαβ = αβ T | det hαβ| δh p Tαβ = 0 and SP = SNG, whereas in general SP ≥ SNG Group of diffeomorphisms of the unite circle as a principle U(1)-bundle – p. 3/49 Gauges The metric h has 3 degrees of freedom - gauges that one need to fix. • Global Poincaré symmetries - invariance under Poincare group in Minkowski space • Local invariance under the reparametrizaition by 2D-diffeomorphisms dσ˜2 | det h˜| = dσ2 | det h| • Local Weyl rescaling p p α β ρ(σ0,σ1) α β hαβdσ dσ → e hαβdσ dσ ρ(σ0,σ1) 2 αβ µ ν hαβ = e ηαβ, SP = −T dσ η ηµν∂αx ∂βx ZC Group of diffeomorphisms of the unite circle as a principle U(1)-bundle – p. -
7 International Centre for Theoretical Physics
IC/93/173 -n I 'r.2_. \ INTERNATIONAL CENTRE FOR 7 THEORETICAL PHYSICS IIK;IIKK SPIN EXTENSIONS OF THE VIRASORO ALCE1IRA, AREA-PRESERVING AL(;EURAS AND THE MATRIX ALGEBRA M. Zakkuri INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION MIRAMARE-TRIESTE IC/93/173 Infinite dimensional algebras have played a central role in the development of string theories and two dimensional conformal field theory. These symmetries have been shown International Atomic Energy Agency to be related to the Virasoro algebra, its supersymmetric extensions and the Kac-Moody and one. Together, they are generated by conformal spin ,s currents with s <2. United Nations Educational Scientific and Cultural Organization However, some years ago, Zamolodchikov discovered a new extension, W3, involving besides the usual spin 2 conformal current, a conformal spin 3 current [1]. The obtained INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS structure is called non-linear Lie algebra. Recently, much interest has been made in the understanding of these higher conformal spin extensions of the Virasoro algebra [2.3,4}. In this paper, we study these algebraic structures using the infinite matrix representa- tion. Actually the present work may be viewed as a generalization of the infinite matrix HIGHER SPIN EXTENSIONS OF THE VIRASORO ALGEBRA, realization of the Virasoro algebra obtained by Kac et al. [5|. Some results have been AREA-PRESERVING ALGEBRAS AND THE MATRIX ALGEBRA described in our first papers [6,7]. However, we give here some precisions on the generality of above results. Moreover, we extend the above construction to include the algebra of area preserving diffeomorphism on the 2-dimensional torus [8], Actually, this result is k 1 expected to be generalizable for higher dimensions [10], namely for the torus T , k > 1. -
Strings, Symmetries and Representations
Strings, symmetries and representations C. Schweigert, I. Runkel LPTHE, Universite´ Paris VI, 4 place Jussieu, F – 75 252 Paris Cedex 05 J. Fuchs Institutionen for¨ fysik, Universitetsgatan 5, S – 651 88 Karlstad Abstract. Several aspects of symmetries in string theory are reviewed. We discuss the roleˆ of symmetries both of the string world sheet and of the target space. We also show how to obtain string scattering amplitudes with the help of structures familiar from the representation theory of quantum groups. 1. Strings and conformal field theory Symmetries of various types, and consequently representation theoretic tools, play an important roleˆ in string theory and conformal field theory. The present contribution aims at reviewing some of their aspects, the choice of topics being influenced by our personal taste. After a brief overview of string theory and conformal field theory, we first discuss orbifolds and duality symmetries. We then turn to D-branes and theories of open strings, which we investigate in the final section using Frobenius algebras in representation categories. A minimalistic point of view on (perturbative) string theory is to regard it as a pertur- bative quantization of a field theory, with the perturbation expansion being organized not in terms of graphs, i.e. one-dimensional objects, but rather in terms of surfaces. What makes this perturbation expansion particularly interesting is that it even covers the quantization of theories that include a gravitational sector. The configuration space of a classical string is given by the embeddings of its two- dimensional world sheet Σ, with local coordinates τ and σ, into a target space M with coordinates Xµ. -
