Geology of London, UK

Total Page:16

File Type:pdf, Size:1020Kb

Geology of London, UK Proceedings of the Geologists’ Association 123 (2012) 22–45 Contents lists available at ScienceDirect Proceedings of the Geologists’ Association jo urnal homepage: www.elsevier.com/locate/pgeola Review paper Geology of London, UK a, b,c d e c Katherine R. Royse *, Mike de Freitas , William G. Burgess , John Cosgrove , Richard C. Ghail , f g h i j k Phil Gibbard , Chris King , Ursula Lawrence , Rory N. Mortimore , Hugh Owen , Jackie Skipper a British Geological Survey, Keyworth, Nottingham NG12 5GG, UK b First Steps Ltd, Unit 17 Hurlingham Studios, London SW6 3PA, UK c Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK d Department of Earth Sciences, University College London, WC1E 6BT, UK e Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK f Cambridge Quaternary, Department of Geography, University of Cambridge, CB2 3EN, UK g 16A Park Road, Bridport, Dorset, UK h Crossrail Ltd. 25 Canada Square, Canary Wharf, London E14 5LQ, UK i University of Brighton & ChalkRock Ltd, 32 Prince Edwards Road, Lewes BN7 1BE, UK j Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK k Geotechnical Consulting Group (GCG), 52A Cromwell Road, London SW7 5BE, UK A R T I C L E I N F O A B S T R A C T Article history: The population of London is around 7 million. The infrastructure to support this makes London one of the Received 25 February 2011 most intensively investigated areas of upper crust. However construction work in London continues to Received in revised form 5 July 2011 reveal the presence of unexpected ground conditions. These have been discovered in isolation and often Accepted 8 July 2011 recorded with no further work to explain them. There is a scientific, industrial and commercial need to Available online 10 August 2011 refine the geological framework for London and its surrounding area. This paper reviews the geological setting of London as it is understood at present, and outlines the issues that current research is Keywords: attempting to resolve. London Basin Forum ß 2011 Natural Environment Research Council. Published by Elsevier Ltd on behalf of The Geologists’ Pre-Gault and Gault sediments Chalk Association. Open access under CC BY license. Paleogene Lambeth Group and Thanet Sand Formation Eocene Thames group Quaternary clay-with-flints and river deposits Geological structures Ground engineering impacts Contents 1. Introduction . 23 2. Pre-Gault and Gault sedimentary formations. 27 3. The Chalk . 28 4. Lower Paleogene . 29 5. The Thames Group. 30 6. Quaternary . 31 6.1. Clay-with-flints . 32 6.2. River deposits . 32 7. Geological structures in London . 35 8. The impact of geology on ground engineering in London . 36 9. Hydrogeology . 39 * Corresponding author. E-mail address: [email protected] (K.R. Royse). 0016-7878 ß 2011 Natural Environment Research Council. Published by Elsevier Ltd on behalf of The Geologists’ Association. Open access under CC BY license. doi:10.1016/j.pgeola.2011.07.005 K.R. Royse et al. / Proceedings of the Geologists’ Association 123 (2012) 22–45 23 10. The use of 2D and 3D modelling techniques in understanding the geology of the London Basin . 40 11. Summary and conclusions. 42 Acknowledgements . 43 References . 43 1. Introduction presented by the British Geological Survey as a simple unfaulted downwarp on undifferentiated basement (Sherlock, 1947). This paper reviews the geological framework for London and its Boreholes drilled in the London Basin for oil, coal and gas have surrounding area. It highlights the complex nature of London’s proved the extent of a Palaeozoic basement, the London Platform, geology and the possible implications for current and future of folded Silurian and foreland Devonian rocks at depths of development. Within this review article the London Basin’s 300 m in central London (Sumbler, 1996). Upon these Palaeozoic boundaries are defined by the limit of the Chalk outcrop (Sumbler, rocks are found remnants of strata of Jurassic age, which are 1996). The Basin is described by Sumbler (1996), as a broad, gentle themselves covered unconformably by strata of Early Cretaceous synclinal fold (Fig. 1); although its seaward extension is not shown, age (Table 1). The Gault is the earliest preserved formation to the structure continues out into the North Sea (King, 2006). The cover the whole area. The London Platform (Fig. 2) is considered to term ‘London Basin’ was first used on the maps of Smith (1815) and extend to the Worcestershire Basin in the west, to the East Greenough (1820) to describe the sediments that make up the Midlands Shelf in the north, to the southern North Sea graben in geology of London (Sheppard, 1917). The outcrop limits of the the east, and to the Weald Basin in the south (Sumbler, 1996). This Chalk were fundamental in defining the original limits of this Platform forms the western part of the London-Brabant massif ‘‘basin’’. However, to understand London’s geology, it is necessary (Lee et al., 1993). The southern boundary of the Platform and its to go beyond these present-day geographical limits. It is really only Western boundary are fault controlled. The faulted southern in the later stages of geological history that the idea of a London- boundary has been referred to as the ‘‘Variscan Front’’, a tectonic centred geology can be considered helpful. line extending from the Bristol Channel to cross southern England The British Geological Survey commenced detailed geological to the Strait of Dover. mapping of the London Basin in 1861 and soon realised that the The late Variscan pattern of faulting in the Platform had a correlation of strata across and beneath London was not always as profound effect on the subsequent location and development of straightforward as it at first appeared (Whitaker, 1872). For Mesozoic and Cenozoic tectonic structures, because tectonic example, the substantial and isolated Chalk outcrop at Windsor in stresses associated with the rotation of Africa and the opening the west occurs 5 km south-east of the main Chalk outcrop near of the Atlantic reactivated late Variscan block-faulting. At the Maidenhead. There are smaller but largely unexplained Chalk Jurassic – Cretaceous boundary, these late Variscan faults which structures mapped in the east by Wooldridge (1923, 1926) and had produced a ‘‘proto-Wealden Basin’’ at the end of the Palaeozoic Wooldridge and Linton (1939). However in 1947 the Basin was still were partly reactivated to form the current Weald Basin. The N Hitchin A Dunstable Colchester Bishop’s Luton Stortford Clacton-on St Albans Chelmford -Sea Syncline the London Basin Axial trace of High Wycombe Watford LONDON Southend-on-Sea Westminster Grain Chertsey Rochester Croydon Aldershot Guildford B 0 50 km Chalk Group QUATERNAR Y Line of cross-section Wealden and Lower Greensand Groups, Gault and Upper Greensand Formations PALEOGENE and NEOGENE CRETACEOUS Fig. 1. Geological sketch map of the London Basin. Based on Sumbler (1996, Fig. 1). 24 K.R. Royse et al. / Proceedings of the Geologists’ Association 123 (2012) 22–45 Table 1 Summary of the geological strata of the London Basin from Ellison et al., 2004 with Chalk Group thickness updated from Royse et al. (2010). Period Group Formation Thickness (m) Paleogene Bagshot Formation: sand, fine-grained with thin clay beds 10–25 Thames London Clay Formation: clay, silty; fine sand clay at base. 90–130 Claygate member: interbedded sand and clay at top Harwich Formation: sand, clayey fine grained sand and 0–10 pebble beds Lambeth Reading, Woolwich And Upnor Formations: clay mottled 10–20 with fine-grained sand, laminated clay, flint pebble beds and shelly clay Thanet Sand Formation: sand, fine-grained 0–30 Cretaceous Chalk Seaford and Newhaven Chalk Formations Undivided: chalk Up to 70 soft, white with flint courses Lewes Nodular Chalk Formation: chalk, white with hard, 25–46 nodular