Bryobia from Hedera, Apple and Pear (Acar., Tetran.) Notulae Ad Tetranychidas 1 by G

Total Page:16

File Type:pdf, Size:1020Kb

Bryobia from Hedera, Apple and Pear (Acar., Tetran.) Notulae Ad Tetranychidas 1 by G 340 ENTOMOLOGISCHE BERICHTEN, DEEL 15, 1.IV. 1955 Bryobia from Hedera, apple and pear (Acar., Tetran.) Notulae ad Tetranychidas 1 by G. L. VAN EYNDHOVEN Introduction. In 1836 and 1838 the great arachnologist Carl Ludwig Koch published 4 species of mites for which he created the genus Bryobia, viz. B. praetiosa and gloriosa in 1836, B. speciosa and nobilis in 1838. Later, in the year 1842, he indicated B. speciosa as type of the genus Bryobia 1836, but our actual rules of nomenclature do not agree with this as the type of a genus has to be chosen out of those species which were published at the moment of the erection of the new genus in question. So actually Bryobia praetiosa C. L. Koch 1.1.1836 is considered as the typus generis. The next point is: What is Bryobia praetiosa ? This cannot be said with cer¬ tainty, as no specimens of Koch are known to be still available. The only details we dispose of, are a rather minute description and a coloured plate, very good for the moment of publication more than a century ago, but unsufficient for our requirements of to-day. It has been pretended that Koch separated his Bryobia-species by colour only, and that these colours would not be valuable for differentiation. By this pronoun¬ cement, however, one does a wrong to this arachnologist. Koch paid much at¬ tention to the characters of the living animal and he has recorded them in many cases so eminently that many recent acarologists may follow his example. But moreover Koch has given in text and plate, also for Bryobia, various morpho¬ logical differences which may be very valuable. So I am convinced that his B. speciosa is really a good species, though not the B. speciosa pictured by Berlesf (1888), which is quite another animal, and that also B. gloriosa is existing. The same conception has been published by A. C. Oudemans (1937) in his great work. Many Bryobia-specimens and eventually Bryobia-species have been found and mentioned since Koch’s days. Bryobia proved to occur on many host plants, dif¬ ferences were stated especially in biological sense, but no sufficiently fixed mor¬ phological characters were found to separate all these forms or (biological) races, and the tradition developed to consider them all as ”Bryobia praetiosaAll publications, especially those dealing with applied entomology, are struggling with this problem of identification. Oudemans (1927) has seen morphological differ¬ ences and has stated that it would be necessary to describe and draw the species very exactly, but he has never been able to work it out. It is not my intention to give a review of the numerous publications here. I hope to have an occasion later. For the moment I should like to refer to the review of Roosje & van Dinther (1953), which gives a recapitulation of the most important species and of the literature. For years already I knew this Bryobia-problem, and I had the impression that notwithstanding the great resemblance of specimens coming from different host plants it must be possible to separate them by morphological characters. This year BRYOBIA FROM HEDERA, APPLE AND PEAR 341 I have been able to make a start for studying by the support of the Laboratorium voor Entomologie, Wageningen, and the Nederlandse Organisatie Zuiver-Weten- schappelijk Onderzoek (Z.W.O.). After having compared material from various plants in the Netherlands and some other countries, I have come to the conclusion that it will be possible to give well defined morphologically separated characters of a certain number — if not all — of Bryobid-forms. On this principle I have based the 2 species described hereunder, one of them provisionally without a name owing to the confusion still existing in nomenclature of previous days. I fully realize that this effort to come to a morphological separation of the Bryobid-species will not be more than a first step. I dispose of various other, well defined forms, which will be published as soon as they have been studied suf¬ ficiently. It is not by accident that I have chosen for this first publication out of various well-defined forms those of apple/pear and of ivy (Hedera helix). These are 2 of the 3 forms that are the most important for practice. The third one is that of goose¬ berry (Ribes uva-crispa — grossuldrid), and this perhaps is the best known host plant for Bryobid, for here we find a real and regular pest expressed in names like ’’kruisbessenspint” (Netherlands) and ’’Stachelbeermilbe” (Germany). I am of opinion that the material I have seen so far, justifies to separate the three biological ’’races” morphologically. The gooseberry mite is not described here, as it still needs