WA 4: Solutions

Total Page:16

File Type:pdf, Size:1020Kb

WA 4: Solutions WA 4: Solutions Problem 1. Show that for any z such that |Im z| ≥ δ, with some δ > 0, 1 1 1 2 1 2 |tan z| ≤ 1 + , |cot z| ≤ 1 + . sinh2 δ sinh2 δ Solution. We have | sin z|2 sin2 x + sinh2 y 1 + sinh2 y 1 | tan z|2 = = ≤ = 1 + . | cos z|2 cos2 x + sinh2 y sinh2 y sinh2 y Since sinh2 y is an even function, it suffices to show that sinh2 y ≥ sinh2 δ when y ≥ δ. This follows from the fact that (sinh2 y)0 = 2 sinh y cosh y > 0 when y > 0, and thus sinh2 y is increasing for positive y. Therefore, 1 1 | tan z|2 ≤ 1 + ≤ 1 + . sinh2 y sinh2 δ The second inequality is proved analogously. −1 −1 π Problem 2. (a) Show that the identity sin z +cos z = 2 holds for all z ∈ C and the principal values of sin−1 z and cos−1 z. (b) Is this identity true for sin−1 z and cos−1 z considered as multivalued func- tions? Solution. (a) For z ∈ (−1, 1), the principal values of sin−1 z and cos−1 z coincide with the values of these functions as defined in trigonometry. Indeed, for x ∈ (−1, 1) we have p sin−1 x = −iLog[ix + (1 − x2)1/2] = −iLog[ix + 1 − x2] p p = −i(ln 1 + iArg(ix + 1 − x2)) = Arg(ix + 1 − x2), √ 2 π π −1 and since Arg(ix+ 1 − x ) ∈ (− 2 , 2 ), the statement for sin x follows. Similarly, p cos−1 x = −iLog[x + i(1 − x2)1/2] = −iLog[x + i 1 − x2] p p = −i(ln 1 + iArg(x + i 1 − x2)) = Arg(x + i 1 − x2), √ and since Arg(x + i 1 − x2) ∈ (0, π), the statement for cos−1 x follows. Since the interval (−1, 1) belongs to the domain of analyticity for the principal branches of functions sin−1 z and cos−1 z, and all points of this interval are accumulation −1 −1 π points, by the uniqueness theorem the identity sin z + cos z = 2 holds for all z ∈ except when 1 − z2 ∈ (−∞, 0] or when the Log is applied to a negative C √ number. Extending the principal value of the square root, P.V.(reiΘ)1/2 = reiΘ/2, −π < Θ < π, to Θ = π by (one-sided) continuity using the same formula, i.e., assigning the argument π to negative numbers, and doing the same with Log, we observe that the identity holds for all z ∈ C. (Notice that Log is never applied to 0 in the formulas for sin−1 z and cos−1 z.) −1 −1 π (b) The identity sin z + cos z = 2 + 2πn, n ∈ Z, must replace the identity −1 π −1 in part (a). However, the identity sin z = 2 − cos z still holds for multivalued functions if it is understood as the equality of the two sets of values. 1 2 Problem 3. Find the linear fractional transformation that maps the points z1 = −i, z2 = 0, z3 = i to the points w1 = −1, w2 = i, w3 = 1, respectively. What is the image of the imaginary axis Re z = 0 under this transformation? Solution. The LFT is uniquely determined by the equation (w − w )(w − w ) (z − z )(z − z ) 1 2 3 = 1 2 3 , (w − w3)(w2 − w1) (z − z3)(z2 − z1) i.e., by (w + 1)(i − 1) (z + i)(−i) = . (w − 1)(i + 1) (z − i)i Solving for w, we obtain z − 1 w = −i . z + 1 Since for every y ∈ R, 2 2 2 iy − 1 y + 1 |w(iy)| = −i = = 1, iy + 1 y2 + 1 the imaginary axis Re z = 0 is mapped to the unit circle |w| = 1, with the point w(∞) = −i excluded. (The extended imaginary axis is transformed to the whole unit circle.) Problem 4. Find the linear transformation w = Az + B, A 6= 0, mapping the strip {z = x + iy : kx + b1 ≤ y ≤ kx + b2}, where k, b1, b2 are real constants and b1 < b2, onto the strip {w = u + iv : 0 ≤ u ≤ 1}, so that z = ib2 is mapped to w = 0. Solution. The boundary lines are mapped to the boundary lines under the linear transformation w = Az + B. Since z = ib2 belongs to the line y = kx + b2 (for x = 0), and 0 belongs to the line u = 0, we conclude that the line y = kx + b2 is mapped to u = 0, and the line y = kx + b1 is mapped to the line u = 1. The first condition can be written