14-3-3 Protein Targets Misfolded Chaperone-Associated Proteins To

Total Page:16

File Type:pdf, Size:1020Kb

14-3-3 Protein Targets Misfolded Chaperone-Associated Proteins To Research Article 4173 14-3-3 protein targets misfolded chaperone-associated proteins to aggresomes Zhe Xu, Kourtney Graham, Molly Foote, Fengshan Liang, Raed Rizkallah, Myra Hurt, Yanchang Wang, Yuying Wu and Yi Zhou* Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA *Author for correspondence ([email protected]) Accepted 19 June 2013 Journal of Cell Science 126, 4173–4186 ß 2013. Published by The Company of Biologists Ltd doi: 10.1242/jcs.126102 Summary The aggresome is a key cytoplasmic organelle for sequestration and clearance of toxic protein aggregates. Although loading misfolded proteins cargos to dynein motors has been recognized as an important step in the aggresome formation process, the molecular machinery that mediates the association of cargos with the dynein motor is poorly understood. Here, we report a new aggresome-targeting pathway that involves isoforms of 14-3-3, a family of conserved regulatory proteins. 14-3-3 interacts with both the dynein-intermediate chain (DIC) and an Hsp70 co-chaperone Bcl-2-associated athanogene 3 (BAG3), thereby recruiting chaperone-associated protein cargos to dynein motors for their transport to aggresomes. This molecular cascade entails functional dimerization of 14-3-3, which we show to be crucial for the formation of aggresomes in both yeast and mammalian cells. These results suggest that 14-3-3 functions as a molecular adaptor to promote aggresomal targeting of misfolded protein aggregates and may link such complexes to inclusion bodies observed in various neurodegenerative diseases. Key words: Aggresome, 14-3-3, Dynein, BAG3, Adaptor Introduction structures of human 14-3-3 proteins reveal that they exist as Misfolded proteins are prone to forming aggregates that perturb homo- and heterodimers, with each monomer comprising nine a- normal cellular functions and lead to cytotoxicity (Ross and helices organized in an anti-parallel array (Liu et al., 1995; Xiao Poirier, 2005). In addition to chaperone-assisted refolding and et al., 1995). Co-crystallization of several ligand-bound 14-3-3 Journal of Cell Science ubiquitin-proteasome mediated degradation, the aggresome- complexes further demonstrate that the 14-3-3 dimer is arranged autophagy dependent clearance has recently been identified as in such a way that the ligand binding groove runs in opposite an important cellular response to toxic misfolded proteins directions for each monomer, thereby allowing simultaneous (Tyedmers et al., 2010). When proteasome-dependent binding of two ligands for one 14-3-3 dimer (Rittinger et al., degradation fails, misfolded proteins can be sequestered into 1999). large juxtanuclear inclusion bodies known as aggresomes, which 14-3-3 proteins are known to interact with over 200 proteins not only help alleviate the toxicity of small aggregates, but also that contain specific phosphoserine/phosphothreonine motifs facilitate their clearance by macroautophagy (Garcia-Mata et al., (Furukawa et al., 1993; Muslin et al., 1996). Through binding 2002; Kopito, 2000). Aggresome formation is an active process to their target proteins, 14-3-3 participates in a wide variety of in which misfolded proteins are loaded onto the dynein–dynactin biological processes, ranging from transcription to neuronal motor complex by protein adaptors for transport along development (Datta et al., 2000; Fantl et al., 1994; Fu et al., microtubules to the microtubule organizing center (MTOC) 2000; Peng et al., 1997; Skoulakis and Davis, 1998; Tzivion and (Chin et al., 2010; Ravikumar et al., 2005). While the underlying Avruch, 2002; Zha et al., 1996). In addition, 14-3-3 proteins have molecular details are not fully understood, previous studies have been implicated in a number of neurodegenerative disorders, identified the dynein motor and molecular adaptors [e.g. histone largely based on the observation that 14-3-3 proteins