Biotrauma During Ultra-Low Tidal Volume

Total Page:16

File Type:pdf, Size:1020Kb

Biotrauma During Ultra-Low Tidal Volume Amado‑Rodríguez et al. Ann. Intensive Care (2021) 11:132 https://doi.org/10.1186/s13613‑021‑00919‑0 RESEARCH Open Access Biotrauma during ultra‑low tidal volume ventilation and venoarterial extracorporeal membrane oxygenation in cardiogenic shock: a randomized crossover clinical trial Laura Amado‑Rodríguez1,2,3* , Cecilia Del Busto1,2, Inés López‑Alonso2,3, Diego Parra1,2, Juan Mayordomo‑Colunga2,3,4, Miguel Arias‑Guillén3,5, Rodrigo Albillos‑Almaraz1,2, Paula Martín‑Vicente2,3,6, Cecilia López‑Martínez2,3, Covadonga Huidobro2,3, Luigi Camporota7, Arthur S. Slutsky8 and Guillermo M. Albaiceta1,2,3,6 Abstract Background: Cardiogenic pulmonary oedema (CPE) may contribute to ventilator‑associated lung injury (VALI) in patients with cardiogenic shock. The appropriate ventilatory strategy remains unclear. We aimed to evaluate the impact of ultra‑low tidal volume ventilation with tidal volume of 3 ml/kg predicted body weight (PBW) in patients with CPE and veno–arterial extracorporeal membrane oxygenation (V–A ECMO) on lung infammation compared to conventional ventilation. Methods: A single‑centre randomized crossover trial was performed in the Cardiac Intensive Care Unit (ICU) at a ter‑ tiary university hospital. Seventeen adults requiring V–A ECMO and mechanical ventilation due to cardiogenic shock were included from February 2017 to December 2018. Patients were ventilated for two consecutive periods of 24 h with tidal volumes of 6 and 3 ml/kg of PBW, respectively, applied in random order. Primary outcome was the change in proinfammatory mediators in bronchoalveolar lavage fuid (BALF) between both ventilatory strategies. Results: Ventilation with 3 ml/kg PBW yielded lower driving pressures and end‑expiratory lung volumes. Overall, there were no diferences in BALF cytokines. Post hoc analyses revealed that patients with high baseline levels of IL‑6 showed statistically signifcant lower levels of IL‑6 and IL‑8 during ultra‑low tidal volume ventilation. This reduction was signifcantly proportional to the decrease in driving pressure. In contrast, those with lower IL‑6 baseline levels showed a signifcant increase in these biomarkers. Conclusions: Ultra‑low tidal volume ventilation in patients with CPE and V–A ECMO may attenuate infammation in selected cases. VALI may be driven by an interaction between the individual proinfammatory profle and the mechan‑ ical load overimposed by the ventilator. Trial registration The trial was registered in ClinicalTrials.gov (identifer NCT03041428, Registration date: 2nd February 2017). *Correspondence: lar@crit‑lab.org 1 Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Avda de Roma s/n, 33011 Oviedo, Spain Full list of author information is available at the end of the article © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. Amado‑Rodríguez et al. Ann. Intensive Care (2021) 11:132 Page 2 of 10 Keywords: Extracorporeal membrane oxygenation, Ventilator‑induced lung injury, Mechanical ventilation, Pulmonary oedema, Respiratory mechanics Background ultra-low tidal volume strategy with tidal volume of Distribution of tidal volume (Vt) within lung paren- 3 ml/kg PBW in patients with CPE who were on V–A chyma determines the regional distribution of forces ECMO. experienced by the tissue. When end-inspiratory stretch is high or functional residual capacity is low, Materials and methods leading to recruitment/de-recruitment phenomena, Study design excessive mechanical loads may promote tissue damage Tis single-centre, prospective, randomized, cross- and infammation [1]. In patients with the acute respir- over trial was registered in Clinicaltrials.gov (identifer atory distress syndrome (ARDS), ventilator-associated NCT03041428) and