as Re (A(x + i(kx + b2)) + B) = 0, and the second condition can be written as Re (A(x + i(kx + b1)) + B) = 1. Since z = ib2 is mapped to w = 0, we obtain 0 = Aib2 + B, i.e., B = −iAb2. Then the first condition becomes Re (A(1 + ik)) = Re A − kIm A = 0, i.e., Re A = kIm A. Then the second condition becomes Re (A(x + i(kx + b1 − b2)) = Re (iA(b1 − b2)) = Im A(b2 − b1) = 1, i.e., Im A = 1 . Therefore, b2−b1 k + i k + i A = ,B = −ib2 , b2 − b1 b2 − b1 3 and k + i w = Az + B = (z − ib2). b2 − b1 Problem 5 (a) Suppose that a linear fractional transformation maps the real line into itself. Show that the images of any two points symmetric about the real line are also symmetric about the real line. (b) Extend the result of (a) to an arbitrary pair of straight lines, i.e., show that if a linear fractional transformation maps a line L1 into a line L2 then the images of any two points symmetric about L1 are symmetric about L2. Solution. (a) We have that for every x ∈ R, w(x) − w(x) = 0, i.e., ax + b ax¯ + ¯b (ac¯ − ca¯)x2 + (ad¯− ad¯ )x + (bd¯− ¯bd) 0 = − = . cx + d cx¯ + d¯ |cx + d|2 Since a nontrivial quadratic polynomial can have at most two real zeros, the equality above can hold for all x ∈ R only if ac¯ − ca¯ = ad¯− ad¯ = bd¯− ¯bd, which holds only if a, b, c, and d all have the same argument, say θ. Multiply- ing them all by e−iθ if necessary, we obtain that the transformation w(z) can be described as az + b w(z) = cz + d with a, b, c, d ∈ R. Then az¯ + b az + b− w(¯z) = = = w(z), cz¯ + d cz + d i.e., w maps symmetric points about the real line into symmetric points about the real line. (b) Let w = T (z) be a given linear transformation which maps a line L1 to a line L2. Then one can represent both lines as the images of the real line under linear transformations: z = αZ + β, w = γW + δ, α 6= 0, γ 6= 0, i.e., z ∈ L1 if and only if Im Z = 0, and w ∈ L2 if and only if Im W = 0. Then the linear fractional transformation defined implicitly by γW + δ = T (αZ + β) maps the real line to the real line. By part (a), it has the property that the images of any two points symmetric about the real line are also symmetric about the real line. Since linear transformations are combinations of shifts, scalings, and rotations, and each of these operations maps two symmetric points about a line to two points symmetric about the image line, the original transformation w = T (z) also has this property, i.e., any two points z1 and z2 symmetric about L1 are mapped by the transformation T to w1 and w2 symmetric about L2. Problem 6. Find the image domains of the unit disk and its upper half under 5−4z the linear fractional transformation 4z−2 . 5−4z Solution. The transformation w = 4z−2 maps the real line to itself. The unit circle intersects the real line at two points z1 = 1 and z2 = −1, whose images are w1 = 1/2 and w2 = −3/2. Therefore, the image of the unit circle is a circle through w1 and w2 (it cannot be a line, since this line would be the real line whose 4 pre-image is the real line itself). Since the unit circle is symmetric about the real line, so is its image (see Problem 5(a)). Therefore, the line segment [−3/2, 1/2] is the diameter of the image circle, and its center is at w0 = −1/2. We conclude that the image of the unit circle is the circle |w + 1/2| = 1. Since w(0) = −5/2 does not belong to the circle |w + 1/2| = 1, the unit disk is mapped to the exterior of 5−4i the circle |w + 1/2| = 1. Since w(i) = 4i−2 = −1.3 − 1.2i has a negative imaginary part, the LFT maps the upper half plane onto the lower half plane. Therefore, the image of the upper half of the unit disk is the portion of the exterior part of the circle |w + 1/2| = 1 which lies in the lower half plane..