co-localize deacetylase 6 (HDAC6)] as critical components in the aggresome with the pathological inclusion bodies associated with these formation process (Kawaguchi et al., 2003; Ravikumar et al., diseases, including Lewy bodies in Parkinson’s disease, 2005). More recently, heat-shock protein 70 (Hsp70) and its co- neurofibrillary tangles in Alzheimer’s disease, mutant chaperone Bcl-2-associated athanogene 3 (BAG3) were shown to huntingtin aggregates in Huntington’s disease, etc. (Chen et al., be critical for targeting misfolded proteins to aggresomes 2003; Kawamoto et al., 2002; Umahara et al., 2004). However, it (Gamerdinger et al., 2011; Zhang and Qian, 2011). is not known how and why 14-3-3 assembles in these inclusion We report here that aggresome formation is profoundly bodies (Foote and Zhou, 2012). regulated by 14-3-3, a family of ubiquitous proteins that are It has been hypothesized that the presence of 14-3-3 proteins in abundantly expressed in the brain (Boston et al., 1982; Moore, various inclusion bodies may be a consequence of their 1967). 14-3-3 proteins are highly conserved from yeast to human associations with disease-related proteins such as a-synuclein and consist of seven mammalian isoforms (b, e, g, c, t/h, f and s) (a-Syn), parkin and tau, which are major components of (Rosenquist et al., 2000; Wang and Shakes, 1996). The crystal inclusions in certain neurodegenerative diseases (Hashiguchi 4174 Journal of Cell Science 126 (18) et al., 2000; Ostrerova et al., 1999; Sato et al., 2006). On the other (supplementary material Fig. S1). To further characterize the hand, 14-3-3 has been proposed to actively promote the function of 14-3-3 in a-Syn inclusion body formation, we co- formation of aggresome-like inclusions, thus acting as a transfected a-Syn-EGFPD155 with either exogenous 14-3-3 or sweeper to facilitate the sequestration and deposition of pSCM138 in cells and examined inclusion body formation disease-associated toxic proteins (Kaneko and Hachiya, 2006). microscopically. In line with our biochemical data, a majority of In support of this hypothesis, previous studies have shown that the cells with overexpressed 14-3-3 bore large a-Syn inclusion 14-3-3 plays an important role in aggresome formation. For bodies after a treatment of the proteasome inhibitor (ALLN), example, 14-3-3f is required for aggresome formation induced by while few ALLN-induced inclusion bodies were observed in cells the expression of a polyglutamine-expanded huntingtin protein co-transfected with pSCM138 (Fig. 1C). Further quantification (Htt86Q) in mammalian cells (Omi et al., 2008). Likewise, showed that overexpressing 14-3-3 in cells gave rise to deletion of bmh1, which encodes one of two yeast 14-3-3 significantly more frequent inclusion body formation than that homologs Bmh1, inhibits aggresomal targeting of another in control cells. In contrast, co-transfection of pSCM138 led to a disease-related huntingtin protein (Htt103QP) ectopically drastic decrease in the percentage of cells containing large expressed in yeast cells (Wang et al., 2009). Current studies, inclusion bodies (Fig. 1B). however, have not yet addressed whether the effect of 14-3-3 on It is known that overexpression of a-Syn leads to formation of aggresome formation is specific for the huntingtin proteins, and a specific type of inclusions termed aggresome, which is uniquely more importantly, which molecular step 14-3-3 might participate located in the vicinity of the centrosome and assembled by in the aggresome formation pathway. retrograde transport of dynein motors along the microtubule In this study, we have determined that 14-3-3 functions as a network (Opazo et al., 2008; Tanaka et al., 2004). Consistently, molecular adaptor to couple chaperone-associated misfolded these perinuclear structures were enriched with vimentin, a proteins with dynein motors through its dimeric binding to both known aggresome marker that displayed homogeneous BAG3 and the dynein intermediate chain (DIC). 