Water Quality in Big Cypress National Preserve and Everglades National Park—Trends and Spatial Characteristics of Selected Constituents

Total Page:16

File Type:pdf, Size:1020Kb

Water Quality in Big Cypress National Preserve and Everglades National Park—Trends and Spatial Characteristics of Selected Constituents Water Quality in Big Cypress National Preserve and Everglades National Park—Trends and Spatial Characteristics of Selected Constituents By Ronald L. Miller, U.S. Geological Survey, St. Petersburg, Florida; Benjamin F. McPherson, U.S. Geological Survey, Tampa, Florida; and Robert Sobczak, and Christine Clark, Big Cypress National Preserve, Ochopee, Florida Water Resources Investigations Report 03-4249 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Reston, Virgina: 2004 For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225 For more information about the USGS and its products: Telephone: 1-888-ASK-USGS World Wide Web: http://www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to repro- duce any copyrighted materials contained within this report. iii Contents Abstract. 1 Introduction . 2 Data Sources . 4 Objective and Scope . 4 Data Analysis . 4 Problems in Long-Term Trend Analyses. 5 Statistics . 5 Trends in Rainfall, Water Levels, and Flows . 6 Water Quality in South Florida . 8 Water Quality Changes Over Time. 9 Eastern Everglades . 9 Taylor Slough Bridge. 9 Shark River Slough. 11 Western Everglades and Big Cypress Swamp . 11 Site P-34 . 15 Bridge 105 Site. 15 Spatial Patterns in Water Quality . 18 Park Boundary Water-Quality Conditions . 18 L-28 Interceptor (L-28I) Drainage System . 18 Barron River Canal. 18 S-12s Gated Structures. 19 L-31 Canal and C-111 Canals . 19 Median Concentrations of Selected Constituents . 19 Trace Elements in Water. 25 Pesticides and Other Organic Compounds in Water. 28 Pesticides and Other Organic Compounds in Bed Sediment. 28 Water-Quality Monitoring Network Design for Future Studies. 31 Summary. 31 References. 32 Figures 1. Map showing Big Cypress National Preserve and Everglades National Park with major features and sampling sites . .2 2. Timeline showing major human and climatic events that might affect water quality . .3 3-13. Graphs showing: 3. Average annual rainfall at 20 sites in south Florida . .7 4. Average monthly water elevation in feet above NGVD29 at wells S-196 and S-196A near Homestead, Florida . .7 5. Average annual discharge under the Tamiami Trail. .8 6. Average annual discharge at S-332. .9 iv 7. Stage (water level) and water-quality data with loess smooth lines for period of record at Taylor Slough Bridge . .10 8. Variation in stage and concentration of total phosphorus with time, and variation of concentration of total phosphorus with discharge at Taylor Slough Bridge. 12 9. Stage (water level) and water-quality data with loess smooth lines for the period of record at P-33. 13 10. Concentration of sulfate at P-33 and discharge under Tamiami Trail; sulfate at P-33 and stage; total phosphorus at P-33 and stage; and chloride concentration at P-34 and stage. 14 11. Stage (water level) and water-quality data with loess smooth lines for period of record at P-34. 16 12. Stage (water level) and water-quality data with loess smooth lines for period of record at Bridge 105 and 40-Mile Bend section. 17 13. Stage (water level) and concentration and water level at Bridge 105 and concentrations of sulfate (times 100) and total phosphorus (times 1,000) at Bridge 105 from January 1996 to January 1999. 18 14-20. Maps showing: 14. Median specific conductance at Big Cypress National Preserve and Everglades National Park sites and nearby canal sites, 1991-2000. 20 15. Median chloride concentrations at Big Cypress National Preserve and Everglades National Park sites and nearby canal sites, 1991-2000. 21 16. Median sulfate concentrations at Big Cypress National Preserve and Everglades National Park sites and nearby canal sites, 1991-2000 . 22 17. Median total phosphorus concentrations at Big Cypress National Preserve and Everglades National Park sites and nearby canal sites, 1991-2000. 23 18. Median total nitrogen concentrations at Big Cypress National Preserve and Everglades National Park sites and nearby canal sites, 1991-2000. ..
