United States Patent (19) 11 Patent Number: 5,871,778 Kino Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11 Patent Number: 5,871,778 Kino Et Al USOO5871778A United States Patent (19) 11 Patent Number: 5,871,778 Kino et al. (45) Date of Patent: Feb. 16, 1999 54 SUSTAINED RELEASE MICROSPHERE 58 Field of Search ..................................... 424/426, 450, PREPARATION CONTAINING 424/497, 489 ANTIPSYCHOTC DRUG 56) References Cited 75 Inventors: Shigemi Kino; Tomonori Osajima; Hiroaki Mizuta, all of Fukuoka, Japan U.S. PATENT DOCUMENTS 4,994,281 2/1991 Muranishi et al. ..................... 424/497 73 Assignee: Yoshitomi Pharmaceutical Industries, Ltd., Osaka, Japan Primary Examiner Thurman K. Page ASSistant Examiner Sharon Howard Attorney, Agent, or Firm Sughrue, Mion, Zinn, Macpeak 21 Appl. No.: 812,544 & Seas, PLLC 22 Filed: Mar. 7, 1997 57 ABSTRACT Related U.S. Application Data A Sustained release microSphere preparation which is pro 62 Division of Ser. No. 443,021, filed as PCT/JP93/01673 N duced by including a hydrophobic antipsychotic drug Such 1. g EN's 656.299 eaS OW. as bromperidol, haloperidol or the like into a base composed 2 2 u stus i v w8 - 2 -/- /24 - - - of a high molecular weight polymer having in Vivo histo 30 Foreign Application Priority Data compatibility Such as polylactic acid, poly(lactic-co Nov. 17, 1992 JP Japan 4-332441 glycolic)acid or the like, and a process for the production • - 1 a Pall . thereof. (51) Int. Cl." ....................................................... A61K 9/50 52 U.S. Cl. ........................... 424/489: 424/426; 424/497 8 Claims, 4 Drawing Sheets 2O O EXAMPLE O A EXAMPLE 2 EXAMPLE 3 OO SS SO 8O U 7O 6O CD Z 5O 2. 4O 3O O1 2 O O O 5 2O 25 3O TIME (DAY) U.S. Patent Feb. 16, 1999 Sheet 1 of 4 5,871,778 2O O EXAMPLE A EXAMPLE 2 EXAMPLE 3 O 5 O 5 2O 25 3O TIME (DAY) FG. U.S. Patent Feb. 16, 1999 Sheet 2 of 4 5,871,778 Loxof -- EXAMPLE 4 Ó 5 lo 15 20 25 3o TME (DAY) FG.2 U.S. Patent Feb. 16, 1999 Sheet 3 of 4 5,871,778 OO -O- FORMULATION A -O- FORMULATION B s 2 (b. 5 to 15 20 25 3o 35 4o TIME (DAY) FG3 U.S. Patent Feb. 16, 1999 Sheet 4 of 4 5,871,778 -o- FORMULATION C -O FORMULATON D 5 O 3O g O O 2O 3O 4O TIME (DAY) FG4 5,871,778 1 2 SUSTAINED RELEASE MICROSPHERE containing a physiologically active Substance (haloperidol, PREPARATION CONTAINING chlorpromazine, etc.) and having an average particle size of ANTIPSYCHOTC DRUG about 0.1 to 10 um. This is a divisional of application Ser. No. 08/443,021 SUMMARY OF THE INVENTION filed May 17, 1995, now U.S. Pat. No. 5,656,299, which is With the aim of improvement in compliance at the time of a continuation-in-part application of PCT/JP93/01673, filed maintenance therapy with hydrophobic antipsychotic drugs, Nov. 15, 1993. the present inventors have conducted intensive Studies on the development of a Sustained release pharmaceutical TECHNICAL FIELD preparation in which a drug itself is used as an active This invention relates to a Sustained release microSphere ingredient without modification. AS the result, it was found preparation which contains a hydrophobic antipsychotic that a drug can be released at an almost constant rate drug and to a proceSS for producing the preparation. extending over 1 week or more by including a hydrophobic antipsychotic drug in the form of microcrystals having an BACKGROUND ART 15 average particle size of 10 um or less, desirably 5 um or less, It is Said that, in the drug therapy of mental diseases, into a base comprising a biodegradable high molecular maintenance therapy by continuous administration is effec weight polymer having in Vivo histocompatibility to make a tive in preventing recidivism of Symptoms, whereby it is Sustained release microSphere preparation and administrat possible to guide patients in their daily lives. However, Since ing it by Subcutaneous or intramuscular injection, hence the current maintenance therapy with antipsychotic drugs is resulting in the accomplishment of the present invention. carried out by orally administering tablets or fine granules Accordingly, the present invention relates to (1) an antip once a day or dividing the daily dose into Several doses per Sychotic drug-containing Sustained release microSphere day, decreased patient compliance during the maintenance preparation which is produced by including a hydrophobic the rapy cause S recidivism of Symptoms or antipsychotic drug in the form of