14-3-3 thus distribution in cells without aggresome formation (Fig. 1C). plays a critical role in recruiting misfolded protein cargos onto Thus, the a-Syn-enriched inclusion bodies facilitated by 14-3-3 the cytoplasmic motor complex, thereby promoting aggresome were aggresomes. formation in response to accumulation of various misfolded proteins. Our findings set a stage for further determination of the 14-3-3 plays an important role in aggresome formation molecular detail and functional significance of the 14-3-3- To test whether 14-3-3 is able to promote aggresome formation mediated aggresomal targeting complex and provide a foundation of other aggregation-prone proteins, we utilized two other well- to investigate the protective role of 14-3-3 in neurodegenerative established aggresome formation models: GFP-250, which diseases. spontaneously forms aggresomes when expressed in cells; and a deletion mutant of cystic fibrosis transmembrane conductance Results regulator (CFTR), CFTRDF508, which concentrates in 14-3-3 facilitates the formation of a-Syn aggresomes aggresomes when proteasome activity is inhibited (Garcı´a-Mata 14-3-3 proteins have previously been reported to interact with a- et al., 1999; Johnston et al., 1998). As shown in Fig. 2A, 14-3-3 Journal of Cell Science Syn, one of the major components of Lewy bodies (Ostrerova et al., 1999; Sato et al., 2006). To examine the potential role of overexpression increased the percentage of cells bearing large 14-3-3 in a-Syn aggregation, we adopted an established method perinuclear GFP-250 aggresomes. In cells co-transfected with 14- to induce a-Syn aggregation by inhibition of proteasome 3-3-binding antagonist pSCM138, however, aggresome functions in cells expressing a-Syn-EGFP fusion proteins formation was suppressed and GFP-250 appeared to exist in (McLean et al., 2001). Consistent with the previous report, a- small aggregates in the cytoplasm. Similarly, GFP-CFTRDF508 Syn-EGFP fusion protein underwent C-terminal cleavage, and aggresome formation was enhanced in 14-3-3-overexpressed treatment of cells with the proteasome inhibitor ALLN resulted in cells, but significantly suppressed in cells co-transfected with a marked accumulation of C-terminal truncated fragments in the pSCM138 (Fig.
Recommended publications
  • Role of the Aggresome Pathway in Cancer: Targeting Histone Deacetylase 6–Dependent Protein Degradation
    Review Role of the Aggresome Pathway in Cancer: Targeting Histone Deacetylase 6–Dependent Protein Degradation Agustin Rodriguez-Gonzalez,1 Tara Lin,1 Alan K. Ikeda,1 Tiffany Simms-Waldrip,1 Cecilia Fu,1 and Kathleen M. Sakamoto1,2,3 1Division of Hematology-Oncology, Mattel Children’s Hospital and 2Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; and 3Division of Biology, California Institute of Technology, Pasadena, California Abstract synthesized in the endoplasmic reticulum (ER) are properly folded Misfolded or aggregated proteins have two fates: they are with the help of ER chaperones. Misfolded proteins are disposed either refolded with the help of chaperones or degraded by the of by ER-associated protein degradation (ERAD). When the level proteasome. Cells also have an alternative pathway that of misfolded proteins exceeds the folding capacity of the ER, cells involves intracellular ‘‘storage bins’’ for misfolded intracellu- activate a feedback mechanism known as the ER stress response lar proteins known as aggresomes. Aggresomes recruit motor (4). Expression of ER chaperones and ERAD-associated proteins is proteins that transport misfolded or aggregated proteins to induced to decrease protein synthesis and, hence, the burden on chaperones and proteasomes for subsequent destruction. the ER. There are four classes of agents that induce ER stress; they There is emerging evidence that inhibiting the aggresome are inhibitors of glycosylation, calcium metabolism, reducing agents, and hypoxia. Finally, the ER stress response can result in pathway leads to accumulation of misfolded proteins and apoptosis in tumor cells through autophagy. We discuss the activation of apoptosis (5).