Recommended publications
  • Projective Coordinates and Compactification in Elliptic, Parabolic and Hyperbolic 2-D Geometry
    PROJECTIVE COORDINATES AND COMPACTIFICATION IN ELLIPTIC, PARABOLIC AND HYPERBOLIC 2-D GEOMETRY Debapriya Biswas Department of Mathematics, Indian Institute of Technology-Kharagpur, Kharagpur-721302, India. e-mail: d [email protected] Abstract. A result that the upper half plane is not preserved in the hyperbolic case, has implications in physics, geometry and analysis. We discuss in details the introduction of projective coordinates for the EPH cases. We also introduce appropriate compactification for all the three EPH cases, which results in a sphere in the elliptic case, a cylinder in the parabolic case and a crosscap in the hyperbolic case. Key words. EPH Cases, Projective Coordinates, Compactification, M¨obius transformation, Clifford algebra, Lie group. 2010(AMS) Mathematics Subject Classification: Primary 30G35, Secondary 22E46. 1. Introduction Geometry is an essential branch of Mathematics. It deals with the proper- ties of figures in a plane or in space [7]. Perhaps, the most influencial book of all time, is ‘Euclids Elements’, written in around 3000 BC [14]. Since Euclid, geometry usually meant the geometry of Euclidean space of two-dimensions (2-D, Plane geometry) and three-dimensions (3-D, Solid geometry). A close scrutiny of the basis for the traditional Euclidean geometry, had revealed the independence of the parallel axiom from the others and consequently, non- Euclidean geometry was born and in projective geometry, new “points” (i.e., points at infinity and points with complex number coordinates) were intro- duced [1, 3, 9, 26]. In the eighteenth century, under the influence of Steiner, Von Staudt, Chasles and others, projective geometry became one of the chief subjects of mathematical research [7].
    [Show full text]
  • Hyperbolic Geometry
    Hyperbolic Geometry David Gu Yau Mathematics Science Center Tsinghua University Computer Science Department Stony Brook University [email protected] September 12, 2020 David Gu (Stony Brook University) Computational Conformal Geometry September 12, 2020 1 / 65 Uniformization Figure: Closed surface uniformization. David Gu (Stony Brook University) Computational Conformal Geometry September 12, 2020 2 / 65 Hyperbolic Structure Fundamental Group Suppose (S; g) is a closed high genus surface g > 1. The fundamental group is π1(S; q), represented as −1 −1 −1 −1 π1(S; q) = a1; b1; a2; b2; ; ag ; bg a1b1a b ag bg a b : h ··· j 1 1 ··· g g i Universal Covering Space universal covering space of S is S~, the projection map is p : S~ S.A ! deck transformation is an automorphism of S~, ' : S~ S~, p ' = '. All the deck transformations form the Deck transformation! group◦ DeckS~. ' Deck(S~), choose a pointq ~ S~, andγ ~ S~ connectsq ~ and '(~q). The 2 2 ⊂ projection γ = p(~γ) is a loop on S, then we obtain an isomorphism: Deck(S~) π1(S; q);' [γ] ! 7! David Gu (Stony Brook University) Computational Conformal Geometry September 12, 2020 3 / 65 Hyperbolic Structure Uniformization The uniformization metric is ¯g = e2ug, such that the K¯ 1 everywhere. ≡ − 2 Then (S~; ¯g) can be isometrically embedded on the hyperbolic plane H . The On the hyperbolic plane, all the Deck transformations are isometric transformations, Deck(S~) becomes the so-called Fuchsian group, −1 −1 −1 −1 Fuchs(S) = α1; β1; α2; β2; ; αg ; βg α1β1α β αg βg α β : h ··· j 1 1 ··· g g i The Fuchsian group generators are global conformal invariants, and form the coordinates in Teichm¨ullerspace.