Recommended publications
  • Wilderness on the Edge: a History of Everglades National Park
    Wilderness on the Edge: A History of Everglades National Park Robert W Blythe Chicago, Illinois 2017 Prepared under the National Park Service/Organization of American Historians cooperative agreement Table of Contents List of Figures iii Preface xi Acknowledgements xiii Abbreviations and Acronyms Used in Footnotes xv Chapter 1: The Everglades to the 1920s 1 Chapter 2: Early Conservation Efforts in the Everglades 40 Chapter 3: The Movement for a National Park in the Everglades 62 Chapter 4: The Long and Winding Road to Park Establishment 92 Chapter 5: First a Wildlife Refuge, Then a National Park 131 Chapter 6: Land Acquisition 150 Chapter 7: Developing the Park 176 Chapter 8: The Water Needs of a Wetland Park: From Establishment (1947) to Congress’s Water Guarantee (1970) 213 Chapter 9: Water Issues, 1970 to 1992: The Rise of Environmentalism and the Path to the Restudy of the C&SF Project 237 Chapter 10: Wilderness Values and Wilderness Designations 270 Chapter 11: Park Science 288 Chapter 12: Wildlife, Native Plants, and Endangered Species 309 Chapter 13: Marine Fisheries, Fisheries Management, and Florida Bay 353 Chapter 14: Control of Invasive Species and Native Pests 373 Chapter 15: Wildland Fire 398 Chapter 16: Hurricanes and Storms 416 Chapter 17: Archeological and Historic Resources 430 Chapter 18: Museum Collection and Library 449 Chapter 19: Relationships with Cultural Communities 466 Chapter 20: Interpretive and Educational Programs 492 Chapter 21: Resource and Visitor Protection 526 Chapter 22: Relationships with the Military
    [Show full text]
  • Everglades National Park and the Seminole Problem
    EVERGLADES NATIONAL PARK 21 7 Invaders and Swamps Large numbers of Americans began migrating into south Florida during the late nineteenth century after railroads had cut through the forests and wetlands below Lake Okeechobee. By the 1880s engineers and land developers began promoting drainage projects, convinced that technology could transform this water-sogged country into land suitable for agriculture. At the turn of the cen- EVERGLADES NATIONAL PARK AND THE tury, steam shovels and dredges hissed and wheezed their way into the Ever- glades, bent on draining the Southeast's last wilderness. They were the latest of SEMlNOLE PROBLEM many intruders. Although Spanish explorers had arrived on the Florida coast early in the sixteenth century, Spain's imperial toehold never grew beyond a few fragile It seems we can't do anything but harm to those people even outposts. Inland remained mysterious, a cartographic void, El Laguno del Es- when we try to help them. pirito Santo. Following Spain, the British too had little success colonizing the -Old Man Temple, Key Largo, 1948 interior. After several centuries, all that Europeans had established were a few scattered coastal forts. Nonetheless, Europe's hand fell heavily through disease and warfare upon the aboriginal Xmucuan, Apalachee, and Calusa people. By 1700 the peninsula's interior and both coasts were almost devoid of Indians. Swollen by tropical rains and overflowing every summer for millennia, Lake The vacuum did not last long. Creeks from Georgia and Alabama soon Filtered Okeechobee releases a sheet of water that drains south over grass-covered marl into Florida's panhandle and beyond, occupying native hunting grounds.
    [Show full text]
  • Chapter 17: Archeological and Historic Resources
    Chapter 17: Archeological and Historic Resources Everglades National Park was created primarily because of its unique flora and fauna. In the 1920s and 1930s there was some limited understanding that the park might contain significant prehistoric archeological resources, but the area had not been comprehensively surveyed. After establishment, the park’s first superintendent and the NPS regional archeologist were surprised at the number and potential importance of archeological sites. NPS investigations of the park’s archeological resources began in 1949. They continued off and on until a more comprehensive three-year survey was conducted by the NPS Southeast Archeological Center (SEAC) in the early 1980s. The park had few structures from the historic period in 1947, and none was considered of any historical significance. Although the NPS recognized the importance of the work of the Florida Federation of Women’s Clubs in establishing and maintaining Royal Palm State Park, it saw no reason to preserve any physical reminders of that work. Archeological Investigations in Everglades National Park The archeological riches of the Ten Thousand Islands area were hinted at by Ber- nard Romans, a British engineer who surveyed the Florida coast in the 1770s. Romans noted: [W]e meet with innumerable small islands and several fresh streams: the land in general is drowned mangrove swamp. On the banks of these streams we meet with some hills of rich soil, and on every one of those the evident marks of their having formerly been cultivated by the savages.812 Little additional information on sites of aboriginal occupation was available until the late nineteenth century when South Florida became more accessible and better known to outsiders.