some further study in the coming spring, but the limited material I have seen shows very clear differences. If all gooseberry mites will prove to belong to one form, this will have a name already, viz. Bryobid ribis Thomas 1894. A typical, * secundary difficulty is that the individual specimens are varying rather heavily even in those characters which are of morphological value. Not¬ withstanding this, however, it is possible, after having seen a sufficient number of individuals, to separate them within rather sharp limits. I have considered at large whether it would be possible or even necessary to maintain the widely spread name "prdetiosd” for one of the three forms from apple/pear, ivy and gooseberry. I think this to be neither possible nor necessary. From the moment we start splitting up the species ”Bryobid prdetiosd”, and wish to maintain this name for one of the above forms, all forms but one will have to get another name. So there is no objection at all to give another name to dll of them. It is even not possible to chose this name ,,prdetiosd” for any of these three forms, for C. L. Koch gives the habitat in his original description of 1836 as follows: ”In Gärten, zuweilen auf Gesträuch. Bei Regensburg in den Bösner- garten, selten”. The indication ”in Gärten” may mean herbaceous plants. The „Gesträuch” cannot be apple or pear, nor Hederd, but it might have been Ribes uvd-crispd ( = grossuldrid). However, ’’zuweilen” means ’’sometimes”, so that this Ribes cannot be considered as the normal host plant for B. prdetiosd Koch (non auct.). Bryobid prdetiosd C. L. Koch 1.1.1836 sensu stricto must be a Bryobid living in gardens or parks at Regensburg, not available at present, but most probably morphologically differing from the 3 forms cited above. 342 ENTOMOLOGISCHE BERICHTEN, DEEL 15, 1.IV. 195 5 It would also not be possible to fix the name for one of the forms of these host plants by depositing a neotype, for the rules of nomenclature prescribe for this that the neotype corresponds as exactly as possible with the original description and is coming from the same geographic region. So first of all it would be neccessary to go and collect in the Bösnergarten or in a similar biotope at Regensburg. It is well known that of "Bryobia praetiosa" no $ $ are met. Only Ducès (1834) indicates males of his "Tetranychus cristatus”, and then only for those specimens found under stones at Paris in autumn. Moreover $ $ are regularly found of Bryobia sarothamni Geijskes 1939- I state that DuGès does not mention males for his specimens from the Midi on plum trees. So he must have collected more than one species, and as no specimens seem to have been preserved, we have to make a choice for the name ”cristatus” of DuGès. I should like to postpone this until I shall have had occasion to study the Bryobia from plum trees in Southern France and that living under stones in the public parks of Paris, for at all events we shall have to take a form which clearly shows the character chosen by Ducès for the name ”cristatus”, viz. the dorsum with a depressed centre surrounded by an elevated border (crista). With this Bryobia-problem we have to realize that as far as is known all forms or species, with the exception of B. sarothamni Geijskes and B. cristata (Dugès pro parte), show a thelytoke parthenogenesis. Now that the value of the biological observations can be confirmed by morphological differences, we have got the same situation as in various other zoological orders, so that in the present state of our knowledge there is no objection to describe the different forms as species. Transfer experiments have been made on various occasions in order to find a solution. I shall not mention them all. Some recent papers are those by Roosje & van Dinther (1952), Mathys (1954) and Böhm (1954), which all confirm once again that at least the great majority of such experiments will show a nega¬ tive result. In my opinion this fact is not strange at all. The fact that I have found constant morphological differences not only for the four groups as indicated by Mathys but also for various ’’species” in the field, seems to justify their publication, as it may be a help to other workers to know them. I am starting with two forms only of which I have seen a lot of material. Each future form will need a thorough study, as it is my intention to maintain the names of previous authors in all such cases where it will be possible and practical. When studying this genus I found that, apart from me, Mr. J. Meltzer, ’s-Graveland, had compared the morphological characters of Bryobia from ivy, apple and pear as well. He showed me his results which will be published in this same number of the Entomologische Berichten, and it is very satisfactory that they are entirely in accordance with my ideas, as is clearly appearing from his text and figures.