    [Show full text]
  • The Riemann Mapping Theorem Christopher J. Bishop
    The Riemann Mapping Theorem Christopher J. Bishop C.J. Bishop, Mathematics Department, SUNY at Stony Brook, Stony Brook, NY 11794-3651 E-mail address: [email protected] 1991 Mathematics Subject Classification. Primary: 30C35, Secondary: 30C85, 30C62 Key words and phrases. numerical conformal mappings, Schwarz-Christoffel formula, hyperbolic 3-manifolds, Sullivan’s theorem, convex hulls, quasiconformal mappings, quasisymmetric mappings, medial axis, CRDT algorithm The author is partially supported by NSF Grant DMS 04-05578. Abstract. These are informal notes based on lectures I am giving in MAT 626 (Topics in Complex Analysis: the Riemann mapping theorem) during Fall 2008 at Stony Brook. We will start with brief introduction to conformal mapping focusing on the Schwarz-Christoffel formula and how to compute the unknown parameters. In later chapters we will fill in some of the details of results and proofs in geometric function theory and survey various numerical methods for computing conformal maps, including a method of my own using ideas from hyperbolic and computational geometry. Contents Chapter 1. Introduction to conformal mapping 1 1. Conformal and holomorphic maps 1 2. M¨obius transformations 16 3. The Schwarz-Christoffel Formula 20 4. Crowding 27 5. Power series of Schwarz-Christoffel maps 29 6. Harmonic measure and Brownian motion 39 7. The quasiconformal distance between polygons 48 8. Schwarz-Christoffel iterations and Davis’s method 56 Chapter 2. The Riemann mapping theorem 67 1. The hyperbolic metric 67 2. Schwarz’s lemma 69 3. The Poisson integral formula 71 4. A proof of Riemann’s theorem 73 5. Koebe’s method 74 6.
    [Show full text]
  • Elliot Glazer Topological Manifolds
    Manifolds and complex structure Elliot Glazer Topological Manifolds • An n-dimensional manifold M is a space that is locally Euclidean, i.e. near any point p of M, we can define points of M by n real coordinates • Curves are 1-dimensional manifolds (1-manifolds) • Surfaces are 2-manifolds • A chart (U, f) is an open subset U of M and a homeomorphism f from U to some open subset of R • An atlas is a set of charts that cover M Some important 2-manifolds A very important 2-manifold Smooth manifolds • We want manifolds to have more than just topological structure • There should be compatibility between intersecting charts • For intersecting charts (U, f), (V, g), we define a natural transition map from one set of coordinates to the other • A manifold is C^k if it has an atlas consisting of charts with C^k transition maps • Of particular importance are smooth maps • Whitney embedding theorem: smooth m-manifolds can be smoothly embedded into R^{2m} Complex manifolds • An n-dimensional complex manifold is a space such that, near any point p, each point can be defined by n complex coordinates, and the transition maps are holomorphic (complex structure) • A manifold with n complex dimensions is also a real manifold with 2n dimensions, but with a complex structure • Complex 1-manifolds are called Riemann surfaces (surfaces because they have 2 real dimensions) • Holoorphi futios are rigid sie they are defied y accumulating sets • Whitney embedding theorem does not extend to complex manifolds Classifying Riemann surfaces • 3 basic Riemann surfaces • The complex plane • The unit disk (distinct from plane by Liouville theorem) • Riemann sphere (aka the extended complex plane), uses two charts • Uniformization theorem: simply connected Riemann surfaces are conformally equivalent to one of these three .
    [Show full text]
  • The Classical Groups and Domains 1. the Disk, Upper Half-Plane, SL 2(R
    (June 8, 2018) The Classical Groups and Domains Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ The complex unit disk D = fz 2 C : jzj < 1g has four families of generalizations to bounded open subsets in Cn with groups acting transitively upon them. Such domains, defined more precisely below, are bounded symmetric domains. First, we recall some standard facts about the unit disk, the upper half-plane, the ambient complex projective line, and corresponding groups acting by linear fractional (M¨obius)transformations. Happily, many of the higher- dimensional bounded symmetric domains behave in a manner that is a simple extension of this simplest case. 1. The disk, upper half-plane, SL2(R), and U(1; 1) 2. Classical groups over C and over R 3. The four families of self-adjoint cones 4. The four families of classical domains 5. Harish-Chandra's and Borel's realization of domains 1. The disk, upper half-plane, SL2(R), and U(1; 1) The group a b GL ( ) = f : a; b; c; d 2 ; ad − bc 6= 0g 2 C c d C acts on the extended complex plane C [ 1 by linear fractional transformations a b az + b (z) = c d cz + d with the traditional natural convention about arithmetic with 1. But we can be more precise, in a form helpful for higher-dimensional cases: introduce homogeneous coordinates for the complex projective line P1, by defining P1 to be a set of cosets u 1 = f : not both u; v are 0g= × = 2 − f0g = × P v C C C where C× acts by scalar multiplication.