    [Show full text]
  • Aggresomal Sequestration and STUB1-Mediated Ubiquitylation During Mammalian Proteaphagy of Inhibited Proteasomes
    Aggresomal sequestration and STUB1-mediated ubiquitylation during mammalian proteaphagy of inhibited proteasomes Won Hoon Choia,b, Yejin Yuna,b, Seoyoung Parka,c, Jun Hyoung Jeona,b, Jeeyoung Leea,b, Jung Hoon Leea,c, Su-A Yangd, Nak-Kyoon Kime, Chan Hoon Jungb, Yong Tae Kwonb, Dohyun Hanf, Sang Min Lime, and Min Jae Leea,b,c,1 aDepartment of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 03080 Seoul, Korea; bDepartment of Biomedical Sciences, Seoul National University Graduate School, 03080 Seoul, Korea; cNeuroscience Research Institute, Seoul National University College of Medicine, 03080 Seoul, Korea; dScience Division, Tomocube, 34109 Daejeon, Korea; eConvergence Research Center for Diagnosis, Korea Institute of Science and Technology, 02792 Seoul, Korea; and fProteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, 03080 Seoul, Korea Edited by Richard D. Vierstra, Washington University in St. Louis, St. Louis, MO, and approved July 1, 2020 (received for review November 18, 2019) The 26S proteasome, a self-compartmentalized protease complex, additional LC3-interacting region; the target cargoes can be plays a crucial role in protein quality control. Multiple levels of docked onto phosphatidylethanolamine-modified LC3 (LC3-II) regulatory systems modulate proteasomal activity for substrate on the expanding phagophore membrane, enveloped by an hydrolysis. However, the destruction mechanism of mammalian autophagosome, and eventually degraded in the autolysosomes. proteasomes is poorly understood. We found that inhibited pro- Notably, the enzymatic cascade attaching the lipid moiety at the teasomes are sequestered into the insoluble aggresome via C-terminal glycine of the cleaved LC3 protein in autophagy re- HDAC6- and dynein-mediated transport.
    [Show full text]
  • Regulation of Inducible Nitric Oxide Synthase by Aggresome Formation
    Regulation of inducible nitric oxide synthase by aggresome formation Katarzyna E. Kolodziejska*, Alan R. Burns*, Robert H. Moore†, David L. Stenoien‡§, and N. Tony Eissa*¶ Departments of *Medicine, †Pediatrics, and ‡Molecular Cell Biology, Baylor College of Medicine, Houston, TX 77030 Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved February 15, 2005 (received for review January 19, 2005) Misfolding and aggregation of proteins play an important part in dealt with iNOS subcellular localization have provided diverse the pathogenesis of several genetic and degenerative diseases. findings. iNOS has been reported to reside in the cell as a diffuse Recent evidence suggests that cells have evolved a pathway that cytosolic protein or to localize in vesicular or perinuclear struc- involves sequestration of aggregated proteins into specialized tures (14–16). In one study, the perinuclear location was assigned ‘‘holding stations’’ called aggresomes. Here we show that cells to the Golgi (17). Our study demonstrates that iNOS is expressed regulate inducible NO synthase (iNOS), an important host defense initially as a cytosolic protein but is eventually targeted to a protein, through aggresome formation. iNOS aggresome forma- perinuclear localization, identified by our data as an aggresome. tion depends on a functional dynein motor and the integrity of the The latter is hitherto thought to be the site of accumulation of microtubules. The iNOS aggresome represents a ‘‘physiologic ag- misfolded proteins (1–4). Thus, the iNOS aggresome serves as gresome’’ and thus defines a new paradigm for cellular regulation a prototype for what we term the ‘‘physiologic aggresome.’’ The of protein processing.