beds New Pit Chalk Formation: chalk white to grey with few flints 30–50 Holywell Nodular Chalk Formation: chalk white to grey, shelly, 11–18 hard and nodular Zig Zag Chalk Formation and West Melbury Chalk Formation: 40–80 chalk, pale grey with thin marls; glaconitic at the base Upper Greensand Formation: sand fine-grained, glauconitic Up to 17 Gault Formation: clay, silty 50–70 Lower Folkestone Formation: sandstone, fine to medium-grained 60 Concealed strata Greensand Sandgate, Hythe and Atherfield Clay Formations: sandstone 34 and mudstone Wealden Weald Clay Formation: mudstone Up to 150 Hastings Beds: sandstone and mudstone Jurassic Limestone and mudstone 0–c. 750 Silurian and Devonian Sandstone and siltstone products of this erosion were redeposited in the Weald and The geological structure of the Cretaceous and Paleogene strata Hampshire Basins during the Early Cretaceous, initially as the which overlie this basement has in the past been considered freshwater Wealden Group and subsequently as the marine Lower ‘relatively simple’ (Ellison et al., 2004); for example, despite the Greensand. The Lower Greensand is present widely below the accumulated indirect evidence for brittle structures in the basin, Gault in borings in the London Platform, but is essentially of Late only two faults are shown on the current geological maps for the Aptian and Early Albian age. Later, the Gault sea covered the region: the Wimbledon-Streatham fault and the Greenwich fault Platform, depositing deeper water clays. (Fig. 3). There is, however, a growing body of direct evidence, particularly from recent deeper engineering projects, such as the Channel Tunnel Rail Link, Thames Water Ring Main (Newman, 2009), Crossrail and the Docklands Light Railway, which demon- Major fault (inferred) North Gradational boundary Sea strate that there is much more faulting in London and that the structure of London is more complex (Royse, 2010). One aspect of 040km Basin the tectonic history that is of overriding significance to the geological development of the London Basin, and consequently to East the application of London’s geology to engineering and water Midlands supply, is the location of a broad tectonic boundary running Shelf approximately east to west beneath the London Basin (Fig.
Recommended publications
  • An Introduction to the Geology and Fossils of Essex
    An Introduction to the Geology and Fossils of Essex The Foundations of Essex The rocks of Essex that were formed before the Ice Age are described as the 'solid' or 'bedrock' geology. Much of the solid geology is concealed beneath unconsolidated sediments laid down during the Ice Age. These Ice Age sediments (sand, gravel etc.) are called 'superficial' or 'drift' deposits. The Oldest Rocks The geological story of Essex starts with rocks that are between 440 and 360 million years old. Dating from the Silurian and Devonian periods these rocks consist of hard, slaty shales, mudstones and sandstones and are over 300 metres below the surface. These rocks have been encountered in boreholes at many places in Essex and they represent a time in the distant past when the first animals were leaving the sea to colonise the land. Similar rocks can be seen at the surface in the Welsh Borderland. Lying on top of these ancient rocks is the Gault, a marly clay from a muddy sea that dates from the middle of the Cretaceous period. This means that, beneath Essex, there is a gap in the geological record that represents about 250 million years and includes the Triassic, Jurassic and early Cretaceous periods. After deposition of the Gault, sand spread into this sea to form a deposit called the Upper Greensand. At this time sea levels were rising leading to widespread flooding of the continents, these are the conditions under which the next rock was formed - the Chalk. The Chalk Chalk is effectively the starting point of our geological story as it is the oldest rock exposed at the surface in our county.