performed according to CONSORT lung injury (VALI) contributes to lung infammation statement (CONSORT checklist available as Additional and is one major determinant of outcomes [2]. Calfee fle 1). All procedures performed were in accordance with et al. identifed two ARDS subphenotypes that may the ethical standards of the institutional and/or national beneft from diferent ventilatory approaches, accord- research committee (Comité de Ética de la Investigación ing to their proinfammatory profle [3]. del Principado de Asturias, REF 22/17) and with the 1964 In spite of diferent pathophysiological mechanisms, Helsinki Declaration and its later amendments. Informed alveolar fooding caused by hydrostatic mechanisms consent was obtained from each patients’ next of kin. in patients with cardiogenic pulmonary oedema (CPE) may produce similar respiratory system mechanics to Patients those observed in patients with ARDS [4, 5]. A recent From February 2017 to December 2018, all mechanically report illustrates that patients with congestive heart ventilated patients receiving V–A ECMO in the Car- failure are exposed to driving and plateau pressures diac Intensive Care Unit at Hospital Universitario Cen- similar to those with ARDS [6]. However, the efects tral de Asturias were screened. Inclusion criteria, other of this mechanical load on regional infammation in than mechanical ventilation and V–A ECMO support, patients with CPE, in which the infammatory response were: cardiogenic shock (defned as systemic hypoper- may not be so activated as in ARDS, have not been fusion with systolic blood pressure below 90 mmHg in studied. spite of fuid resuscitation and inotropes, evidence of Reduced tidal volume is the mainstay of the ventila- distant organ failure—defned as Organ-Specifc SOFA 2 tory management of ARDS [7], where decreases in driv- score ≥ 2 [14]—and/or cardiac index < 2.2 l/min/m , ing pressures have been related to lower risk of death, and corresponding to Stages C to D in the SCAI con- with the lower threshold for this beneft still unclear. sensus defnition [15]) and CPE (defned as impaired Low tidal volumes may decrease alveolar ventilation, gas exchange with a PaO2/FiO2 lower than 300, bilateral increasing CO2 levels, and produce atelectasis and infltrates in chest X-ray with pulmonary capillary wedge patient-ventilator dyssynchronies [8]. Several authors pressures (PCP) > 18 mmHg and/or echocardiographic have proposed the use of ultra-low tidal volume strat- signs of congestive heart failure). Exclusion criteria were egies with tidal volumes of 3 ml/kg, predicted body age < 18-year, immunosuppression, history of chronic weight (PBW) [9, 10] and extracorporeal gas exchange respiratory diseases, known or suspected acute lung to remove CO 2 and possibly improve oxygenation [11]. injury from other causes (pneumonia, atelectasis, mas- Veno-venous extracorporeal membrane oxygenation [9] sive pleural efusion), haemodynamic instability refrac- permits this ventilatory strategy and can lead to better tory to therapy, do-not resuscitate orders or a terminal outcomes in patients with very severe ARDS [10, 12]. condition. Intraaortic balloon pump was inserted via Patients with CPE due to severe ventricular dysfunc- femoral artery in all the cases [16]. Patients were followed tion may require extracorporeal cardiopulmonary sup- up to hospital discharge. port with veno-arterial ECMO (V–A ECMO) [13] and may also beneft from ultra-low tidal volume strategies, Outcomes assuming a similar respiratory mechanics and risk of Te primary endpoint was the bronchoalveolar lavage VALI as ARDS patients do, due to alveolar fooding. fuid (BALF) interleukin (IL)-6 concentration after each We conducted a prospective study aimed to evalu- ventilatory strategy. Additionally, a set of infammatory ate changes in