    [Show full text]
  • Ab139486 Aggresome Detection Kit
    ab139486 Aggresome Detection Kit Instructions for Use For the quantitive detection of aggresomes by flow cytometry and fluorescence microscopy. This product is for research use only and is not intended for diagnostic use. Version 1 Last Updated 28 May 2013 1 Table of Contents 1. Introduction 3 2. Product Overview 4 3. Assay Summary 5 4. Materials Supplied 7 5. Storage and Stability 7 6. Materials Required, Not Supplied 8 7. Pre-Assay Preparation 9 8. Assay Protocol 13 9. Data Analysis 21 2 1. Introduction In mammalian cells, aggregated proteins may be concentrated by microtubule dependent retrograde transport to perinuclear sites of aggregate deposition, referred to as aggresomes. Aggresomes are inclusion bodies that form when the ubiquitin–proteasome machinery is overwhelmed with aggregation-prone proteins. Typically, an aggresome forms in response to some cellular stress, such as hyperthermia, viral infection or exposure to reactive oxygen species. Aggresomes appear to provide a cytoprotective function by sequestering the toxic, aggregated proteins and may also facilitate their ultimate elimination from cells by autophagy. Certain cellular inclusion bodies associated with human disease are thought to arise from an aggresomal response, including Lewy bodies associated with neurons in Parkinson's disease, Mallory bodies associated with liver cells in alcoholic liver disease and hyaline inclusion bodies associated with astrocytes in amyotrophic lateral sclerosis. 3 2. Product Overview Non-physiological protein mutations or genetically engineered cell lines have been developed for assessment of the effects of protein aggregation within cells. Abcam’s Aggresome Detection Kit contains a novel 488 nm excitable red fluorescent molecular rotor dye to specifically detect denatured protein cargo within aggresomes and aggresome-like inclusion bodies in fixed and permeabilized cells.
    [Show full text]
  • Targeting Proteotoxic Stress in Cancer: a Review of the Role That Protein Quality Control Pathways Play in Oncogenesis
    Review Targeting Proteotoxic Stress in Cancer: A Review of the Role that Protein Quality Control Pathways Play in Oncogenesis Matthew Ho Zhi Guang 1,2,†, Emma L. Kavanagh 1,†, Luke Paul Dunne 3,4,†, Paul Dowling 4, Li Zhang 5, Sinéad Lindsay 1, Despina Bazou 6, Chia Yin Goh 1,2, Cathal Hanley 2, Giada Bianchi 3, Kenneth C. Anderson 3, Peter O’Gorman 6,* and Amanda McCann 1,2,* 1 UCD Conway Institute of Biomolecular and Biomedical Science, Dublin, Dublin 4, Ireland; [email protected] (M.H.Z.G.); [email protected] (E.L.K.); [email protected] (S.L.); [email protected] (C.Y.G.) 2 UCD School of Medicine, College of Health and Agricultural Sciences, University College Dublin, Belfield Dublin, Dublin 4, Ireland; [email protected] 3 LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; [email protected] (L.P.D.); [email protected] (G.B.); [email protected] (K.C.A.) 4 Biology Department, National University of Ireland Maynooth, Co. Kildare W23 F2K8, Ireland; [email protected] 5 Department of Hematology, Sichuan University, Chengdu, Sichuan 610041, China; [email protected] 6 Haematology Department, Mater Misericordiae University Hospital, Dublin Dublin 7, Ireland; [email protected] * Correspondence: [email protected] (P.O.G.); [email protected] (A.M.) † These authors contributed equally Received: 2 November 2018; Accepted: 7 December 2018; Published: 9 January 2019 Abstract: Despite significant advances in cancer diagnostics and therapeutics the majority of cancer unfortunately remains incurable, which has led to continued research to better understand its exceptionally diverse biology.