    [Show full text]
  • Northern Thames Basin Area Profile: Supporting Documents
    National Character 111: Northern Thames Basin Area profile: Supporting documents www.naturalengland.org.uk 1 National Character 111: Northern Thames Basin Area profile: Supporting documents Introduction National Character Areas map As part of Natural England’s responsibilities as set out in the Natural Environment White Paper1, Biodiversity 20202 and the European Landscape Convention3, we are revising profiles for England’s 159 National Character Areas (NCAs). These are areas that share similar landscape characteristics, and which follow natural lines in the landscape rather than administrative boundaries, making them a good decision-making framework for the natural environment. NCA profiles are guidance documents which can help communities to inform their decision-making about the places that they live in and care for. The information they contain will support the planning of conservation initiatives at a landscape scale, inform the delivery of Nature Improvement Areas and encourage broader partnership working through Local Nature Partnerships. The profiles will also help to inform choices about how land is managed and can change. Each profile includes a description of the natural and cultural features that shape our landscapes, how the landscape has changed over time, the current key drivers for ongoing change, and a broad analysis of each area’s characteristics and ecosystem services. Statements of Environmental Opportunity (SEOs) are suggested, which draw on this integrated information. The SEOs offer guidance on the critical issues, which could help to achieve sustainable growth and a more secure environmental future. 1 The Natural Choice: Securing the Value of Nature, Defra NCA profiles are working documents which draw on current evidence and (2011; URL: www.official-documents.gov.uk/document/cm80/8082/8082.pdf) 2 knowledge.
    [Show full text]
  • London Basin Advice
    Insightful London Basin Advice The London Basin aquifer is one of the most densely investigated and data-rich groundwater bodies in the UK. Following consolidation and analysis of the available data and a comprehensive literature review, we developed a detailed conceptual understanding of the key hydrogeological processes, which focused on understanding and quantifying the following key aspects of the hydrogeology of the aquifer: 1 Using the most modern interpretation from the British Geological Survey of geological layering and structure to understand the geometry of the aquifer units and potential influence on groundwater flow – see bgs.ac.uk/research/ engineeringGeology/urbanGeoscience/londonAndThames/faultModelling.html 2 Understanding the hydraulic properties of the layered aquifer. Historical interpretations of the Chalk transmissivity distribution were combined with recent pumping tests and depth of burial information to prepare an initial transmissivity map for the model. 3 Understanding groundwater level distributions to identify low permeability barriers (mainly identified as faults or fold axis) and to map areas where the water table was below the base of aquifer units. 4 Quantifying recharge to the North Downs, which contributes almost a half the inflow to the basin; and modelling flows from the springs at the foot of the dip slope which form the upper reaches of the Rivers Hogsmill, Wandle and Ravensbourne. 5 Quantifying other flows into the confined basin, which contribute to most of the abstraction yield. The key source is the unconfined aquifer of the Chilterns, the data for which we obtained from other Environment Agency groundwater models. 6 Assessing interaction with the River Thames where the aquifer is unconfined in East London.
    [Show full text]
  • Geology of London, UK
    Geology of London, UK Katherine R. Royse1, Mike de Freitas2,3, William G. Burgess4, John Cosgrove5, Richard C. Ghail3, Phil Gibbard6, Chris King7, Ursula Lawrence8, Rory N. Mortimore9, Hugh Owen10, Jackie Skipper 11, 1. British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK. [email protected] 2. Imperial College London SW72AZ, UK & First Steps Ltd, Unit 17 Hurlingham Studios, London SW6 3PA, UK. 3. Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, UK. 4. Department of Geological Sciences, University College London, WC1E 6BT, UK. 5. Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, UK. 6. Cambridge Quaternary, Department of Geography, University of Cambridge CB2 3EN, UK. 7. 16A Park Road, Bridport, Dorset 8. Crossrail Ltd. 25 Canada Square, Canary Wharf, London, E14 5LQ, UK. 9. University of Brighton & ChalkRock Ltd, 32 Prince Edwards Road, Lewes, BN7 1BE, UK. 10. Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. 11. Geotechnical Consulting Group (GCG), 52A Cromwell Road, London SW7 5BE, UK. Abstract The population of London is around 7 million. The infrastructure to support this makes London one of the most intensively investigated areas of upper crust. however construction work in London continues to reveal the presence of unexpected ground conditions. These have been discovered in isolation and often recorded with no further work to explain them. There is a scientific, industrial and commercial need to refine the geological framework for London and its surrounding area. This paper reviews the geological setting of London as it is understood at present, and outlines the issues that current research is attempting to resolve.