    [Show full text]
  • Vegetation Trends in Indicator Regions of Everglades National Park Jennifer H
    Florida International University FIU Digital Commons GIS Center GIS Center 5-4-2015 Vegetation Trends in Indicator Regions of Everglades National Park Jennifer H. Richards Department of Biological Sciences, Florida International University, [email protected] Daniel Gann GIS-RS Center, Florida International University, [email protected] Follow this and additional works at: https://digitalcommons.fiu.edu/gis Recommended Citation Richards, Jennifer H. and Gann, Daniel, "Vegetation Trends in Indicator Regions of Everglades National Park" (2015). GIS Center. 29. https://digitalcommons.fiu.edu/gis/29 This work is brought to you for free and open access by the GIS Center at FIU Digital Commons. It has been accepted for inclusion in GIS Center by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. 1 Final Report for VEGETATION TRENDS IN INDICATOR REGIONS OF EVERGLADES NATIONAL PARK Task Agreement No. P12AC50201 Cooperative Agreement No. H5000-06-0104 Host University No. H5000-10-5040 Date of Report: Feb. 12, 2015 Principle Investigator: Jennifer H. Richards Dept. of Biological Sciences Florida International University Miami, FL 33199 305-348-3102 (phone), 305-348-1986 (FAX) [email protected] (e-mail) Co-Principle Investigator: Daniel Gann FIU GIS/RS Center Florida International University Miami, FL 33199 305-348-1971 (phone), 305-348-6445 (FAX) [email protected] (e-mail) Park Representative: Jimi Sadle, Botanist Everglades National Park 40001 SR 9336 Homestead, FL 33030 305-242-7806 (phone), 305-242-7836 (Fax) FIU Administrative Contact: Susie Escorcia Division of Sponsored Research 11200 SW 8th St. – MARC 430 Miami, FL 33199 305-348-2494 (phone), 305-348-6087 (FAX) 2 Table of Contents Overview ............................................................................................................................
    [Show full text]
  • A Vegetation Map of the Valles Caldera National Preserve, New
    ______________________________________________________________________________ A Vegetation Map of the Valles Caldera National Preserve, New Mexico ______________________________________________________________________________ A Vegetation Map of Valles Caldera National Preserve, New Mexico 1 Esteban Muldavin, Paul Neville, Charlie Jackson, and Teri Neville2 2006 ______________________________________________________________________________ SUMMARY To support the management and sustainability of the ecosystems of the Valles Caldera National Preserve (VCNP), a map of current vegetation was developed. The map was based on aerial photography from 2000 and Landsat satellite imagery from 1999 and 2001, and was designed to serve natural resources management planning activities at an operational scale of 1:24,000. There are 20 map units distributed among forest, shrubland, grassland, and wetland ecosystems. Each map unit is defined in terms of a vegetation classification that was developed for the preserve based on 348 ground plots. An annotated legend is provided with details of vegetation composition, environment, and distribution of each unit in the preserve. Map sheets at 1:32,000 scale were produced, and a stand-alone geographic information system was constructed to house the digital version of the map. In addition, all supporting field data was compiled into a relational database for use by preserve managers. Cerro La Jarra in Valle Grande of the Valles Caldera National Preserve (Photo: E. Muldavin) 1 Final report submitted in April 4, 2006 in partial fulfillment of National Prak Service Award No. 1443-CA-1248- 01-001 and Valles Caldrea Trust Contract No. VCT-TO 0401. 2 Esteban Muldavin (Senior Ecologist), Charlie Jackson (Mapping Specialist), and Teri Neville (GIS Specialist) are with Natural Heritage New Mexico of the Museum of Southwestern Biology at the University of New Mexico (UNM); Paul Neville is with the Earth Data Analysis Center (EDAC) at UNM.