    [Show full text]
  • Hsp70–Bag3 Complex Is a Hub for Proteotoxicity-Induced Signaling
    Hsp70–Bag3 complex is a hub for proteotoxicity- induced signaling that controls protein aggregation Anatoli B. Meriina, Arjun Narayananb, Le Menga, Ilya Alexandrovc, Xaralabos Varelasa, Ibrahim I. Cisséb, and Michael Y. Shermand,1 aDepartment of Biochemistry, Boston University School of Medicine, Boston, MA 02118; bDepartment of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139; cActivSignal, Watertown, MA 02471; and dDepartment of Molecular Biology, Ariel University, Ariel 40700, Israel Edited by Alfred Lewis Goldberg, Harvard Medical School, Boston, MA, and approved June 13, 2018 (received for review March 21, 2018) Protein abnormalities in cells are the cause of major pathologies, Bag3 suggests that it can serve as a scaffold that links Hsp70 with and a number of adaptive responses have evolved to relieve the multiple signaling pathways. toxicity of misfolded polypeptides. To trigger these responses, Considering that the HB complex has the capacity to interact with cells must detect the buildup of aberrant proteins which often abnormal protein molecules (9, 10), we hypothesized that this associate with proteasome failure, but the sensing mechanism is module could act as a sensor of protein abnormalities in the cell and poorly understood. Here we demonstrate that this mechanism transduce signals to downstream pathways. Here we describe three involves the heat shock protein 70–Bcl-2–associated athanogene 3 pathways (i.e., JNK, p38, and Lats1/2) which are regulated under – (Hsp70 Bag3) complex, which upon proteasome suppression re- proteotoxic conditions via interactions with the HB complex. We sponds to the accumulation of defective ribosomal products, pref- found that upon proteasome failure this complex primarily senses erentially recognizing the stalled polypeptides.
    [Show full text]
  • Loss of HRD1-Mediated Protein Degradation Causes Amyloid Precursor Protein Accumulation and Amyloid-␤ Generation
    3924 • The Journal of Neuroscience, March 17, 2010 • 30(11):3924–3932 Cellular/Molecular Loss of HRD1-Mediated Protein Degradation Causes Amyloid Precursor Protein Accumulation and Amyloid-␤ Generation Masayuki Kaneko,1 Hiroshi Koike,2 Ryo Saito,1 Yoshihisa Kitamura,3 Yasunobu Okuma,1 and Yasuyuki Nomura4 1Department of Pharmacology, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, Choshi, Chiba 288-0025, Japan, 2Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan, 3Department of Neurobiology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan, and 4Laboratory of Pharmacotherapeutics, Yokohama College of Pharmacy, Yokohama 245-0066, Japan Endoplasmic reticulum-associated degradation (ERAD) is a system by which proteins accumulated in the endoplasmic reticulum (ER) are retrotranslocated to the cytosol and degraded by the ubiquitin–proteasome pathway. HRD1 is expressed in brain neurons and acts as an ERAD ubiquitin ligase. Amyloid precursor protein (APP) is processed into amyloid-␤ peptides (A␤s) that form plaque deposits in the brains of Alzheimer’s disease (AD) patients. We found significantly decreased HRD1 protein levels in the cerebral cortex of AD patients. HRD1 colocalized with APP in brain neurons and interacted with APP through the proline-rich region of HRD1. HRD1 promoted APP ubiquitination and degradation, resulting in decreased generation of A␤. Furthermore, suppression of HRD1 expression induced APP accumulation that led to increased production of A␤ associated with ER stress. Immunohistochemical analysis revealed that suppression of HRD1 expression inhibited APP aggresome formation, resulting in apoptosis. In addition, we found that the ATF6- and XBP1-induced upregulation of ERAD led to APP degradation and reduced A␤ production.