Recommended publications
  • Clover Mite Clover Mite Facts
    BARRIER PEST CONTROL JUNE 14, 2021 Pest Bio Providing All Your Pest Facts Clover Mite Clover Mite Facts: Size: 0.75-0.85 mm Shape: Oval Color: Bright Red to Reddish Brown Legs: 8 Wings: No Antenna: No Scientific Name: These tiny red pests invade homes in the thousands, getting through the tiniest cracks and crevices. Kingdom: Although Clover Mites ate only 1/30th of an inch big they are actually one of the largest mites found. Clover Mites are commonly mistaken as an insect as their -Animalia front legs are very long and look more like antenna. Clover mites are not harmful Pylum: to people and do not bite. Clover Mites are parthenogenetic, which means they develop from unfertilized eggs and are all female. Clover mites are attracted to -Arthropoda water so having a pool, bird bath or even just a well soaked lawn can attract them. Class: Call Barrier for help 208-463-4533 managing Clover Mites! -Arachnida Order: BEHAVIOR HABITAT -Trombidiformes DIET Because of the Clover Clover mites prefer to live Mites love of sunshine Family: Clover mites feed on in well fertilized and they tend to gather on plants. They eat by watered lawns. Adult sunny southern and -Tetranychidae sucking plant juices from Clover mites like to eastern walls of homes clover, grasses and other congregate on walls and and can enter the home Genus: plants common in lawns. vegetation, especially from the smallest of when exposed to sunlight. -Bryobia cracks . 1.
    [Show full text]
  • Clover Mite Bryobia Praetiosa Order Acari, Family Tetranychidae; Spider Mites Native Pest
    Pests of Trees and Shrubs Clover mite Bryobia praetiosa Order Acari, Family Tetranychidae; spider mites Native pest Host plants: Grasses, clovers, ornamental flowers, common on honeysuckle Description: Adult clover mites are eight-legged, reddish or brownish, and smaller than a pinhead. After feeding, they appear greenish-brown. They are easily distin- guished from other mites by a pair of front legs that extend forward and that are longer than the body and twice as long as any of the other legs. Clover mite adult, notice the long front legs and four anterior Life history: Adult males have not been found in the U.S. setae on tubercles. (64) Females are parthenogenetic, producing up to 70 eggs Photo: John Davidson during the summer months without mating. Damage occurs in early spring to early summer and again in late summer and early fall. The entire life span may be 1 to 7 months. Eggs are deposited in the fall in cracks and crevices of foundations, walls, tree bark, debris, and rocks; eggs hatch in spring; larvae migrate to grasses, clovers, and other host plants to feed; larvae molt into nymphs and then into adults. Clover mites are inactive during winter, becoming active again in spring. Two or more generations are produced each year. Overwintering: Clover mites can pass the winter in any stage; eggs can be found on trees and shrubs. Overwintering adults are a nuisance pest when they Monitoring: Inspect premises for mites and hiding places. move into structures for the winter. Clover mites concentrate on warmer (southern, western) sites, especially where reflective surfaces add warmth.
    [Show full text]
  • Bryobia Mite Bryobia Spp
    Bryobia mite Bryobia spp. click for html version Other common names: Clover mite Summary: There are over 100 species of Bryobia mite worldwide, with at least seven found in Australian cropping environments. Unlike other broadacre mite species, which are typically active from autumn to spring, Bryobia mites prefer the warmer months of the year. Bryobia mites are smaller than other commonly occurring pest mites. They attack pastures and numerous winter crops earlier in the season. Occurrence: Bryobia mites (sometimes referred to as clover mites) are sporadic pests typically found in warmer months of the year, from spring through to autumn. They are unlikely to be a problem over winter, however they can persist throughout all months of the year. They are broadly distributed throughout most agricultural regions in southern Australia with a Mediterranean-type climate, including Western Australia, Victoria, New South Wales and South Australia. They have also been recorded in Tasmania and Queensland. Known distribution of Bryobia mites in Australia (Source: cesar) Description: There are at least seven species of Bryobia mites found in broadacre crops in Australia. These appear very similar. Bryobia mites are smaller than other commonly occurring pest mites, although they reach no more than about 0.75 mm in length as adults. They have an oval shaped, dorsally flattened body that is dark grey, pale orange or olive in colour and have eight pale red/orange legs. The front pair of legs is much larger; approximately 1.5 times their body length. If seen under a microscope, they have a sparsely distributed set of broad, spade-like hairs, appearing like white flecks (see Figure).