lung infammation in response to an cytokines were determined in the obtained samples. Amado‑Rodríguez et al. Ann. Intensive Care (2021) 11:132 Page 3 of 10 Secondary outcomes were the impact of the ventilatory (LegendPLEX assay panel, BioLegend, USA), following strategy on respiratory mechanics and on haemodynamic the manufacturer’s instructions. variables. Planned post hoc analyses included com- Patients were classifed as hyperinfamed or non- parisons of subgroups according to driving or plateau hyperinfamed based on IL-6 concentration on BALF pressures or IL-6 levels during conventional protective during ventilation with 6 ml/kg PBW. Using data from a ventilation (6 ml/kg PBW). previous study [17], an optimal cut-of point of 680 pg/ml to discriminate between patients with and without ven- tilation-related lung infammation was identifed (Addi- Intervention and measurements tional fle 2: Figure S1A, B). PBW was calculated as 45.5 [0.91 (centimetres of + Sample size calculation height − 152.4)] for females; and 50 + [0.91 (centimetres of height − 152.4)] for males. Before inclusion, patients Based on the BALF IL-6 levels measured in a previous were ventilated with tidal volumes of 6–8 ml/kg PBW study in patients with ARDS and low strain [17], the and plateau pressures below 28 cmH 2O. After inclusion, study was designed to detect a diference of 100 pg/ml in patients were ventilated using a constant-fow, volume- the change of IL-6 levels (matched pairs), with a standard controlled mode for 24 h with a tidal volume of 6 or 3 ml/ deviation of 100 pg/ml. With 95% power and a 5% type-I kg PBW, applied in random order. After the frst 24 h in error, the required sample size was 17 patients. the initial strategy, tidal volume was modifed by 1 ml/kg PBW per hour until it achieved the target for the consec- Statistical analysis utive ventilatory strategy.
Recommended publications
  • Airway Pressures and Volutrauma
    Airway Pressures and Volutrauma Airway Pressures and Volutrauma: Is Measuring Tracheal Pressure Worth the Hassle? Monitoring airway pressures during mechanical ventilation is a standard of care.1 Sequential recording of airway pressures not only provides information regarding changes in pulmonary impedance but also allows safety parameters to be set. Safety parameters include high- and low-pressure alarms during positive pressure breaths and disconnect alarms. These standards are, of course, based on our experience with volume control ventilation in adults. During pressure control ventilation, monitoring airway pressures remains important, but volume monitoring and alarms are also required. Airway pressures and work of breathing are also important components of derived variables, including airway resistance, static compliance, dynamic compliance, and intrinsic positive end-expiratory pressure (auto-PEEP), measured at the bedside.2 The requisite pressures for these variables include peak inspiratory pressure, inspiratory plateau pressure, expiratory plateau pressure, and change in airway pressure within a breath. Plateau pressures should be measured at periods of zero flow during both volume control and pressure control ventilation. Change in airway pressure should be measured relative to change in volume delivery to the lung (pressure-volume loop) to elucidate work of breathing. See the related study on Page 1179. Evidence that mechanical ventilation can cause and exacerbate acute lung injury has been steadily mounting.3-5 While most of this evidence has originated from laboratory animal studies, recent clinical reports appear to support this concept.6,7 Traditionally, ventilator-induced lung injury brings to mind the clinical picture of tension pneumothorax. Barotrauma (from the root word baro, which means pressure) is typically associated with excessive airway pressures.