    [Show full text]
  • The Stratigraphical Framework for the Palaeogene Successions of the London Basin, UK
    The stratigraphical framework for the Palaeogene successions of the London Basin, UK Open Report OR/12/004 BRITISH GEOLOGICAL SURVEY OPEN REPORT OR/12/004 The National Grid and other Ordnance Survey data are used The stratigraphical framework for with the permission of the Controller of Her Majesty’s Stationery Office. the Palaeogene successions of the Licence No: 100017897/2012. London Basin, UK Key words Stratigraphy; Palaeogene; southern England; London Basin; Montrose Group; Lambeth Group; Thames Group; D T Aldiss Bracklesham Group. Front cover Borehole core from Borehole 404T, Jubilee Line Extension, showing pedogenically altered clays of the Lower Mottled Clay of the Reading Formation and glauconitic sands of the Upnor Formation. The white bands are calcrete, which form hard bands in this part of the Lambeth Group (Section 3.2.2.2 of this report) BGS image P581688 Bibliographical reference ALDISS, D T. 2012. The stratigraphical framework for the Palaeogene successions of the London Basin, UK. British Geological Survey Open Report, OR/12/004. 94pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. Maps and diagrams in this book use topography based on Ordnance Survey mapping. © NERC 2012.
    [Show full text]
  • Management of the London Basin Chalk Aquifer
    Management of the London Basin Chalk Aquifer Status Report 2009 We are the Environment Agency. It's our job to look after your environment and make it a better place - for you, and for future generations. Your environment is the air you breathe, the water you drink and the ground you walk on. Working with business, Government and society as a whole, we are making your environment cleaner and healthier. The Environment Agency. Out there, making your environment a better place. Environment Agency Rio House Waterside Drive, Aztec West Almondsbury, Bristol BS32 4UD Tel: 0870 8506506 Email: [email protected] www.environment-agency.gov.uk © Environment Agency All rights reserved. This document may be reproduced with prior permission of the Environment Agency. Environment Agency Management of the London Basin Chalk Aquifer Status Report 2009 Contents 1 Introduction .................................................................................................................................. 2 2 Geology beneath London............................................................................................................. 3 3 Groundwater beneath London ..................................................................................................... 5 4 Why we need to manage groundwater levels.............................................................................. 7 5 How we manage groundwater levels........................................................................................... 9 6 Recent Abstraction
    [Show full text]
  • Geology of London, UK
    Proceedings of the Geologists’ Association 123 (2012) 22–45 Contents lists available at ScienceDirect Proceedings of the Geologists’ Association jo urnal homepage: www.elsevier.com/locate/pgeola Review paper Geology of London, UK a, b,c d e c Katherine R. Royse *, Mike de Freitas , William G. Burgess , John Cosgrove , Richard C. Ghail , f g h i j k Phil Gibbard , Chris King , Ursula Lawrence , Rory N. Mortimore , Hugh Owen , Jackie Skipper a British Geological Survey, Keyworth, Nottingham NG12 5GG, UK b First Steps Ltd, Unit 17 Hurlingham Studios, London SW6 3PA, UK c Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK d Department of Earth Sciences, University College London, WC1E 6BT, UK e Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK f Cambridge Quaternary, Department of Geography, University of Cambridge, CB2 3EN, UK g 16A Park Road, Bridport, Dorset, UK h Crossrail Ltd. 25 Canada Square, Canary Wharf, London E14 5LQ, UK i University of Brighton & ChalkRock Ltd, 32 Prince Edwards Road, Lewes BN7 1BE, UK j Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK k Geotechnical Consulting Group (GCG), 52A Cromwell Road, London SW7 5BE, UK A R T I C L E I N F O A B S T R A C T Article history: The population of London is around 7 million. The infrastructure to support this makes London one of the Received 25 February 2011 most intensively investigated areas of upper crust. However construction work in London continues to Received in revised form 5 July 2011 reveal the presence of unexpected ground conditions.