    [Show full text]
  • The National Park System
    January 2009 Parks and Recreation in the United States The National Park System Margaret Walls BACKGROUNDER 1616 P St. NW Washington, DC 20036 202-328-5000 www.rff.org Resources for the Future Walls Parks and Recreation in the United States: The National Park System Margaret Walls∗ Introduction The National Park Service, a bureau within the U.S. Department of the Interior, is responsible for managing 391 sites—including national monuments, national recreation areas, national rivers, national parks, various types of historic sites, and other categories of protected lands—that cover 84 million acres. Some of the sites, such as Yellowstone National Park and the Grand Canyon, are viewed as iconic symbols of America. But the National Park Service also manages a number of small historical sites, military parks, scenic parkways, the National Mall in Washington, DC, and a variety of other protected locations. In this backgrounder, we provide a brief history of the Park Service, show trends in land acreage managed by the bureau and visitation at National Park Service sites over time, show funding trends, and present the challenges and issues facing the Park Service today. History National parks were created before there was a National Park Service. President Ulysses S. Grant first set aside land for a “public park” in 1872 with the founding of Yellowstone. Yosemite, General Grant (now part of Kings Canyon), and Sequoia National Parks in California were created in 1890, and nine years later Mount Rainier National Park was set aside in Washington. With passage of the Antiquities Act in 1906, the President was granted authority to declare historic landmarks, historic and prehistoric structures, and sites of scientific interest as national monuments.
    [Show full text]
  • 417 US National Parks, Historical Sites, Preserves, Seashores and More!
    417 US National Parks, Historical Sites, Preserves, Seashores and more! Alabama o Birmingham Civil Rights National Monument o Freedom Riders National Monument o Horseshoe Bend National Military Park o Little River Canyon National Preserve o Russell Cave National Monument o Tuskegee Airmen National Historic Site o Tuskegee Institute National Historic Site Alaska o Alagnak Wild River o Aniakchak National Monument o Aniakchak National Preserve o Bering Land Bridge National Preserve o Cape Krusenstern National Monument o Denali National Park o Denali National Preserve o Gates of the Arctic National Park o Gates of the Arctic National Preserve o Glacier Bay National Park o Glacier Bay National Preserve o Katmai National Park o Katmai National Preserve o Kenai Fjords National Park o Klondike Gold Rush National Historical Park (also Washington) o Kobuk Valley National Park o Lake Clark National Park o Lake Clark National Preserve o Noatak National Preserve o Sitka National Historical Park o World War II Valor in the Pacific National Monument (also California, Hawaii) o Wrangell-St. Elias National Park o Wrangell-St. Elias National Preserve o Yukon-Charley Rivers National Preserve Courtesy of ParkRangerJohn.com Arizona o Canyon De Chelly National Monument o Casa Grande Ruins National Monument o Chiricahua National Monument o Coronado National Memorial o Fort Bowie National Historic Site o Glen Canyon National Recreation Area (also Utah) o Grand Canyon National Park o Hohokam Pima National Monument o Hubbel Trading Post National Historic Site
    [Show full text]
  • Mojave National Preserve California
    A fact sheet from 2017 Dougall Photography/iStockphoto Mojave’s $131.8 million maintenance backlog includes repairs to historic buildings such as the Kelso Depot. Shane McMurphy/iStockphoto Mojave National Preserve California Overview Two hours from the hustle and bustle of Las Vegas and 100 miles from the nearest lodging lies California’s Mojave National Preserve. The Las Vegas Review-Journal dubbed this vast desert in San Bernardino County the “perfect escape for those seeking serenity.” The preserve spans 1.6 million acres, making it the third-largest National Park Service (NPS) unit in the contiguous United States. Mojave is ecologically and geologically diverse, with towering sand dunes, dun-colored mesas, and volcanic formations providing habitat for its abundant plants and wildlife. In addition to the densest forest of Joshua trees in the world, visitors can see bighorn sheep, bobcats, golden eagles, and breathtaking displays of seasonal wildflowers. The preserve also has a rich cultural heritage. Lands first inhabited by the Chemehuevi and Mojave tribes attracted gold miners in the late 19th century and were later crossed by several railroad lines. Visitors can learn more about this history through exhibits at the visitor center and by exploring archaeological sites, abandoned mines, and preserved homesteads and other buildings. The ghost town of Kelso, which once served as a Union Pacific Railroad depot and mining outpost, is one of the park’s most popular destinations. Unfortunately, Mojave faces over $131 million in deferred maintenance. Maintenance challenges Nearly all of Mojave’s needed repairs are for its road network. Severe deterioration of some sections of pavement has prompted the NPS to warn visitors of dangerous potholes.