    [Show full text]
  • Arthropod Diversity and Conservation in the Tropics and Sub-Tropics Akshay Kumar Chakravarthy Shakunthala Sridhara Editors
    Arthropod Diversity and Conservation in the Tropics and Sub-tropics Akshay Kumar Chakravarthy Shakunthala Sridhara Editors Arthropod Diversity and Conservation in the Tropics and Sub-tropics Editors Akshay Kumar Chakravarthy Shakunthala Sridhara (retired) Division of Entomology and Nematology Department of Entomology Indian Institute of Horticultural Research University of Agricultural Sciences (IIHR) Gandhi Krishi Vignana Kendra (GKVK) Bengaluru , Karnataka , India Bengaluru , Karnataka , India ISBN 978-981-10-1517-5 ISBN 978-981-10-1518-2 (eBook) DOI 10.1007/978-981-10-1518-2 Library of Congress Control Number: 2016955290 © Springer Science+Business Media Singapore 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • Bryobia Praetiosa Koch 1836
    Bryobia praetiosa Koch 1836 Material examined specimens not examined Taxonomy Subfamily Bryobiinae Fig. 1. Bryobia praetiosa live adult female (photo by S. Learmonth). Tribe Bryobiini Common Name clover mite Distribution +Australia, Argentina, Austria, Belgium, Bolivia, Brazil, CIS, Canada, Chile, China, Colombia, Costa Rica, Cyprus, Denmark, Egypt, Finland, France, *Germany, Greece, Greenland, Hawaii, hungary, India, Iran, Iraq, Ireland, Italy, Japan, Korea, Mexico, Morocco, New Zealand, Norway, Pakistan, Paraguay, Peru, Poland, Portugal, Rumania, South Africa, Spain, Sweden, Switzerland, Taiwan, The Netherlands, Turkey, United Kingdom, USA Fig. 2. Bryobia praetiosa dorsal habitus - a. larva; b. protonymph; c. deutonymph; d. adult female; e. emergent Taxonomy Changes peritreme; f. empodium (all redrawn from Geijskes (1939)). Bryobia praetiosa Koch 1836 Bryobia latitans Livshits & Mitrofanov 1966, synonymy Livshits & Mitrofanov 1971 Bryobia pseuodpraetiosa Wainstein 1956, synonymy Waintstein 1960 Diagnosis Fig. 3. Bryobia larvae, dorsal habitus - B. rubrioculus (as B. Larva (Figs 2a, 3) arborea) and B. praetiosa (redrawn from Morgan & Anderson 1957). dorsal body setae lanceolate (Morgan & Anderson 1957; Miller 1966; Gutierrez & Schicha 1983) (Fig. 3) prodorsal setae v1 short, lanceolate + remaining body setae spatulate (Mathys 1961 - see Notes) prodorsum cuticle granulate opisthosoma cuticle weakly granulate with widely spaced striae Female (Figs 1, 2d) empodium I short pad with one pair tenent hairs empodia II-IV pad with two rows of
    [Show full text]
  • Plant Feeding Mites of South Dakota Leland D
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Agricultural Experiment Station Technical Bulletins SDSU Agricultural Experiment Station 1966 Plant Feeding Mites of South Dakota Leland D. White Follow this and additional works at: http://openprairie.sdstate.edu/agexperimentsta_tb Recommended Citation White, Leland D., "Plant Feeding Mites of South Dakota" (1966). Agricultural Experiment Station Technical Bulletins. 38. http://openprairie.sdstate.edu/agexperimentsta_tb/38 This Article is brought to you for free and open access by the SDSU Agricultural Experiment Station at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Agricultural Experiment Station Technical Bulletins by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. Technical Bulletin 27 May 1966 Plant Feeding Mites of South Dakota Entomology-Zoology Department Agricultural Experiment Station South Dakota State University, Brookings ACKNOWLEDGMENTS Appreciation is extended to: E. W. Baker for assistance in identification of Tetranychidae; H . H. Keifer, who identified specimens of Eriophy­ idae; C. A. Taylor, South Dakota State Univer­ sity plant taxonomist, for assistance in preparation of host-plant scientific names and identification of selected host plants; research assistants, S. A. Johnson,