microcrystals of the re-hospitalization. Consequently, current maintenance 25 above-noted size into a base comprising a high molecular therapy has a drawback in that certain means must be weight polymer having in Vivo histocompatibility and (2) a employed to improve compliance after rehabilitation or process for producing an antipsychotic drug-containing Sus during outpatient maintenance therapy. tained release microSphere preparation which comprises In order to resolve this problem, long acting injections making an oil layer comprising a Solution of a high molecu containing drugs in the form of decanoic acid ester or lar weight polymer having in Vivo histocompatibility con enanthic acid ester have been used. For example, decanoic taining Said hydrophobic antipsychotic drug microcrystals, acid esters of haloperidol and bromperidol are disclosed in adding the oil layer to a water layer, Subjecting the resulting JP-A-56-8318 (the term “JP-A” as used herein means “unex mixture to an emulsification treatment to obtain an O/W type amined published Japanese Patent Application”), and emulsion and Subsequently removing the Solvent in the oil decanoic acid ester or enanthic acid ester of fluphenazine is 35 layer by the in-water drying method. also known and used in this therapeutic field. In another and preferred embodiment of the present However, these prior art long acting injections have invention, the resulting microSpheres, following any neces drawbacks in that their administration route is limited to Sary Size Screening, have an average particle size of about intramuscular injection, resistance at the time of adminis 40 0.5 to 400 um, more preferably about 0.5 to 200 um, most tration is large because they are oil injections while the preferably about 15 to 50 lum. dispersibility of oil in muscular tissue is low, and their administration gives patients Severe pain. In addition, there DETAILED DESCRIPTION OF THE is a possibility that their effects may vary depending on INVENTION individuals and their ages because, though the esters of 45 The hydrophobic antipsychotic drug to be applied to the active ingredients show a Sustained release effect in the present invention is Selected from haloperidol, bromperidol, living body by gradually releasing their active moieties due flu phenazine, chlorpromazine, Sulpiride, carpipramine, to the influence of esterase, release of drugs in the living clocapramine, mosapramine, risperidone, clozapine, oranza body generally depends on their transition rate from, the pine and Sertindole and pharmaceutically acceptable acid administered Site into the lymphoid System and also on 50 addition Salts thereof, preferably from the group consisting enzyme activity. Accordingly, it is desirable to develop new of haloperidol, bromperidol, flu phenazine male ate, long acting injections in which the drugs themselves as chlorpromazine, chlorpromazine hibenzoate, Sulpiride, opposed to their esters can be used. carpipramine hydrochloride, carpipramine maleate, cloca On the other hand, each of JP-A-62-201816, JP-B-1- pramine hydrochloride, mosapramine hydrochloride, 57087 and JP-B-2-124814 (the term “JP-B” as used herein 55 risperidone, clozapine, oranzapine and Sertindole, of which means “examined Japanese Patent Publication') discloses haloperidol or bromperidol is particularly preferred. Sustained release microcapsules which make possible the The base that constitutes the Sustained release micro administration of water Soluble drugs at an interval of once Spheres of the present invention should have Such a function a week or once a month, and production processes therefor. that its concentration in blood plasma can be maintained at Also, JP-A-55-33414 discloses a so-called in-water drying 60 a constant level by a single administration whereby its method in which a hydrophobic drug and a polylactic acid effects can be obtained Stably over a prolonged period of are dissolved in a common organic Solvent, the resulting time. A biodegradable high molecular weight polymer hav Solution is emulsified by adding a phase Separation agent ing in Vivo histocompatibility is used as a base having Such and then the solvent is removed by evaporation to obtain fine a function. The Sustained release microSpheres of the present particles. 