    [Show full text]
  • Rules of the South Florida Water Management District Minimum
    Rules of the South Florida Water Management District Minimum Flows and Levels CHAPTER 40E-8, F.A.C. Effective: September 7, 2015 CHAPTER 40E-8 Effective: September 7, 2015 CHAPTER 40E-8 MINIMUM FLOWS AND LEVELS PART I GENERAL 40E-8.011 Purpose and General Provisions 40E-8.021 Definitions PART II MFL CRITERIA FOR LOWER EAST COAST REGIONAL PLANNING AREA 40E-8.221 Minimum Flows and Levels (MFLs): Surface Waters 40E-8.231 Minimum Levels: Aquifers PART III MFL CRITERIA FOR LOWER WEST COAST REGIONAL PLANNING AREA, MFL CRITERIA FOR KISSIMMEE BASIN REGIONAL PLANNING AREA, AND MFL CRITERIA FOR UPPER EAST COAST REGIONAL PLANNING AREA 40E-8.321 Minimum Flows and Levels (MFLs): Surface Waters 40E-8.331 Minimum Levels: Aquifers 40E-8.341 Minimum Flows and Levels (MFLs): Surface Waters for Upper East Coast Regional Planning Area 40E-8.351 Minimum Levels: Surface Waters for Kissimmee Basin Regional Planning Area. PART IV IMPLEMENTATION 40E-8.421 Prevention and Recovery Strategies 40E-8.431 Consumptive Use Permits 40E-8.441 Water Shortage Plan Implementation PART I GENERAL 40E-8.011 Purpose and General Provisions. (1) The purpose of this chapter is: (a) To establish minimum flows for specific surface watercourses and minimum water levels for specific surface waters and specific aquifers within the South Florida Water Management District, pursuant to Section 373.042, F.S.; and (b) To establish the rule framework for implementation of recovery and prevention strategies, developed pursuant to Section 373.0421, F.S. (2) Minimum flows are established to identify where further withdrawals would cause significant harm to the water resources, or to the ecology of the area.
    [Show full text]
  • Technical Document to Support the Central Everglades Planning Project Everglades Agricultural Area Reservoir Water Reservation
    TECHNICAL DOCUMENT TO SUPPORT THE CENTRAL EVERGLADES PLANNING PROJECT EVERGLADES AGRICULTURAL AREA RESERVOIR WATER RESERVATION Draft Report JuneJuly 28, 2020 South Florida Water Management District West Palm Beach, FL Executive Summary EXECUTIVE SUMMARY Authorized by Congress in 2016 and 2018, the Central Everglades Planning Project (CEPP) is one of many projects associated with the Comprehensive Everglades Restoration Plan (CERP) and provides a framework to address restoration of the South Florida Everglades ecosystem. As part of CEPP, the Everglades Agricultural Area (EAA) Reservoir was designed to increase water storage and treatment capacity to accommodate additional flows south to the Central Everglades (Water Conservation Area 3 and Everglades National Park). EAA Reservoir project features previously were evaluated to enhance performance of CEPP by providing an additional 240,000 acre-feet of storage. The additional storage will increase flows to the Everglades by reducing harmful discharges from Lake Okeechobee to the Caloosahatchee River and St. Lucie estuaries and capturing EAA basin runoff. The EAA Reservoir also enhances regional water supplies, which increases the water available to meet environmental needs. The Water Resources Development Act of 2000 (Public Law 106-541) requires water be reserved or allocated as an assurance that each CERP project meets its goals and objectives. A Water Reservation is a legal mechanism to reserve a quantity of water from consumptive use for the protection of fish and wildlife or public health and safety. Under Section 373.223(4), Florida Statutes, a Water Reservation is composed of a quantification of the water to be protected, which may include a seasonal component and a location component.