    [Show full text]
  • A Novel Action of Histone Deacetylase Inhibitors in a Protein Aggresome Disease Model
    Current Biology, Vol. 14, 488–492, March 23, 2004, 2004 Elsevier Ltd. All rights reserved. DOI 10.1016/j.cub.2004.03.003 A Novel Action of Histone Deacetylase Inhibitors in a Protein Aggresome Disease Model Lisa J. Corcoran,1 Timothy J. Mitchison,1 tion, evident from GFP staining concentrating at the and Qing Liu1,2,* microtubule organizing center (MTOC). When cells ex- 1Institute of Chemistry and Cell Biology pressing mSOD-GFP were treated with proteasome in- 2 Massachusetts General Hospital hibitors (10 ␮g/mlALLN), bright perinuclear structures Harvard Medical School characteristic of aggresomes formed in more than 65% Boston, Massachusetts 02115 of cells (Figure 1A and Figure S1A in the Supplemental Data available with this article online). We believe the reason that mSOD-GFP accumulates Summary in aggresomes is because mutations in SOD prevent proper folding, in turn promoting accumulation of un- Protein inclusions are associated with a number of folded mSOD protein. To test this, we fractionated COS1 neurodegenerative diseases including amyotrophic cells expressing mSOD-GFP and WTSOD-GFP into de- lateral sclerosis (ALS) [1]. Whether protein aggregates tergent-soluble and -insoluble fractions. The fraction of are toxic or beneficial to cells is not known. In ALS fusion protein present in the insoluble fraction is mark- animal models, mutant SOD1 forms aggresome-like edly higher for mSOD-GFP than for WTSOD-GFP. Even structures in motor neurons and astrocytes [2, 3]. To in the absence of proteasome inhibitors, the insoluble better understand the role of protein aggregation in mSOD-GFP protein forms high molecular weight com- the progression of disease etiology, we performed a plexes that are reactive to anti-SOD antibody and resis- screen for small molecules that disrupt aggresome tant to SDS denaturation.
    [Show full text]
  • Mechanisms of Aggresome Biogenesis Ubiquitination, Transport, & Maintenance AJ Keefe Department of Biology, Big Bend Communi
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 December 2018 doi:10.20944/preprints201812.0332.v1 Mechanisms of Aggresome Biogenesis Fibrosis Transmembrane Receptor, CTFR; Ubiquitination, Transport, & Maintenance Ubiquitin-Proteasome System, UPS; Lysine 63, K63; Bovine Serum Albumin, BSA; Defective Ribosomal Products, DRiPs; Deubiquitinase, DUB AJ Keefe Department of Biology, Big Bend Community College ABSTRACT Moses Lake, Washington, 98837 Email: [email protected] Neurodegenerative diseases are universally marked by the accumulation of misfolded protein. Neurons respond to these Keywords: Proteostasis, neurodegeneration, aggresome, proteostatic disturbances by sequestering, and thus inactivating, ​ HDAC6, p62, BAG3 toxic misfolded proteins into a perinuclear organelle called the aggresome. The aggresome can be subsequently degraded in Pages: 20 bulk by autophagy, a process termed aggrephagy. The formation Body Word Count: 5863 of protein aggregates has historically been considered a Body Character Count Excluding Spaces: 39144 spontaneous and unregulated process, but emerging research has Figures: 3 instead discovered a diverse cohort of regulatory proteins that Citations: 119 mediate protein aggregation. Chaperones are the first proteins to The author has declared no conflicts of interest respond to misfolded proteins, and do so by recognizing the The author received no funding for article preparation aberrant exposure of hydrophobic domains. When chaperones are unable to correctly refold proteins, their substrates are transferred to ubiquitin ligating machinery to catalyze HIGHLIGHTS: polyubiquitination. Although ubiquitin chains typically direct ​ ● Perinuclear aggresomes serve a critical role in proteins towards proteasomes, severe proteotoxic stress can maintaining proteostasis. overwhelm, or even directly inhibit, proteasomes. As an ● Lysine 63 linked polyubiquitination modifications alternative to proteasomal degradation, misfolded proteins are direct misfolded proteins to the aggresome.