65 invention are constructed in the manner that the hydrophobic U.S. Pat. No. 4,994,281 discloses polylactic acid antipsychotic drug is included therein. Examples of Such a microSpheres, prepared by the in-water drying method, high molecular weight polymer having in Vivo histocom 5,871,778 3 4 patibility include polymers of fatty acid esters or copolymers Surface area of the drug. The finely ground drug may have thereof, polyacrylic esters, polyhydroxybutyric acids, poly a particle size of preferably within a range of 10 um or less, alkylene oxalates, poly orthoesters, polycarbonates and more preferably within a range of 5um or less (about 0.1 to polyamino acids, which may be used alone or as a mixture about 5 um, preferably 0.5 to 5 um). Fine particles of the of two or more. Illustrative examples of the polymers fatty drug can be obtained by known means, Such as use of jet acid esters or copolymers thereof include polylactic acid, mill, ball mill, vibrating mill, hammer mill, colloid mill and polyglycolic acid, polycitric acid, polymalic acid and poly the like. (lactic-co-glycolic) acid, which may also be used alone or as In preparing microSpheres of the present invention, it is a mixture of two or more.
Recommended publications
  • Centre for Reviews and Dissemination
    Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta- analysis Leucht S, Corves C, D Arbter, Engel R R, Li C, Davis J M CRD summary The authors concluded that amisulpride, clozapine, olanzapine and risperidone can be effective in treating schizophrenia patients. Second-generation antipsychotic drugs can also result in fewer extrapyramidal side effects, but can induce weight gain. The authors' conclusions reflected the evidence presented, but some potential methodological flaws in the review process meant that the extent to which those conclusions were reliable was unclear. Authors' objectives To compare the effects of first and second-generation antipsychotic drugs in schizophrenia patients. Searching The search for eligible studies was started in 2005, including MEDLINE to October 2006, Cochrane Schizophrenia Group's Specialised Register and the US Food and Drugs Administration website. Search terms were reported and there were no language restrictions. Previous reviews were searched for additional relevant studies. Study selection Randomised controlled trials (RCTs) of oral second-generation antipsychotic drugs (amisulpride, aripiprazole, clozapine, olanzapine, quetiapine, risperidone, sertindole, ziprasidone and zotepine) compared with first-generation drugs in patients with schizophrenia or related disorders (schizoaffective, schizophreniform or delusional disorders) irrespective of diagnostic criteria were eligible for inclusion in the review. The optimum doses of second-generation drugs were selected
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Appendix 13C: Clinical Evidence Study Characteristics Tables
    APPENDIX 13C: CLINICAL EVIDENCE STUDY CHARACTERISTICS TABLES: PHARMACOLOGICAL INTERVENTIONS Abbreviations ............................................................................................................ 3 APPENDIX 13C (I): INCLUDED STUDIES FOR INITIAL TREATMENT WITH ANTIPSYCHOTIC MEDICATION .................................. 4 ARANGO2009 .................................................................................................................................. 4 BERGER2008 .................................................................................................................................... 6 LIEBERMAN2003 ............................................................................................................................ 8 MCEVOY2007 ................................................................................................................................ 10 ROBINSON2006 ............................................................................................................................. 12 SCHOOLER2005 ............................................................................................................................ 14 SIKICH2008 .................................................................................................................................... 16 SWADI2010..................................................................................................................................... 19 VANBRUGGEN2003 ....................................................................................................................