    [Show full text]
  • TTC Teacher Training Center
    1 2017 PTC Summit on Teaching Boys General Information for Participants 6-8 July 2017 For TTC, CTC or ½ PTC credit IMPORTANT REMINDER: YOU MUST BRING A LAPTOP TO YOUR SESSION Location The Turnberry Isle Hotel and Resort, 19999 West Country Club Drive Aventura, Florida 33180 USA Phone: +1 305 932 6200 • Hotel Reservations Fax: +1 305 933 6554 • http://turnberryislemiami.com/ To I-95 Mt. Sinai Clinic Grocery/Pharmacy Turnberry Isle Hotel PTC Institutes Mall PTC Miami 2017 Summit on Teaching Boys General Information 1 2 ARRIVAL PTC 3-day Summit on Teaching Boys • Course registration is from 8:00am-8:30am on the first date of the course in hotel conference area. Check your welcome letter or the front desk for details. • Hotel check in begins at 4:00pm on the day BEFORE the course. If you arrive prior to 4:00 and your room is not ready, the hotel will allow you to store your luggage until your hotel room is available. • Instruction on day one begins right after registration, starting at 8:30am. Arrive in plenty of time to attend this first session. It is essential to the rest of the course. Note: You must pay a security deposit to the hotel at check-in of either $100 secured by a personal credit card, a card you are authorized to use with a signed permission letter, or $50 in cash to cover incidentals. This deposit is refundable upon check out if not used. WHAT TO BRING • Completed preparation assignments • Laptop computer with wireless internet access; bring power adapter if required; download course materials before your arrive • A sweater or sweatshirt (all training rooms are air-conditioned) • An umbrella • Dress for the course is casual VISAS Check early to determine if you need a visa to travel to the USA • For visa information visit: https://travel.state.gov/content/visas/en/visit/visitor.html • The PTC can provide a visa support letter and payment receipt should you require them.
    [Show full text]
  • Land Cover Mapping of the National Park Service Northwest Alaska Management Area Using Landsat Multispectral and Thematic Mapper Satellite Data
    Land Cover Mapping of the National Park Service Northwest Alaska Management Area Using Landsat Multispectral and Thematic Mapper Satellite Data By Carl J. Markon and Sara Wesser Open-File Report 00-51 U.S. Department of the Interior U.S. Geological Survey LAND COVER MAPPING OF THE NATIONAL PARK SERVICE NORTHWEST ALASKA MANAGEMENT AREA USING LANDSAT MULTISPECTRAL AND THEMATIC MAPPER SATELLITE DATA By Carl J. Markon1 and Sara Wesser2 1 Raytheon SIX Corp., USGS EROS Alaska Field Office, 4230 University Drive, Anchorage, AK 99508-4664. E-mail: [email protected]. Work conducted under contract #1434-CR-97-40274 2National Park Service, 2525 Gambell St., Anchorage, AK 99503-2892 Land Cover Mapping of the National Park Service Northwest Alaska Management Area Using Landsat Multispectral Scanner and Thematic Mapper Satellite Data ABSTRACT A land cover map of the National Park Service northwest Alaska management area was produced using digitally processed Landsat data. These and other environmental data were incorporated into a geographic information system to provide baseline information about the nature and extent of resources present in this northwest Alaskan environment. This report details the methodology, depicts vegetation profiles of the surrounding landscape, and describes the different vegetation types mapped. Portions of nine Landsat satellite (multispectral scanner and thematic mapper) scenes were used to produce a land cover map of the Cape Krusenstern National Monument and Noatak National Preserve and to update an existing land cover map of Kobuk Valley National Park Valley National Park. A Bayesian multivariate classifier was applied to the multispectral data sets, followed by the application of ancillary data (elevation, slope, aspect, soils, watersheds, and geology) to enhance the spectral separation of classes into more meaningful vegetation types.
    [Show full text]