    [Show full text]
  • Mites in a Hot and Dry 2018/19
    MITES IN A HOT AND DRY 2018/19 K.L. Pringle and H.E. Campbell, HORTGRO Science The mites There are three tetranychid mite species that infest deciduous fruit in the Western Cape, particularly apples and pears. They are the European red mite (ERM), Panonychus ulmi, bryobia mite, Bryobia rubrioculus, and the two-spotted mite (also known as red spider mite, Tetranychus urticae). Some taxonomists differentiate between Tetranychus urticae (two-spotted mite) and Tetranychus cinnabarinus (red spider mite). However, in South Africa we lump them together as one species, as they are regarded as two colour forms of the same species (the red form and the two-spotted form). In South Africa both forms can be found in the same orchard, with the whole range of intermediate colour forms. In addition, they interbreed and produce viable offspring. Two-spotted mite (TSM) is a problem in both Ceres and EGVV, while, at present, ERM is a problem in EGVV and bryobia is a problem in Ceres. A B C (A) Red spider mite. On the right an adult female and on the left an adult male, which differs from the immature stages by its roughly triangular abdomen – the abdomen of the immature stages is rounded. (B) Bryobia female, there are no males: note the long front legs. (C) European red mite adult female: note the 6 white spots on the back. freshNOTES (157) 22 Feb 2019 www.hortgroscience.co.za The predators Predatory mites Neoseiulus californicus, commonly called californicus. It is a shiny, almost transparent predatory mite and is the most important predator.
    [Show full text]
  • Clover and Other Mites of Turfgrass Fact Sheet No
    Clover and Other Mites of Turfgrass Fact Sheet No. 5.505 Insect Series|Home and Garden by W.S. Cranshaw* Many species of mites are common Quick Facts in Colorado turfgrass. Some, such as the oribatid or “hardshell” mites, are important • Several species of spider in the breakdown of thatch and the recycling mites can damage turfgrass in of nutrients. Other are important predators Colorado: clover mite, Banks of pest insects and mites. Three spider grass mite and brown wheat mites species are among those that damage mite. Colorado turf: clover mites, Banks grass mites and brown wheat mites. • Most damage occurs during early to midspring. Clover Mites • Damage to turfgrass is Clover mites (Bryobia praetiosa) are a primarily related to dry Figure 1: Clover mite with egg. common type of spider mite in Colorado. conditions and turfgrass They breed outdoors on turfgrass, clover and stressed by drought. other plants from fall through early May. extensively injured and die. Areas of grass • Clover mites can be a serious Clover mites are smaller than the head extending several feet from the building nuisance pest when they of a pin and range in color from reddish foundation may be totally killed, appearing as enter buildings in spring. or brown to dark green. Under close light brown, irregular dead patches. examination they have an unusually long Clover mite injury to turf is commonly • Banks grass mite is the most pair of front legs, which distinguishes them mistaken for winter kill and usually is difficult species of mite to from the common spider mites found on found in the same sunny, dry areas of the control in turfgrass.