Geometric Approach to Kac–Moody and Virasoro Algebras
Journal of Geometry and Physics 62 (2012) 1984–1997 Contents lists available at SciVerse ScienceDirect Journal of Geometry and Physics journal homepage: www.elsevier.com/locate/jgp Geometric approach to Kac–Moody and Virasoro algebrasI E. Gómez González, D. Hernández Serrano ∗, J.M. Muñoz Porras ∗, F.J. Plaza Martín ∗ Departamento de Matemáticas, Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain IUFFYM, Instituto Universitario de Física Fundamental y Matemáticas, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain article info a b s t r a c t Article history: In this paper we show the existence of a group acting infinitesimally transitively on the Received 17 March 2011 moduli space of pointed-curves and vector bundles (with formal trivialization data) and Received in revised form 12 January 2012 whose Lie algebra is an algebra of differential operators. The central extension of this Accepted 1 May 2012 Lie algebra induced by the determinant bundle on the Sato Grassmannian is precisely a Available online 8 May 2012 semidirect product of a Kac–Moody algebra and the Virasoro algebra. As an application of this geometric approach, we give a local Mumford-type formula in terms of the cocycle MSC: associated with this central extension. Finally, using the original Mumford formula we primary 14H60 14D21 show that this local formula is an infinitesimal version of a general relation in the secondary 22E65 Picard group of the moduli of vector bundles on a family of curves (without any formal 22E67 trivialization). 22E47 ' 2012 Elsevier B.V. All rights reserved. -
Scientific Report for the Year 2000
The Erwin Schr¨odinger International Boltzmanngasse 9 ESI Institute for Mathematical Physics A-1090 Wien, Austria Scientific Report for the Year 2000 Vienna, ESI-Report 2000 March 1, 2001 Supported by Federal Ministry of Education, Science, and Culture, Austria ESI–Report 2000 ERWIN SCHRODINGER¨ INTERNATIONAL INSTITUTE OF MATHEMATICAL PHYSICS, SCIENTIFIC REPORT FOR THE YEAR 2000 ESI, Boltzmanngasse 9, A-1090 Wien, Austria March 1, 2001 Honorary President: Walter Thirring, Tel. +43-1-4277-51516. President: Jakob Yngvason: +43-1-4277-51506. [email protected] Director: Peter W. Michor: +43-1-3172047-16. [email protected] Director: Klaus Schmidt: +43-1-3172047-14. [email protected] Administration: Ulrike Fischer, Eva Kissler, Ursula Sagmeister: +43-1-3172047-12, [email protected] Computer group: Andreas Cap, Gerald Teschl, Hermann Schichl. International Scientific Advisory board: Jean-Pierre Bourguignon (IHES), Giovanni Gallavotti (Roma), Krzysztof Gawedzki (IHES), Vaughan F.R. Jones (Berkeley), Viktor Kac (MIT), Elliott Lieb (Princeton), Harald Grosse (Vienna), Harald Niederreiter (Vienna), ESI preprints are available via ‘anonymous ftp’ or ‘gopher’: FTP.ESI.AC.AT and via the URL: http://www.esi.ac.at. Table of contents General remarks . 2 Winter School in Geometry and Physics . 2 Wolfgang Pauli und die Physik des 20. Jahrhunderts . 3 Summer Session Seminar Sophus Lie . 3 PROGRAMS IN 2000 . 4 Duality, String Theory, and M-theory . 4 Confinement . 5 Representation theory . 7 Algebraic Groups, Invariant Theory, and Applications . 7 Quantum Measurement and Information . 9 CONTINUATION OF PROGRAMS FROM 1999 and earlier . 10 List of Preprints in 2000 . 13 List of seminars and colloquia outside of conferences . -
Kac-Moody Algebras and Applications