    [Show full text]
  • Advanced Modes of Ventilation: Concerns for the OR
    Scott, Benjamin K., MD Advanced Modes of Ventilation: Concerns for the OR WHAT I AM NOT GOING TO COVER ADVANCED MODES OF “Adaptive” Advanced Modes that focus on synchrony VENTILATION: ✪ Proportional assist CONCERNS FOR THE OR ✪ Adaptive Support ✪ Neurally Adjusted Ventilatory Assist BENJAMIN K. SCOTT, MD DEPARTMENT OF ANESTHESIOLOGY UNIVERSITY OF COLORADO SCHOOL OF MEDICINE Why? ✪ Evidence of benefit is lacking ✪ Generally interchangeable with standard intraop modes DISCLOSURES PATHOPHYSIOLOGY OF THE SICK LUNG 1. ARDS Ashbaugh and Petty: 1967 case series of 12 ICU patients ✪ Tachypnea and hypoxemia NONE ✪ Opacification on CXR ✪ Poor lung compliance ✪ Diversity of primary insult Ashbaugh DG, Bigelow DB, Petty TL et al. Acute Respiratory Distress in Adults. Lancet. 1967 LEARNING OBJECTIVES PATHOPHYSIOLOGY OF THE SICK LUNG ARDS: The Berlin Definition (c. 2011) 1. Review the pathophysiology of the diseased or injured lung 2. Understand recent strategies in mechanical ventilation, ARDS is an acute diffuse, inflammatory lung injury, leading to particularly focusing on “low‐stretch” and “open‐lung” increased pulmonary vascular permeability, increased lung weight, techniques. and loss of aerated lung tissue...[With] hypoxemia and bilateral radiographic opacities, associated with increased venous 3. Discuss strategies for OR management of patients on admixture, increased physiological dead space and decreased “advanced” vent modes lung compliance. 4. Apply these concepts to routine OR vent management The ARDS Definition Task Force*. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA. 2012;307(23):2526-2533 Scott, Benjamin K., MD Advanced Modes of Ventilation: Concerns for the OR PATHOPHYSIOLOGY OF THE SICK LUNG VENTILATING THE NON-COMPLIANT LUNG ARDS: The Berlin Definition (c.
    [Show full text]
  • Driving Pressure for Ventilation of Patients with Acute Respiratory
    LWW 02/03/20 09:38 4 Color Fig(s): F1-2 Art: ALN-D-19-00974 CLINICAL FOCUS REVIEW Jerrold H. Levy, M.D., F.A.H.A., F.C.C.M., Editor LWW Driving Pressure for Ventilation of Patients with Acute Anesthesiology Respiratory Distress Syndrome AQ1 Angela Meier, M.D., Ph.D., Rebecca E. Sell, M.D., Atul Malhotra, M.D. ALN ANET nvasive mechanical ventilation is a remarkable advance, Low Tidal Volumes Ibut the possibility of ventilator-induced lung injury exists, Low V mechanical ventilation is a well-established particularly if the ventilator settings are not optimized. The T anet method that limits ventilator-induced lung injury and best methods to avoid lung injury during mechanical ven- has been shown to improve mortality in clinical trials. An tilation, either during ventilation of healthy lungs in the original study by the ARDS Network published in 2000 operating room or during ventilation as support during aln compared a low versus high VT strategy and demonstrated critical illness, are topics of debate. In this review, we sum- a clear mortality benefit with the low V (6 ml/kg ideal marize the current evidence and review a relatively new T body weight) approach compared to a higher delivered VT ALN concept to prevent lung injury: targeting driving pressure (12 ml/kg ideal body weight).9 defined by plateau pressure minus positive end-expiratory ALN pressure (PEEP), see table 1) when setting and adjusting T1 mechanical ventilation. Positive End-Expiratory Pressure A promising single-center study looked at adjusting 0003-3022 Lung Injury PEEP settings based on measuring transpulmonary pres- sures.2 The authors used an esophageal balloon manometer Lung injury results from excess transpulmonary pressure to estimate pleural pressures in patients with ARDS.