    [Show full text]
  • Quaternary River Diversions in the London Basin and the Eastern English Channel"
    Article "Quaternary River Diversions in the London Basin and the Eastern English Channel" D. R. Bridgland et P. L. Gibbard Géographie physique et Quaternaire, vol. 51, n° 3, 1997, p. 337-346. Pour citer cet article, utiliser l'information suivante : URI: http://id.erudit.org/iderudit/033132ar DOI: 10.7202/033132ar Note : les règles d'écriture des références bibliographiques peuvent varier selon les différents domaines du savoir. Ce document est protégé par la loi sur le droit d'auteur. L'utilisation des services d'Érudit (y compris la reproduction) est assujettie à sa politique d'utilisation que vous pouvez consulter à l'URI https://apropos.erudit.org/fr/usagers/politique-dutilisation/ Érudit est un consortium interuniversitaire sans but lucratif composé de l'Université de Montréal, l'Université Laval et l'Université du Québec à Montréal. Il a pour mission la promotion et la valorisation de la recherche. Érudit offre des services d'édition numérique de documents scientifiques depuis 1998. Pour communiquer avec les responsables d'Érudit : [email protected] Document téléchargé le 12 février 2017 08:33 Géographie physique et Quaternaire, 1997, vol. 51, n" 3, p. 337-346, 5 fig. QUATERNARY RIVER DIVERSIONS IN THE LONDON BASIN AND THE EASTERN ENGLISH CHANNEL D.R. BRIDGLAND* and P.L. GIBBARD, respectively, Department of Geography, University of Durham, South Road, Durham DH1 3LE, United Kingdom, and Quaternary Stratigraphie Group, Godwin Institute of Quaternary Research, Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, United Kingdom. ABSTRACT The principal river of the Lon­ RÉSUMÉ Les captures quaternaires des ZUSAMMENFASSUNG Fluss-Ablenkungen don basin, the Thames, has experienced a fleuves du bassin de Londres et de la Man­ im Quartàr im Londoner Becken und im number of course changes during the Qua­ che orientale De nombreuses captures ont ôstlichen Àrmelkanal.
    [Show full text]
  • National Geological Screening: London and the Thames Valley
    National Geological Screening: London and the Thames Valley Minerals and Waste Programme Commissioned Report CR/17/101 BRITISH GEOLOGICAL SURVEY MINERALS AND WASTE PROGRAMME COMMISSIONED REPORT CR/17/101 National Geological Screening: London and the Thames Valley R Ellison1, D Schofield1, D T Aldiss2, R Haslam2, M Lewis3, B Ó’Dochartaigh3, J P Bloomfield3, J R Lee4, B Baptie4, R P Shaw5, T Bide5 and F M McEvoy 1Rock type, 2Rock structure, 3Groundwater, 4Natural processes, 5Resources Contributors/editors L P Field, R Terrington, P Williamson, I Mosca, N J P Smith, D E Evans, C Gent, M Barron, A Howard, G Baker, R M Lark, A Lacinska S Thorpe, H Holbrook, I Longhurst and L Hannaford The National Grid and other Ordnance Survey data © Crown Copyright and database rights 7. Ordnance Survey Licence No. 100021290 EUL. Keywords National geological screening, GDF, rock type, structure, groundwater, natural processes, resources, London, Thames. Bibliographical reference ELLISON, R, SCHOFIELD, D, ALDISS, D T, HASLAM, R, LEWIS, M, O’DOCHARTAIGH, B, BLOOMFIELD, J P, LEE, J, BAPTIE, B, SHAW, R P, BIDE, T, AND MCEVOY, F M. 2018. National Geological Screening: London and the Thames Valley Commissioned Report, CR/17/101. 71pp. BRITISH GEOLOGICAL SURVEY The full range of our publications is available from BGS shops at Nottingham, Edinburgh, London and Cardiff (Welsh British Geological Survey offices publications only) see contact details below or shop online at www.geologyshop.com Environmental Science Centre, Keyworth, Nottingham The London Information Office also maintains a reference NG12 5GG collection of BGS publications, including maps, for Tel 0115 936 3100 consultation.