    [Show full text]
  • The Effects of Antipsychotic Treatment on Metabolic Function: a Systematic Review and Network Meta-Analysis
    The effects of antipsychotic treatment on metabolic function: a systematic review and network meta-analysis Toby Pillinger, Robert McCutcheon, Luke Vano, Katherine Beck, Guy Hindley, Atheeshaan Arumuham, Yuya Mizuno, Sridhar Natesan, Orestis Efthimiou, Andrea Cipriani, Oliver Howes ****PROTOCOL**** Review questions 1. What is the magnitude of metabolic dysregulation (defined as alterations in fasting glucose, total cholesterol, low density lipoprotein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol, and triglyceride levels) and alterations in body weight and body mass index associated with short-term (‘acute’) antipsychotic treatment in individuals with schizophrenia? 2. Does baseline physiology (e.g. body weight) and demographics (e.g. age) of patients predict magnitude of antipsychotic-associated metabolic dysregulation? 3. Are alterations in metabolic parameters over time associated with alterations in degree of psychopathology? 1 Searches We plan to search EMBASE, PsycINFO, and MEDLINE from inception using the following terms: 1 (Acepromazine or Acetophenazine or Amisulpride or Aripiprazole or Asenapine or Benperidol or Blonanserin or Bromperidol or Butaperazine or Carpipramine or Chlorproethazine or Chlorpromazine or Chlorprothixene or Clocapramine or Clopenthixol or Clopentixol or Clothiapine or Clotiapine or Clozapine or Cyamemazine or Cyamepromazine or Dixyrazine or Droperidol or Fluanisone or Flupehenazine or Flupenthixol or Flupentixol or Fluphenazine or Fluspirilen or Fluspirilene or Haloperidol or Iloperidone
    [Show full text]
  • Maternal Use of Psychiatric Medications During Pregnancy And
    MATERNAL USE OF PSYCHIATRIC MEDICATIONS DURING PREGNANCY AND ADVERSE BIRTH OUTCOMES AND NEURODEVELOPMENTAL PROBLEMS IN OFFSPRING Ayesha C. Sujan Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Psychological and Brain Sciences, Indiana University July 2021 ii Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Doctoral Committee _______________________________________________ Brian M. D’Onofrio, PhD _______________________________________________ Richard Viken, PhD _______________________________________________ Patrick D. Quinn, PhD _______________________________________________ Christina Ludema, PhD _______________________________________________ A. Sara Oberg, PhD, MD April 22nd, 2020 iii © 2021 Ayesha C. Sujan iv Ayesha Sujan MATERNAL USE OF PSYCHIATRIC MEDICATIONS DURING PREGNANCY AND ADVERSE BIRTH OUTCOMES AND NEURODEVELOPMENTAL PROBLEMS IN OFFSPRING Understanding consequences of prenatal exposure to psychiatric and analgesic medications is important because use of these medications among pregnant women is relatively common and increasing. Rodent experiments have shown effects of perinatal exposure to specific medications; however, these findings might not apply to humans. Human observational studies have been used to study prenatal exposure to psychiatric and analgesic medications rather than randomiZed control trials due to ethical concerns
    [Show full text]
  • Prohibited Substances List