Kac-Moody Algebras and Applications Owen Barrett December 24, 2014 Abstract This article is an introduction to the theory of Kac-Moody algebras: their genesis, their con- struction, basic theorems concerning them, and some of their applications. We first record some of the classical theory, since the Kac-Moody construction generalizes the theory of simple finite-dimensional Lie algebras in a closely analogous way. We then introduce the construction and properties of Kac-Moody algebras with an eye to drawing natural connec- tions to the classical theory. Last, we discuss some physical applications of Kac-Moody alge- bras,includingtheSugawaraandVirosorocosetconstructions,whicharebasictoconformal field theory. Contents 1 Introduction2 2 Finite-dimensional Lie algebras3 2.1 Nilpotency.....................................3 2.2 Solvability.....................................4 2.3 Semisimplicity...................................4 2.4 Root systems....................................5 2.4.1 Symmetries................................5 2.4.2 The Weyl group..............................6 2.4.3 Bases...................................6 2.4.4 The Cartan matrix.............................7 2.4.5 Irreducibility...............................7 2.4.6 Complex root systems...........................7 2.5 The structure of semisimple Lie algebras.....................7 2.5.1 Cartan subalgebras............................8 2.5.2 Decomposition of g ............................8 2.5.3 Existence and uniqueness.........................8 2.6 Linear representations of complex semisimple Lie algebras...........9 2.6.1 Weights and primitive elements.....................9 2.7 Irreducible modules with a highest weight....................9 2.8 Finite-dimensional modules............................ 10 3 Kac-Moody algebras 10 3.1 Basic definitions.................................. 10 3.1.1 Construction of the auxiliary Lie algebra................. 11 3.1.2 Construction of the Kac-Moody algebra................. 12 3.1.3 Root space of the Kac-Moody algebra g(A) .............. -
Contemporary Mathematics 442
CONTEMPORARY MATHEMATICS 442 Lie Algebras, Vertex Operator Algebras and Their Applications International Conference in Honor of James Lepowsky and Robert Wilson on Their Sixtieth Birthdays May 17-21, 2005 North Carolina State University Raleigh, North Carolina Yi-Zhi Huang Kailash C. Misra Editors http://dx.doi.org/10.1090/conm/442 Lie Algebras, Vertex Operator Algebras and Their Applications In honor of James Lepowsky and Robert Wilson on their sixtieth birthdays CoNTEMPORARY MATHEMATICS 442 Lie Algebras, Vertex Operator Algebras and Their Applications International Conference in Honor of James Lepowsky and Robert Wilson on Their Sixtieth Birthdays May 17-21, 2005 North Carolina State University Raleigh, North Carolina Yi-Zhi Huang Kailash C. Misra Editors American Mathematical Society Providence, Rhode Island Editorial Board Dennis DeTurck, managing editor George Andrews Andreas Blass Abel Klein 2000 Mathematics Subject Classification. Primary 17810, 17837, 17850, 17865, 17867, 17868, 17869, 81T40, 82823. Photograph of James Lepowsky and Robert Wilson is courtesy of Yi-Zhi Huang. Library of Congress Cataloging-in-Publication Data Lie algebras, vertex operator algebras and their applications : an international conference in honor of James Lepowsky and Robert L. Wilson on their sixtieth birthdays, May 17-21, 2005, North Carolina State University, Raleigh, North Carolina / Yi-Zhi Huang, Kailash Misra, editors. p. em. ~(Contemporary mathematics, ISSN 0271-4132: v. 442) Includes bibliographical references. ISBN-13: 978-0-8218-3986-7 (alk. paper) ISBN-10: 0-8218-3986-1 (alk. paper) 1. Lie algebras~Congresses. 2. Vertex operator algebras. 3. Representations of algebras~ Congresses. I. Leposwky, J. (James). II. Wilson, Robert L., 1946- III. Huang, Yi-Zhi, 1959- IV. -
Grothendieck Rings of Basic Classical Lie Superalgebras