    [Show full text]
  • Respiratory Mechanics in Spontaneous and Assisted Ventilation Daniel C Grinnan1 and Jonathon Dean Truwit2
    Critical Care October 2005 Vol 9 No 5 Grinnan and Truwit Review Clinical review: Respiratory mechanics in spontaneous and assisted ventilation Daniel C Grinnan1 and Jonathon Dean Truwit2 1Fellow, Department of Pulmonary and Critical Care, University of Virginia Health System, Virginia, USA 2E Cato Drash Professor of Medicine, Senior Associate Dean for Clinical Affairs, Chief, Department of Pulmonary and Critical Care, University of Virginia Health System, Virginia, USA Corresponding author: Daniel C Grinnan, [email protected] Published online: 18 April 2005 Critical Care 2005, 9:472-484 (DOI 10.1186/cc3516) This article is online at http://ccforum.com/content/9/5/472 © 2005 BioMed Central Ltd Abstract mined by the following equation: C = ∆V/∆P, where C is ∆ ∆ Pulmonary disease changes the physiology of the lungs, which compliance, V is change in volume, and P is change in manifests as changes in respiratory mechanics. Therefore, measure- pressure. The inverse of compliance is elastance (E ~ 1/C). ment of respiratory mechanics allows a clinician to monitor closely Airway pressure during inflation is influenced by volume, the course of pulmonary disease. Here we review the principles of thoracic (lung and chest wall) compliance, and thoracic respiratory mechanics and their clinical applications. These resistance to flow. Resistance to flow must be eliminated if principles include compliance, elastance, resistance, impedance, compliance is to be measured accurately. This is flow, and work of breathing. We discuss these principles in normal conditions and in disease states. As the severity of pulmonary accomplished by measuring pressure and volume during a disease increases, mechanical ventilation can become necessary.
    [Show full text]
  • The Basics of Ventilator Management Overview How We Breath
    3/23/2019 The Basics of Ventilator Management What are we really trying to do here Peter Lutz, MD Pulmonary and Critical Care Medicine Pulmonary Associates, Mobile, Al Overview • Approach to the physiology of the lung and physiological goals of mechanical Ventilation • Different Modes of Mechanical Ventilation and when they are indicated • Ventilator complications • Ventilator Weaning • Some basic trouble shooting How we breath http://people.eku.edu/ritchisong/301notes6.htm 1 3/23/2019 How a Mechanical Ventilator works • The First Ventilator- the Iron Lung – Worked by creating negative atmospheric pressure around the lung, simulating the negative pressure of inspiration How a Mechanical Ventilator works • The Modern Ventilator – The invention of the demand oxygen valve for WWII pilots if the basis for the modern ventilator https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRI5v-veZULMbt92bfDmUUW32SrC6ywX1vSzY1xr40aHMdsCVyg6g How a Mechanical Ventilator works • The Modern Ventilator – How it works Inspiratory Limb Flow Sensor Ventilator Pressure Sensor Expiratory Limb 2 3/23/2019 So what are the goals of Mechanical Ventilation • What are we trying to control – Oxygenation • Amount of oxygen we are getting into the blood – Ventilation • The movement of air into and out of the lungs, mainly effects the pH and level of CO 2 in the blood stream Lab Oxygenation Ventilation Pulse Ox Saturation >88-90% Arterial Blood Gas(ABG) Po 2(75-100 mmHg) pCO 2(40mmHg) pH(~7.4) Oxygenation How do we effect Oxygenation • Fraction of Inspired Oxygen (FIO 2) – Percentage of the gas mixture given to the patient that is Oxygen • Room air is 21% • On the vent ranges from 30-100% • So if the patient’s blood oxygen levels are low, we can just increase the amount of oxygen we give them 3 3/23/2019 How do we effect Oxygenation • Positive End Expiratory Pressure (PEEP) – positive pressure that will remains in the airways at the end of the respiratory cycle (end of exhalation) that is greater than the atmospheric pressure in mechanically ventilated patients.