    [Show full text]
  • Math 372: Fall 2015: Solutions to Homework
    Math 372: Fall 2015: Solutions to Homework Steven Miller December 7, 2015 Abstract Below are detailed solutions to the homeworkproblemsfrom Math 372 Complex Analysis (Williams College, Fall 2015, Professor Steven J. Miller, [email protected]). The course homepage is http://www.williams.edu/Mathematics/sjmiller/public_html/372Fa15 and the textbook is Complex Analysis by Stein and Shakarchi (ISBN13: 978-0-691-11385-2). Note to students: it’s nice to include the statement of the problems, but I leave that up to you. I am only skimming the solutions. I will occasionally add some comments or mention alternate solutions. If you find an error in these notes, let me know for extra credit. Contents 1 Math 372: Homework #1: Yuzhong (Jeff) Meng and Liyang Zhang (2010) 3 1.1 Problems for HW#1: Due September 21, 2015 . ................ 3 1.2 SolutionsforHW#1: ............................... ........... 3 2 Math 372: Homework #2: Solutions by Nick Arnosti and Thomas Crawford (2010) 8 3 Math 372: Homework #3: Carlos Dominguez, Carson Eisenach, David Gold 12 4 Math 372: Homework #4: Due Friday, October 12, 2015: Pham, Jensen, Kolo˘glu 16 4.1 Chapter3,Exercise1 .............................. ............ 16 4.2 Chapter3,Exercise2 .............................. ............ 17 4.3 Chapter3,Exercise5 .............................. ............ 19 4.4 Chapter3Exercise15d ..... ..... ...... ..... ...... .. ............ 22 4.5 Chapter3Exercise17a ..... ..... ...... ..... ...... .. ............ 22 4.6 AdditionalProblem1 .............................. ............ 22 5 Math 372: Homework #5: Due Monday October 26: Pegado, Vu 24 6 Math 372: Homework #6: Kung, Lin, Waters 34 7 Math 372: Homework #7: Due Monday, November 9: Thompson, Schrock, Tosteson 42 7.1 Problems. ....................................... ......... 46 1 8 Math 372: Homework #8: Thompson, Schrock, Tosteson 47 8.1 Problems.
    [Show full text]
  • Math 311: Complex Analysis — Automorphism Groups Lecture
    MATH 311: COMPLEX ANALYSIS | AUTOMORPHISM GROUPS LECTURE 1. Introduction Rather than study individual examples of conformal mappings one at a time, we now want to study families of conformal mappings. Ensembles of conformal mappings naturally carry group structures. 2. Automorphisms of the Plane The automorphism group of the complex plane is Aut(C) = fanalytic bijections f : C −! Cg: Any automorphism of the plane must be conformal, for if f 0(z) = 0 for some z then f takes the value f(z) with multiplicity n > 1, and so by the Local Mapping Theorem it is n-to-1 near z, impossible since f is an automorphism. By a problem on the midterm, we know the form of such automorphisms: they are f(z) = az + b; a; b 2 C; a 6= 0: This description of such functions one at a time loses track of the group structure. If f(z) = az + b and g(z) = a0z + b0 then (f ◦ g)(z) = aa0z + (ab0 + b); f −1(z) = a−1z − a−1b: But these formulas are not very illuminating. For a better picture of the automor- phism group, represent each automorphism by a 2-by-2 complex matrix, a b (1) f(z) = ax + b ! : 0 1 Then the matrix calculations a b a0 b0 aa0 ab0 + b = ; 0 1 0 1 0 1 −1 a b a−1 −a−1b = 0 1 0 1 naturally encode the formulas for composing and inverting automorphisms of the plane. With this in mind, define the parabolic group of 2-by-2 complex matrices, a b P = : a; b 2 ; a 6= 0 : 0 1 C Then the correspondence (1) is a natural group isomorphism, Aut(C) =∼ P: 1 2 MATH 311: COMPLEX ANALYSIS | AUTOMORPHISM GROUPS LECTURE Two subgroups of the parabolic subgroup are its Levi component a 0 M = : a 2 ; a 6= 0 ; 0 1 C describing the dilations f(z) = ax, and its unipotent radical 1 b N = : b 2 ; 0 1 C describing the translations f(z) = z + b.