    Prohibited Substances List This is the Equine Prohibited Substances List that was voted in at the FEI General Assembly in November 2009 alongside the new Equine Anti-Doping and Controlled Medication Regulations(EADCMR). Neither the List nor the EADCM Regulations are in current usage. Both come into effect on 1 January 2010. The current list of FEI prohibited substances remains in effect until 31 December 2009 and can be found at Annex II Vet Regs (11th edition) Changes in this List : Shaded row means that either removed or allowed at certain limits only SUBSTANCE ACTIVITY Banned Substances 1 Acebutolol Beta blocker 2 Acefylline Bronchodilator 3 Acemetacin NSAID 4 Acenocoumarol Anticoagulant 5 Acetanilid Analgesic/anti-pyretic 6 Acetohexamide Pancreatic stimulant 7 Acetominophen (Paracetamol) Analgesic/anti-pyretic 8 Acetophenazine Antipsychotic 9 Acetylmorphine Narcotic 10 Adinazolam Anxiolytic 11 Adiphenine Anti-spasmodic 12 Adrafinil Stimulant 13 Adrenaline Stimulant 14 Adrenochrome Haemostatic 15 Alclofenac NSAID 16 Alcuronium Muscle relaxant 17 Aldosterone Hormone 18 Alfentanil Narcotic 19 Allopurinol Xanthine oxidase inhibitor (anti-hyperuricaemia) 20 Almotriptan 5 HT agonist (anti-migraine) 21 Alphadolone acetate Neurosteriod 22 Alphaprodine Opiod analgesic 23 Alpidem Anxiolytic 24 Alprazolam Anxiolytic 25 Alprenolol Beta blocker 26 Althesin IV anaesthetic 27 Althiazide Diuretic 28 Altrenogest (in males and gelidngs) Oestrus suppression 29 Alverine Antispasmodic 30 Amantadine Dopaminergic 31 Ambenonium Cholinesterase inhibition 32 Ambucetamide Antispasmodic 33 Amethocaine Local anaesthetic 34 Amfepramone Stimulant 35 Amfetaminil Stimulant 36 Amidephrine Vasoconstrictor 37 Amiloride Diuretic 1 Prohibited Substances List This is the Equine Prohibited Substances List that was voted in at the FEI General Assembly in November 2009 alongside the new Equine Anti-Doping and Controlled Medication Regulations(EADCMR).
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • The Organic Chemistry of Drug Synthesis
    The Organic Chemistry of Drug Synthesis VOLUME 2 DANIEL LEDNICER Mead Johnson and Company Evansville, Indiana LESTER A. MITSCHER The University of Kansas School of Pharmacy Department of Medicinal Chemistry Lawrence, Kansas A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY AND SONS, New York • Chichester • Brisbane • Toronto Copyright © 1980 by John Wiley & Sons, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc. Library of Congress Cataloging in Publication Data: Lednicer, Daniel, 1929- The organic chemistry of drug synthesis. "A Wiley-lnterscience publication." 1. Chemistry, Medical and pharmaceutical. 2. Drugs. 3. Chemistry, Organic. I. Mitscher, Lester A., joint author. II. Title. RS421 .L423 615M 91 76-28387 ISBN 0-471-04392-3 Printed in the United States of America 10 987654321 It is our pleasure again to dedicate a book to our helpmeets: Beryle and Betty. "Has it ever occurred to you that medicinal chemists are just like compulsive gamblers: the next compound will be the real winner." R. L. Clark at the 16th National Medicinal Chemistry Symposium, June, 1978. vii Preface The reception accorded "Organic Chemistry of Drug Synthesis11 seems to us to indicate widespread interest in the organic chemistry involved in the search for new pharmaceutical agents. We are only too aware of the fact that the book deals with a limited segment of the field; the earlier volume cannot be considered either comprehensive or completely up to date.