Annals of Mathematics 173 (2011), 663{703 doi: 10.4007/annals.2011.173.2.2 Grothendieck rings of basic classical Lie superalgebras By Alexander N. Sergeev and Alexander P. Veselov Abstract The Grothendieck rings of finite dimensional representations of the basic classical Lie superalgebras are explicitly described in terms of the corre- sponding generalized root systems. We show that they can be interpreted as the subrings in the weight group rings invariant under the action of certain groupoids called super Weyl groupoids. Contents 1. Introduction 663 2. Grothendieck rings of Lie superalgebras 665 3. Basic classical Lie superalgebras and generalized root systems 667 4. Ring J(g) and supercharacters of g 668 5. Geometry of the highest weight set 670 6. Proof of the main theorem 677 7. Explicit description of the rings J(g) 681 8. Special case A(1; 1) 695 9. Super Weyl groupoid 698 10. Concluding remarks 700 References 701 1. Introduction The classification of finite-dimensional representations of the semisimple complex Lie algebras and related Lie groups is one of the most beautiful pieces of mathematics. In his essay [1] Michael Atiyah mentioned representation the- ory of Lie groups as an example of a theory, which \can be admired because of its importance, the breadth of its applications, as well as its rational coher- ence and naturality." This classical theory goes back to fundamental work by Elie` Cartan and Hermann Weyl and is very well presented in various books, of 663 664 ALEXANDER N. SERGEEV and ALEXANDER P. VESELOV which we would like to mention the famous Serre's lectures [27] and a nicely written Fulton-Harris course [9]. -
Z-Graded Lie Superalgebras of Infinite Depth and Finite Growth 547
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. I (2002), pp. 545-568 Z-graded Lie Superalgebras of Infinite Depth and Finite Growth NICOLETTA CANTARINI Abstract. In 1998 Victor Kac classified infinite-dimensional Z-graded Lie su- peralgebras of finite depth. We construct new examples of infinite-dimensional Lie superalgebras with a Z-gradation of infinite depth and finite growth and clas- sify Z-graded Lie superalgebras of infinite depth and finite growth under suitable hypotheses. Mathematics Subject Classification (2000): 17B65 (primary), 17B70 (secondary). Introduction Simple finite-dimensional Lie superalgebras were classified by V. G. Kac in [K2]. In the same paper Kac classified the finite-dimensional, Z-graded Lie superalgebras under the hypotheses of irreducibility and transitivity. The classification of infinite-dimensional, Z-graded Lie superalgebras of finite depth is also due to V. G. Kac [K3] and is deeply related to the classifi- cation of linearly compact Lie superalgebras. We recall that finite depth implies finite growth. This naturally leads to investigate infinite-dimensional, Z-graded Lie super- algebras of infinite depth and finite growth. The hypothesis of finite growth is central to the problem; indeed, it is well known that it is not possible to classify Z-graded Lie algebras (and thus Lie superalgebras) of any growth (see [K1], [M]). The only known examples of infinite-dimensional, Z-graded Lie superalgebras of finite growth and infinite depth are given by contragredient Lie superalgebras which were classified by V. G. Kac in [K2] in the case of finite dimension and by J.W. van de Leur in the general case [vdL]. -
Modular Forms and Affine Lie Algebras
Modular Forms Theta functions Comparison with the Weyl denominator Modular Forms and Affine Lie Algebras Daniel Bump F TF i 2πi=3 e SF Modular Forms Theta functions Comparison with the Weyl denominator The plan of this course This course will cover the representation theory of a class of Lie algebras called affine Lie algebras. But they are a special case of a more general class of infinite-dimensional Lie algebras called Kac-Moody Lie algebras. Both classes were discovered in the 1970’s, independently by Victor Kac and Robert Moody. Kac at least was motivated by mathematical physics. Most of the material we will cover is in Kac’ book Infinite-dimensional Lie algebras which you should be able to access on-line through the Stanford libraries. In this class we will develop general Kac-Moody theory before specializing to the affine case. Our goal in this first part will be Kac’ generalization of the Weyl character formula to certain infinite-dimensional representations of infinite-dimensional Lie algebras. Modular Forms Theta functions Comparison with the Weyl denominator Affine Lie algebras and modular forms The Kac-Moody theory includes finite-dimensional simple Lie algebras, and many infinite-dimensional classes. The best understood Kac-Moody Lie algebras are the affine Lie algebras and after we have developed the Kac-Moody theory in general we will specialize to the affine case. We will see that the characters of affine Lie algebras are modular forms. We will not reach this topic until later in the course so in today’s introductory lecture we will talk a little about modular forms, without giving complete proofs, to show where we are headed. -