    [Show full text]
  • 2.0 the Natural Landscape of London
    2.0 The Natural Landscape of London London: A Green City? Contrary to perceptions, London is an unusually green city as of how they contribute to the city as a whole. This disconnection ‘natural’ environment. This may be the case for those architectures compared to other major world centres such as New York and Tokyo. between our daily experience of London and its relatively ‘green’ which reject the vernacular – notably modernism, which aimed at Nevertheless, for many, the impression of London is that of a highly character is exacerbated by the prevalence of travel by Underground, an international style − but vernacular architecture has by definition built up urban area, surrounded by less dense residential suburbs, whilst the topography of London, albeit gentle, has largely been an intimate relationship with its locale, whether as a form, such and whilst the Royal Parks are much-loved for their serenity and their disguised by London’s built environment. as the pitched roof, a direct response to frequent rainfall, or in the amenity value, how far we integrate them into our wider perception use of local building materials. Yet it is difficult to think of London’s of London is questionable. Likewise, whilst Londoners may regularly Underlying such perceptions is not only the disparity between architecture as vernacular, even though, to a large extent, London’s use local green spaces such as parks and commons, they are not daily living and travelling and a city-wide perspective but, perhaps built environment is derived from, rather than in opposition to, its necessarily perceived as integral parts of London’s character; private deeper, a fundamental assumption that architecture and urban underlying natural condition.
    [Show full text]
  • High-Resolution Geological Maps of Central London, UK: Comparisons with the London Underground
    Geoscience Frontiers 7 (2016) 273e286 HOSTED BY Contents lists available at ScienceDirect China University of Geosciences (Beijing) Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Research paper High-resolution geological maps of central London, UK: Comparisons with the London Underground Jonathan D. Paul Department of Earth Sciences, Bullard Laboratories, University of Cambridge, Madingley Rise, Cambridge, CB3 0EZ, UK article info abstract Article history: This study presents new thickness maps of post-Cretaceous sedimentary strata beneath central London. Received 31 March 2015 >1100 borehole records were analysed. London Clay is thickest in the west; thicker deposits extend as a Received in revised form narrow finger along the axis of the London Basin. More minor variations are probably governed by 14 May 2015 periglacial erosion and faulting. A shallow anticline in the Chalk in north-central London has resulted in a Accepted 21 May 2015 pronounced thinning of succeeding strata. These results are compared to the position of London Available online 25 June 2015 Underground railway tunnels. Although tunnels have been bored through the upper levels of London Clay where thick, some tunnels and stations are positioned within the underlying, more lithologically Keywords: London variable, Lower London Tertiary deposits. Although less complex than other geological models of the London Underground London Basin, this technique is more objective and uses a higher density of borehole data. The high London Clay resolution of the resulting maps emphasises the power of modelling an expansive dataset in a rigorous Lambeth Group but simple fashion. Chalk Ó 2015, China University of Geosciences (Beijing) and Peking University.
    [Show full text]
  • Management of the London Basin Chalk Aquifer Status Report 2018 I Figures
    Management of the London Basin Chalk Aquifer Status Report – 2018 August 2018 Foreword We are the Environment Agency. It's our job to look after your environment and make it a better place - for you, and for future generations. Your environment is the air you breathe, the water you drink and the ground you walk on. Working with business, Government and society as a whole, we are making your environment cleaner and healthier. The Environment Agency. Out there, making your environment a better place. Contents Introduction ........................................................................................................................... 1 1 Overview of the London Basin Aquifer ........................................................................... 1 2 Why we need to manage groundwater levels ................................................................. 5 3 How we manage groundwater levels .............................................................................. 6 4 Recent abstraction trends .............................................................................................. 9 5 Groundwater levels for January 2017 ........................................................................... 12 Recent Changes in Groundwater Levels ......................................................................... 13 Long Term Changes in Groundwater Levels.................................................................... 13 6 Current licensing strategy ...........................................................................................
    [Show full text]