    [Show full text]
  • GEOMETRIC PROPERTIES of LINEAR FRACTIONAL MAPS 1. Introduction Linear
    GEOMETRIC PROPERTIES OF LINEAR FRACTIONAL MAPS C. C. COWEN, D. E. CROSBY, T. L. HORINE, R. M. ORTIZ ALBINO, A. E. RICHMAN, Y. C. YEOW, B. S. ZERBE Abstract. Linear fractional maps in several variables generalize classical lin- ear fractional maps in the complex plane. In this paper, we describe some geometric properties of this class of maps, especially for those linear fractional maps that carry the open unit ball into itself. For those linear fractional maps that take the unit ball into itself, we determine the minimal set containing the open unit ball on which the map is an automorphism which provides a means of classifying these maps. Finally, when ϕ is a linear fractional map, we describe the linear fractional solutions, f, of Schroeder’s functional equation f ϕ = Lf. ◦ 1. Introduction Linear fractional maps are basic in the theory of analytic functions in the complex plane and in the study of those functions that map the unit disk into itself. We would expect the analogues of these maps in higher dimensions to play a similar role in the study of analytic functions in CN and in the study of those functions that carry the unit ball in CN into itself. In particular, the linear fractional maps of the unit disk can be classified, most analytic maps of the unit disk into itself inherit one of these classifications, and the classification informs the understanding of the map, for example, of its iteration or the properties of the composition operators with it as symbol. Based on the classification, the solutions of Schroeder’s functional equation can be determined and the more general maps of the disk inherit solutions of Schroeder’s functional equation.
    [Show full text]
  • The Hyperbolic Metric and Geometric Function Theory
    Proceedings of the International Workshop on Quasiconformal Mappings and their Applications (IWQCMA05) The hyperbolic metric and geometric function theory A.F. Beardon and D. Minda Abstract. The goal is to present an introduction to the hyperbolic metric and various forms of the Schwarz-Pick Lemma. As a consequence we obtain a number of results in geometric function theory. Keywords. hyperbolic metric, Schwarz-Pick Lemma, curvature, Ahlfors Lemma. 2000 MSC. Primary 30C99; Secondary 30F45, 47H09. Contents 1. Introduction 10 2. The unit disk as the hyperbolic plane 11 3. The Schwarz-Pick Lemma 16 4. An extension of the Schwarz-Pick Lemma 19 5. Hyperbolic derivatives 21 6. The hyperbolic metric on simply connected regions 24 7. Examples of the hyperbolic metric 28 8. The Comparison Principle 33 9. Curvature and the Ahlfors Lemma 36 10. The hyperbolic metric on a hyperbolic region 41 11. Hyperbolic distortion 45 12. The hyperbolic metric on a doubly connected region 47 12.1. Hyperbolic metric on the punctured unit disk 47 12.2. Hyperbolic metric on an annulus 49 13. Rigidity theorems 51 14. Further reading 54 References 55 Version October 19, 2006. The second author was supported by a Taft Faculty Fellowship and wishes to thank the Uni- versity of Cambridge for its hospitality during his visit November 2004 - April, 2005. 10 Beardon and Minda IWQCMA05 1. Introduction The authors are writing a book, The hyperbolic metric in complex analysis, that will include all of the material in this article and much more. The ma- terial presented here is a selection of topics from the book that relate to the Schwarz-Pick Lemma.
    [Show full text]
  • Hyperbolic Geometry
    faculteit Wiskunde en Natuurwetenschappen Hyperbolic geometry Bachelor’s thesis in Mathematics June 2012 Student: S. Jonker First Supervisor: Prof.Dr. G. Vegter Co-supervisor: M.H.M.J. Wintraecken MSc. Second Supervisor: Prof.Dr. H.W. Broer Abstract This paper concerns hyperbolic geometry as described by the Poincar´edisk model. In addition three other models (Poincar´ehalf-plane, Beltrami-Klein-Hilbert and Minkowski model) as well as their equivalences will be discussed. Contents 1 Introduction 4 2 Historical overview 6 3 The Poincar´edisk model 9 3.1 D-points and D-lines . .9 3.2 Transformations . 13 3.3 Distance . 16 3.4 Geometrical theorems . 19 3.5 Metric tensor . 21 3.6 Tessellations . 22 4 Other models 24 4.1 The Poincar´ehalf-plane . 24 4.2 The Minkowski model . 25 4.3 The Beltrami-Klein-Hilbert model . 26 5 Equivalence of the models 28 5.1 The Minkowski and the Poincar´edisk model . 28 5.2 The Minkowski and the Beltrami-Klein-Hilbert model . 29 5.3 The Poincar´edisk and Poincar´ehalf-plane . 30 6 Conclusion 32 7 Thanks 34 Bibliography 36 A Miscellaneous 38 A.1 Proof of theorem 5 . 38 A.2 Distance function in the Poincar´edisk model . 38 A.3 Modification of the Minkowski metric . 39 B Mappings 40 B.1 From the Minkowski model to the Poincar´edisk . 40 B.2 From the Minkowski model to the Beltrami-Klein-Hilbert disk . 41 C Equivalences of the models 42 C.1 Equivalence of the Minkowski and the Poincar´edisk model . 42 C.2 Equivalence of the Minkowski and the Beltrami-Klein-Hilbert model .