    [Show full text]
  • Screening of 300 Drugs in Blood Utilizing Second Generation
    Forensic Screening of 300 Drugs in Blood Utilizing Exactive Plus High-Resolution Accurate Mass Spectrometer and ExactFinder Software Kristine Van Natta, Marta Kozak, Xiang He Forensic Toxicology use Only Drugs analyzed Compound Compound Compound Atazanavir Efavirenz Pyrilamine Chlorpropamide Haloperidol Tolbutamide 1-(3-Chlorophenyl)piperazine Des(2-hydroxyethyl)opipramol Pentazocine Atenolol EMDP Quinidine Chlorprothixene Hydrocodone Tramadol 10-hydroxycarbazepine Desalkylflurazepam Perimetazine Atropine Ephedrine Quinine Cilazapril Hydromorphone Trazodone 5-(p-Methylphenyl)-5-phenylhydantoin Desipramine Phenacetin Benperidol Escitalopram Quinupramine Cinchonine Hydroquinine Triazolam 6-Acetylcodeine Desmethylcitalopram Phenazone Benzoylecgonine Esmolol Ranitidine Cinnarizine Hydroxychloroquine Trifluoperazine Bepridil Estazolam Reserpine 6-Monoacetylmorphine Desmethylcitalopram Phencyclidine Cisapride HydroxyItraconazole Trifluperidol Betaxolol Ethyl Loflazepate Risperidone 7(2,3dihydroxypropyl)Theophylline Desmethylclozapine Phenylbutazone Clenbuterol Hydroxyzine Triflupromazine Bezafibrate Ethylamphetamine Ritonavir 7-Aminoclonazepam Desmethyldoxepin Pholcodine Clobazam Ibogaine Trihexyphenidyl Biperiden Etifoxine Ropivacaine 7-Aminoflunitrazepam Desmethylmirtazapine Pimozide Clofibrate Imatinib Trimeprazine Bisoprolol Etodolac Rufinamide 9-hydroxy-risperidone Desmethylnefopam Pindolol Clomethiazole Imipramine Trimetazidine Bromazepam Felbamate Secobarbital Clomipramine Indalpine Trimethoprim Acepromazine Desmethyltramadol Pipamperone
    [Show full text]
  • Drug and Medication Classification Schedule
    KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine
    [Show full text]
  • Cyclic Antidepressant Drugs SI Conversion: [AUQ: Dr
    834 II: THERAPEUTIC DRUGS 127. Spiker DG, Pugh DD. Combining tricyclic and monoamine oxidase inhibi- 145. Chambost M, Liron L, Peillon D, et al. [Serotonin syndrome during fluoxetine tor antidepressants. Arch Gen Psychiatry 1976;33(7):828–830. poisoning in a patient taking moclobemide.] Can J Anaesth 2000;47(3):246– 128. Peebles-Brown AE. Hyperpyrexia following psychotropic drug overdose. 250. Anaesthesia 1985;40(11):1097–1099. 146. Myrenfors PG, Eriksson T, Sandsted CS, et al. Moclobemide overdose. J 129. Tuck JR, Punell G. Uptake of (3H)5-hydroxytryptamine and (3H)noradrenaline Intern Med 1993;233(2):113–115. by slices of rat brain incubated in plasma from patients treated with chlorimi- 147. Pounder DJ, Jones GR. Post-mortem drug redistribution––a toxicological pramine, imipramine or amitriptyline. J Pharm Pharmacol 1973;25(7):573–574. nightmare. Forensic Sci Int 1990;45(3):253–263. 130. Gillman PK. Successful treatment of serotonin syndrome with chlorproma- 148. Lichtenwalner MR, Tully RG, Cohn RD, et al. Two fatalities involving zine. Med J Aust 1996;165(6):345–346. phenelzine. J Anal Toxicol 1995;19(4):265–266. 131. Graham PM. Successful treatment of the toxic serotonin syndrome with 149. Yonemitsu K, Pounder DJ. Postmortem changes in blood tranylcypromine chlorpromazine. Med J Aust 1997;166(3):166–167. concentration: competing redistribution and degradation effects. Forensic 132. Tackley RM, Tregaskis B. Fatal disseminated intravascular coagulation fol- Sci Int 1993;59(2):177–184. lowing a monoamine oxidase inhibitor/tricyclic interaction. Anaesthesia 150. Baselt RC, Shaskan E, Gross EM. Tranylcypromine concentrations and 1987;42(7):760–763.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]