    [Show full text]
  • Targeting of Thyroid Hormone Receptor Variants to Aggresomes
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 5-2008 Targeting of Thyroid Hormone Receptor Variants to Aggresomes Abigail Brunner College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Biology Commons Recommended Citation Brunner, Abigail, "Targeting of Thyroid Hormone Receptor Variants to Aggresomes" (2008). Undergraduate Honors Theses. Paper 809. https://scholarworks.wm.edu/honorstheses/809 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Targeting of Thyroid Hormone Receptor Variants to Aggresomes A thesis submitted in partial fulfillment of the requirement for the degree of Bachelors of Science in Biology from The College of William and Mary by Abigail Maria Brunner Williamsburg, VA May 2008 Table of Contents Abstract ………………………………………….………………………………….…1 Introduction …………………………………………………………………………...2 Protein folding and misfolding Mechanism of aggresome formation Degradation and clearance mechanisms induced by aggresome formation Effects of the aggresome on cell components Aggresome discovery Other aggresome-forming mutant proteins Aggresome markers Alternate use of aggresomal pathway- viral replication and assembly v-ErbA and the Avian Erythroblastosis Virus Role of v-ErbA in oncogenesis/dominant
    [Show full text]
  • Cell-State Specific Aggresome Formation in Fibroblasts Is Driven by Stress-Activated MAPK Signaling
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.23.453501; this version posted July 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Cell-state specific aggresome formation in fibroblasts is driven by stress-activated MAPK signaling Christopher S. Morrow1, Zachary P. Arndt1, Bo Peng1, Eden Y. Zewdie1, Bérénice A. Benayoun2, Darcie L. Moore1, 3 1Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin 2Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA 3Corresponding author Abstract The aggresome is a protein turnover system in which proteins are trafficked along microtubules to the centrosome for degradation. Despite extensive focus on aggresomes in immortalized cell lines, it remains unclear if the aggresome is conserved in all primary cells and all cell-states. Here we examined the aggresome in primary adult mouse dermal fibroblasts in four distinct cell-states. We found that in response to proteasome inhibition, quiescent and immortalized fibroblasts formed aggresomes whereas proliferating and senescent fibroblasts did not. Transcriptomic analysis of the fibroblast cell-state-specific response to proteasome inhibition revealed that stress-activated MAPK signaling was associated with aggresome formation. Supporting a functional role for stress-activated MAPK signaling in aggresome formation, inhibition of TAK1 and p38α/β MAPKs suppressed aggresome formation. Together, our data suggest that the aggresome is a non-universal protein degradation system that forms through stress-activated MAPK signaling which can be used cell-state specifically. Introduction Proper cellular function relies upon effective maintenance of the proteome by the cell’s protein quality control systems, such as the ubiquitin proteasome system, autophagy, and chaperone proteins (Vilchez, Saez et al.
    [Show full text]
  • An Emerging Role for the Ubiquitin-Proteasome System in the Breakdown of Transient Protein Inclusions
    biomolecules Review Releasing the Lockdown: An Emerging Role for the Ubiquitin-Proteasome System in the Breakdown of Transient Protein Inclusions Yuval Reiss *, Elisheva Gur and Tommer Ravid * Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; [email protected] * Correspondence: [email protected] (Y.R.); [email protected] (T.R.) Received: 12 July 2020; Accepted: 8 August 2020; Published: 10 August 2020 Abstract: Intracellular protein inclusions are diverse cellular entities with distinct biological properties. They vary in their protein content, sequestration sites, physiological function, conditions for their generation, and turnover rates. Major distinctions have been recognized between stationary amyloids and dynamic, misfolded protein deposits. The former being a dead end for irreversibly misfolded proteins, hence, cleared predominantly by autophagy, while the latter consists of a protein-quality control mechanism, important for cell endurance, where proteins are sequestered during proteotoxic stress and resolved upon its relief. Accordingly, the disaggregation of transient inclusions is a regulated process consisting of protein solubilization, followed by a triage step to either refolding or to ubiquitin-mediated degradation. Recent studies have demonstrated an indispensable role in disaggregation for components of the chaperone and the ubiquitin–proteasome systems. These include heat-shock chaperones of the 40/70/100 kDa families, the proteasome, proteasome substrate shuttling factors, and deubiquitylating enzymes. Thus, a functional link has been established between the chaperone machinery that extracts proteins from transient deposits and 26S proteasome-dependent disaggregation, indicative of a coordinated process. In this review, we discuss data emanating from these important studies and subsequently consolidate the information in the form of a working model for the disaggregation mechanism.
    [Show full text]