    [Show full text]
  • Worked Examples — Conformal Mappings and Bilinear Transfor- Mations
    Worked examples | Conformal mappings and bilinear transfor- mations Example 1 Suppose we wish to ¯nd a bilinear transformation which maps the circle jz ¡ ij = 1 to the circle jwj = 2. Since jw=2j = 1, the linear transformation w = f(z) = 2z ¡ 2i, which magni¯es the ¯rst circle, and translates its centre, is a suitable choice. (Note that there is no unique choice of bilinear transformation satisfying the given criteria.) Since f(i) = 0, f maps the inside of the ¯rst circle to the inside of the second. Suppose now we wish to ¯nd a bilinear transformation g which maps the inside of the ¯rst circle to the outside of the second circle. Let g(z) = (®z + ¯)=(γz + ±). We choose g(i) = 1, so that g(z) = (®z + ¯)=(z ¡ i) without the loss of generality. Three points on the ¯rst circle are 0; 1 + i and 2i, and g(0) = i¯; g(1 + i) = ®(1 + i) + ¯ and g(2i) = 2® ¡ i¯. All three of these points must lie on jwj = 2, so the simplest choice is ® = 0 and ¯ = 2. Then g(z) = 2=(z ¡ i). Suppose now we wish to ¯nd a bilinear transformation h which maps the circle jz ¡ ij = 1 to the real line. Since 0; 1 + i and 2i lie on the given circle and the given line passes through 0; 1 and 1, we simply choose h so that h(0) = 0; h(1 + i) = 1 and h(2i) = 1 say. Then h(z) = z=(iz + 2). Note that h(i) = i, so h maps the region given by jz ¡ 1j < 1 to the upper half-plane.
    [Show full text]
  • Dynamics on the Unit Disk: Short Geodesics and Simple Cycles
    Dynamics on the unit disk: Short geodesics and simple cycles Curtis T. McMullen∗ 26 July, 2007 Contents 1 Introduction............................ 1 2 Simplecycles ........................... 6 3 Blaschkeproducts ........................ 10 4 Thethinpartof f(z)....................... 15 5 Boundsonrepellingcycles. 18 6 Shortcyclesandshortgeodesics. 23 7 Binding and renormalization . 26 1 Introduction In this paper we show that rotation cycles on S1 for a proper holomorphic map f : ∆ ∆ share several of the analytic, geometric and topological → features of simple closed geodesics on a compact hyperbolic surface. Dynamics on the unit disk. Let ∆ = z C : z < 1 . For d > 1 let { ∈ | | } = ∆(d−1) denote the space of all proper holomorphic maps f :∆ ∆ of Bd ∼ → the form d−1 z a f(z)= z − i , 1 a z 1 i Y − a < 1. Every degree d holomorphic map g :∆ ∆ with a fixed point in | i| → the disk can be put into the form above, by normalizing so its fixed point is z = 0. The maps f have the property that f S1 is measure-preserving and ∈Bd | f ′ > 1 on the circle. Moreover, there is a unique marking homeomorphism | | φ : S1 S1 that varies continuously with f, conjugates f to p (z) = zd, f → d ∗Research supported in part by the NSF. 2010 Mathematics Subject Classification: 30D05, 37E45. 1 and satisfies φf (z)= z when f = pd. We define the length on f of a periodic cycle C for pd by L(C,f) = log (f q)′(z) , (1.1) | | where q = C and φ (z) C. | | f ∈ The degree of a cycle C is the least e > 0 such that p C extends to a d| covering map of the circle of degree e.
    [Show full text]