Arxiv:1707.06106V2 [Math.RA] 26 Mar 2018 Atni 99[] H Itagbaadisuieslcentra Universal Its and Algebra Witt the [1]
THE VANISHING OF THE LOW-DIMENSIONAL COHOMOLOGY OF THE WITT AND THE VIRASORO ALGEBRA JILL ECKER AND MARTIN SCHLICHENMAIER Abstract. A proof of the vanishing of the third cohomology group of the Witt algebra with values in the adjoint module is given. Moreover, we provide a sketch of the proof of the one-dimensionality of the third cohomology group of the Virasoro algebra with values in the adjoint module. The proofs given in the present article are completely algebraic and independent of any underlying topology. They are a generalization of the ones provided by Schlichenmaier, who proved the vanishing of the second cohomology group of the Witt and the Virasoro algebra by using purely algebraic methods. In the case of the third cohomology group though, extra difficulties arise and the involved proofs are distinctly more complicated. The first cohomology group can easily be computed; we will give an explicit proof of its vanishing in the appendix, in order to illustrate our techniques. 1. Introduction The Witt algebra W is an infinite-dimensional, Z-graded Lie algebra first introduced by Cartan in 1909 [1]. The Witt algebra and its universal central extension, the Virasoro alge- bra, are two of the most important infinite-dimensional Lie algebras, used in mathematics as well as in theoretical physics, see e.g. the book by Kac, Raina and Rozhkovskaya [24]. Therefore, knowledge of their cohomology groups is of outermost importance to a better understanding of central extensions, outer morphisms, deformations, obstructions, and so on. In the present article, we consider algebraic cohomology mainly with values in the adjoint module. -
Extended Virasoro Algebra and Algebra of Area Preserving D1ffeomorphisms
Preprint YERPHI-1244<30)-90 a>hfih4U3h ЕРЕВАНСКИЙ ФИЗИЧЕСКИЙ ИНСТИТУТ YEREVAN PHYSICS INSTJTUTE T.A.ARAKELYAN | EXTENDED VIRASORO ALGEBRA AND ALGEBRA OF AREA PRESERVING D1FFEOMORPHISMS ЦНИИатомнкформ EPEBAH-1990 U*Ti- 1244 (30)-90 ьичш,с *•!.D fcnLuili 1990 н ГСМИИЮ шшштеажя нссмжованмя ад СТШИОЙ мик Preprint YSRPIIi- I2440G'.'--90 EXTENDED VIRASORC ALGEBRA AND ALGEBRA 01 AREA PRESERVING DIFFEOMORPHISMS The algebra of area preserving diffeomorphiзтз plays an Important role in the theory of relativistic membranes. We pointed out the relation between this algsbra and the extended Virasoro*algebra associated with the generalized Kac-Moody algebras G(T) . The highest «tight representation of these infinite-dimensional algebras as well a* of their subalgebras is studied. Yerevan Physic* Institute Yerevan 1990 Препринт Е<2И-1244(30)-90 Т.А.АРАКЕЛЯН РАСШИРЕННАЯ АЛГЕБРА ВИРАСОРО И АЛГЕБРА ДИФФЕОМОРФИЗМОВ СОХРАНЯКВДХ ОБЪЁМ Алгебра диффеоморфизмов сохраняющих объём играет важную роль в теории релятивистских поверхностей. Мы отмечаем связь этой алгебры с расширенной алгеброй Вирасорю, ассоциированной с обобщенными алгебрами Каца-Муди &(Тг) . Исследовано пред- ставление старшим весом этих бесконечномерных алгебр,а также их подалгебр. Ереванский физический институт Ереван 1990 1. Introduction In the light-cone gauge the residual group of symmetry of relativistic surface consists of the area preserving diffeo- mox'phisms ot the two-dimensional surface M . The role of this у group is close to that of the group of conformal transforma- h tions in string theory. For the surfaces of the simplest topo- Щ || logy T2 , S2 , there were calculated the structure constants Щ and the second group of cohomologies of the algebra of area ( preserving diffeomorphisms [1] .