    [Show full text]
  • Respiratory Therapy Pocket Reference
    Pulmonary Physiology Volume Control Pressure Control Pressure Support Respiratory Therapy “AC” Assist Control; AC-VC, ~CMV (controlled mandatory Measure of static lung compliance. If in AC-VC, perform a.k.a. a.k.a. AC-PC; Assist Control Pressure Control; ~CMV-PC a.k.a PS (~BiPAP). Spontaneous: Pressure-present inspiratory pause (when there is no flow, there is no effect ventilation = all modes with RR and fixed Ti) PPlateau of Resistance; Pplat@Palv); or set Pause Time ~0.5s; RR, Pinsp, PEEP, FiO2, Flow Trigger, rise time, I:E (set Pocket Reference RR, Vt, PEEP, FiO2, Flow Trigger, Flow pattern, I:E (either Settings Pinsp, PEEP, FiO2, Flow Trigger, Rise time Target: < 30, Optimal: ~ 25 Settings directly or by inspiratory time Ti) Settings directly or via peak flow, Ti settings) Decreasing Ramp (potentially more physiologic) PIP: Total inspiratory work by vent; Reflects resistance & - Decreasing Ramp (potentially more physiologic) Card design by Respiratory care providers from: Square wave/constant vs Decreasing Ramp (potentially Flow Determined by: 1) PS level, 2) R, Rise Time (­ rise time ® PPeak inspiratory compliance; Normal ~20 cmH20 (@8cc/kg and adult ETT); - Peak Flow determined by 1) Pinsp level, 2) R, 3)Ti (shorter Flow more physiologic) ¯ peak flow and 3.) pt effort Resp failure 30-40 (low VT use); Concern if >40. Flow = more flow), 4) pressure rise time (¯ Rise Time ® ­ Peak v 0.9 Flow), 5) pt effort (­ effort ® ­ peak flow) Pplat-PEEP: tidal stress (lung injury & mortality risk). Target Determined by set RR, Vt, & Flow Pattern (i.e. for any set I:E Determined by patient effort & flow termination (“Esens” – PDriving peak flow, Square (¯ Ti) & Ramp (­ Ti); Normal Ti: 1-1.5s; see below “Breath Termination”) < 15 cmH2O.
    [Show full text]
  • Increasing the Inspiratory Time and I:E Ratio During Mechanical Ventilation
    Müller-Redetzky et al. Critical Care (2015) 19:23 DOI 10.1186/s13054-015-0759-2 RESEARCH Open Access Increasing the inspiratory time and I:E ratio during mechanical ventilation aggravates ventilator-induced lung injury in mice Holger C Müller-Redetzky1*, Matthias Felten1, Katharina Hellwig1, Sandra-Maria Wienhold1, Jan Naujoks1, Bastian Opitz1, Olivia Kershaw2, Achim D Gruber2, Norbert Suttorp1 and Martin Witzenrath1 Abstract Introduction: Lung-protective ventilation reduced acute respiratory distress syndrome (ARDS) mortality. To minimize ventilator-induced lung injury (VILI), tidal volume is limited, high plateau pressures are avoided, and positive end-expiratory pressure (PEEP) is applied. However, the impact of specific ventilatory patterns on VILI is not well defined. Increasing inspiratory time and thereby the inspiratory/expiratory ratio (I:E ratio) may improve oxygenation, but may also be harmful as the absolute stress and strain over time increase. We thus hypothesized that increasing inspiratory time and I:E ratio aggravates VILI. Methods: VILI was induced in mice by high tidal-volume ventilation (HVT 34 ml/kg). Low tidal-volume ventilation (LVT 9 ml/kg) was used in control groups. PEEP was set to 2 cm H2O, FiO2 was 0.5 in all groups. HVT and LVT mice were ventilated with either I:E of 1:2 (LVT 1:2, HVT 1:2) or 1:1 (LVT 1:1, HVT 1:1) for 4 hours or until an alternative end point, defined as mean arterial blood pressure below 40 mm Hg. Dynamic hyperinflation due to the increased I:E ratio was excluded in a separate group of animals. Survival, lung compliance, oxygenation, pulmonary permeability, markers of pulmonary and systemic inflammation (leukocyte differentiation in lung and blood, analyses of pulmonary interleukin-6, interleukin-1β, keratinocyte-derived chemokine, monocyte chemoattractant protein-1), and histopathologic pulmonary changes were analyzed.
    [Show full text]
  • Prevention of Ventilator Associated Complications
    Prevention of Ventilator associated complications Authors: Dr Aparna Chandrasekaran* & Dr Ashok Deorari From: Department of Pediatrics , WHO CC AIIMS , New Delhi-110029 & * Neonatologist , Childs Trust Medical Research Foundation and Kanchi Kamakoti Childs Trust Hospital, Chennai -600034. Word count Text: 4890 (excluding tables and references) Figures: 1; Panels: 2 Key words: Ventilator associated complications, bronchopulmonary dysplasia Abbreviations: VAP- Ventilator associated pneumonia , BPD- Bronchopulmonary dysplasia, ELBW- Extremely low birth weight, VLBW- Very low birth weight, ROP- Retinopathy of prematurity, CPAP- Continuous positive airway pressure, I.M.- intramuscular, CI- Confidence intervals, PPROM- Preterm prelabour rupture of membranes, RCT- Randomised control trial, RR- Relative risk, PEEP- Peak end expiratory pressure Background: The last two decades have witnessed a dramatic reduction in neonatal mortality from 4.4 million newborn deaths annually in 1990 to 2.9 million deaths yearly in the year 2012, a reduction by 35%. In India, neonatal mortality has decreased by 42% during the same period. (1) With the increasing survival and therapeutic advances, the new paradigm is now on providing best quality of care and preventing complications related to therapy. Assisted ventilation dates back to 1879, when the Aerophone Pulmonaire, the world’s earliest ventilator was developed. This was essentially a simple tube connected to a rubber bulb. The tube was placed in the infant’s airway and the bulb was alternately compressed and released to produce inspiration and expiration. (2) With better understanding of pulmonary physiology and mechanics , lung protective strategies have evolved in the last two decades, with new resuscitation devices that limit pressure (T-piece resuscitator), non-invasive ventilation, microprocessors that allow synchronised breaths and regulate volume and high frequency oscillators/ jet ventilators.
    [Show full text]
  • Ventilatory Management of Acute Lung Injury and Acute Respiratory Distress Syndrome
    CLINICAL REVIEW CLINICIAN’S CORNER Ventilatory Management of Acute Lung Injury and Acute Respiratory Distress Syndrome Eddy Fan, MD Context The acute lung injury and acute respiratory distress syndrome are critical Dale M. Needham, MD, PhD illnesses associated with significant morbidity and mortality. Mechanical ventilation is Thomas E. Stewart, MD the cornerstone of supportive therapy. However, despite several important advances, the optimal strategy for ventilation and adjunctive therapies for patients with acute OR NEARLY 4 DECADES SINCE THE lung injury and acute respiratory distress syndrome is still evolving. acute respiratory distress syn- Evidence Acquisition To identify reports of invasive ventilatory and adjunctive thera- drome (ARDS) was first de- pies in adult patients with acute lung injury and acute respiratory distress syndrome, scribed,1 research has been on- we performed a systematic English-language literature search of MEDLINE (1966- Fgoing in an effort to improve the 2005) using the Medical Subject Heading respiratory distress syndrome, adult, and outcome of this critical illness. Acute related text words, with emphasis on randomized controlled trials and meta-analyses. EMBASE and the Cochrane Central Register of Controlled Trials were similarly searched. respiratory distress syndrome is char- The search yielded 1357 potential articles of which 53 were relevant to the study ob- acterized by the acute onset of hypox- jectives and considered in this review. emia and bilateral infiltrates on chest Evidence Synthesis There is strong evidence to support the use of volume- and radiography in the absence of left atrial pressure-limited lung-protective ventilation in adult patients with acute lung injury and hypertension. Various pulmonary (eg, acute respiratory distress syndrome.
    [Show full text]
  • The Future of Mechanical Ventilation: Lessons from the Present and the Past Luciano Gattinoni1*, John J
    Gattinoni et al. Critical Care (2017) 21:183 DOI 10.1186/s13054-017-1750-x REVIEW Open Access The future of mechanical ventilation: lessons from the present and the past Luciano Gattinoni1*, John J. Marini2, Francesca Collino1, Giorgia Maiolo1, Francesca Rapetti1, Tommaso Tonetti1, Francesco Vasques1 and Michael Quintel1 Abstract The adverse effects of mechanical ventilation in acute respiratory distress syndrome (ARDS) arise from two main causes: unphysiological increases of transpulmonary pressure and unphysiological increases/decreases of pleural pressure during positive or negative pressure ventilation. The transpulmonary pressure-related side effects primarily account for ventilator-induced lung injury (VILI) while the pleural pressure-related side effects primarily account for hemodynamic alterations. The changes of transpulmonary pressure and pleural pressure resulting from a given applied driving pressure depend on the relative elastances of the lung and chest wall. The term ‘volutrauma’ should refer to excessive strain, while ‘barotrauma’ should refer to excessive stress. Strains exceeding 1.5, corresponding to a stress above ~20 cmH2O in humans, are severely damaging in experimental animals. Apart from high tidal volumes and high transpulmonary pressures, the respiratory rate and inspiratory flow may also play roles in the genesis of VILI. We do not know which fraction of mortality is attributable to VILI with ventilation comparable to that reported in recent clinical practice surveys (tidal volume ~7.5 ml/kg, positive end-expiratory pressure (PEEP) ~8 cmH2O, rate ~20 bpm, associated mortality ~35%). Therefore, a more complete and individually personalized understanding of ARDS lung mechanics and its interaction with the ventilator is needed to improve future care.
    [Show full text]
  • 1. Ventilator Management
    1. Ventilator Management Indications for Mechanical Ventilation Apnea Ventilatory insufficiency Increase in PaCo2 and decrease in ph Refractory hypoxemia Complications Associated with Mechanical Ventilation Hypotension Increased intrathoracic pressure decreases venous return to the heart Increased risk of ventilator associated pneumonia (VAP) Keep HOB at > 30 Maintain frequent, good oral care Problems with endotracheal tube Mucous plugging Tube my become dislodged Kinking or biting of tube Cuff rupture Pneumothorax Initial Ventilator Settings—parameters to be clarified Type of ventilation Mode of ventilation Tidal volume or peak inspiratory setting Respiratory rate FiO2 PEEP (Positive End Expiratory Pressure) Types of Ventilation Volume Cycled Ventilation(VCV) A pre-selected tidal volume is delivered at the pressure required. Tidal volume guaranteed. Peak inspiratory pressure will vary depending on airway resistance and lung compliance. Pressure Control Time-Cycled Ventilation (PCV) Operator selects inspiratory pressure and inspiratory time Breath is terminated when inspiratory time is reached Inspiratory pressure is guaranteed; tidal volume is dependant on airway resistance and lung compliance Pressure Support (PSV) Requires intact respiratory drive Operator selects inspiratory pressure Patient initiates breath, pressure quickly rises to set pressure and is maintained throughout the inspiratory phase Tidal volume determined by lung compliance and inspiratory effort Modes of Ventilation Assist/Control
    [Show full text]
  • Mechanical Ventilation
    Fundamentals of MMeecchhaanniiccaall VVeennttiillaattiioonn A short course on the theory and application of mechanical ventilators Robert L. Chatburn, BS, RRT-NPS, FAARC Director Respiratory Care Department University Hospitals of Cleveland Associate Professor Department of Pediatrics Case Western Reserve University Cleveland, Ohio Mandu Press Ltd. Cleveland Heights, Ohio Published by: Mandu Press Ltd. PO Box 18284 Cleveland Heights, OH 44118-0284 All rights reserved. This book, or any parts thereof, may not be used or reproduced by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the publisher, except for the inclusion of brief quotations in a review. First Edition Copyright 2003 by Robert L. Chatburn Library of Congress Control Number: 2003103281 ISBN, printed edition: 0-9729438-2-X ISBN, PDF edition: 0-9729438-3-8 First printing: 2003 Care has been taken to confirm the accuracy of the information presented and to describe generally accepted practices. However, the author and publisher are not responsible for errors or omissions or for any consequences from application of the information in this book and make no warranty, express or implied, with respect to the contents of the publication. Table of Contents 1. INTRODUCTION TO VENTILATION..............................1 Self Assessment Questions.......................................................... 4 Definitions................................................................................
    [Show full text]