    [Show full text]
  • Modeling Demographic Response to Constant Temperature in Bryobia Rubrioculus (Acari: Tetranychidae)
    Research Article ISSN 2336-9744 The journal is available on line at www.ecol-mne.com Modeling Demographic Response to Constant Temperature in Bryobia rubrioculus (Acari: Tetranychidae) SAEID JAVADI KHEDERI and MOHAMMAD KHANJANI * Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, I. R. Iran. E-mail: [email protected] . *Corresponding author. E-mail: [email protected] Received 8 March 2014 │ Accepted 5 April 2014 │ Published online 7 April 2014. Abstract The demographic parameters of brown mite, Bryobia rubrioculus Scheuten were carried out in order to characterize the population growth potential at five constant temperatures: 20, 22.5, 25, 27.5 and 30 ºC, 60 ± 5 % RH and 16: 8 (L: D) h. The highest intrinsic rate of natural increase ( rm = 0.0243/day), net reproductive rate ( R0 = 2.4 ♀/♀/T) and finite rate of increase ( λ = 1.0245 day -1) values were determined at 22.5°C. The mean generation time (T) of the population ranged from 22.7 days at 30°C to 45.8 days at 20°C. The maximum and minimum survival rates ( lx) were recorded at 22.5ºC and 30ºC. Survivorship data ( lx ) of adult females were summarized and compared using the shape and scale parameters of the Weibull frequency distribution model across. The age specific fecundity data ( mx) was modeled as a function of time by using Polynomial model. The lower temperature threshold ( t) and thermal constant ( k) of the immature stages were estimated using Ikemoto and Takai linear model to be 12.85 ºC and 279.7 degree days (DD), respectively.
    [Show full text]
  • Acari: Tetranychidae) Concerning the Physiological Aspects of Sour Cherry
    Acarina 23 (2): 163–171 © Acarina 2015 ANALYSIS OF BIOLOGICAL CHARACTERISTICS OF BRYOBIA RUBRIOCULUS SCHEUTEN (ACARI: TETRANYCHIDAE) CONCERNING THE PHYSIOLOGICAL ASPECTS OF SOUR CHERRY N. Honarparvar1*, M. Khanjani2 and N. Bouzari3 1, 2 Department of Plant protection Bu Ali-Sina University, Hamedan, Iran; e-mail: [email protected], [email protected] 3 Seed and Plant Improvement Institute, Karaj, Iran; e-mail: [email protected] ABSTRACT: Sour cherry is considered as an economically important fruit tree, providing a valuable and delicious fruit across the world. Recently, large numbers of the brown mite, Bryobia rubrioculus Scheuten (Acari: Tetranychidae) attacked sour cherry or- chards of Hamedan, Iran. In 2013, biological experiments were conducted on two sour cherry cultivars under constant conditions (26 ± 0.5)ºC, (L:D) (16:8), and (60 ± 5) RH. Pre-imaginal development time was 22.4 and 24.89 days, gross fecundity rate was -1 11.59 and 9.87 eggs, and rm assumed to be (was determined) 0.0164 and 0.0048 day respectively. Few biological parameters of the brown mite had correlation with physiological aspects of the sour cherry. The results of this research provide important data about brown mite for integrate pest management. KEY WORDS: Sour cherry, Bryobia rubrioculus, biology, host physiology INTRODUCTION rates responding to selected conditions and as bio- Bryobia rubrioculus Scheuten (Acari: Tet- climatic indices in assessing the potential of pest ranychidae) thrives on plum, sweet cherry and population growth in a new area (Southwood and clover orchards of Iran, particularly in Kerman- Henderson 2000). Furthermore Honarparvar et al. shah, Tehran, Hamedan, and Alborz (Khanjani (2010b) studied population growth parameters of 2004; Keshavarz-Jamshidian 2006; Eghbalian Bryobia rubrioculus on sweet-cherry, at nine con- 2007; Honarparvar 2010; Honarparvar et al.
    [Show full text]
  • Spring Pests of Winter Cereals
    Spring pests of winter cereals By Melina Miles | Published: August 30, 2013 Armyworm in barley and wheat. A number of reports of armyworm in crops have been received over the past cou- ple of weeks. Numbers range from 30 to 50 per square metre (extreme) to a more typical 5 to10 larvae per square metre. Assessing larval density is done using a sweep net, bucket or beating a section of row into a tray or onto a beatsheet. It is important to check along the row at the base of the plants for larvae sheltering in the soil and stubble. Armyworm are active at night, and tend to shelter on the ground during the day. At higher densi- ties they may be active during the day. Armyworms are renowned for their damage potential as a result of head lopping in crops that are drying down. Less is known about the impact of armyworm in crops that are still green, with plenty of leaf in the canopy, and early stages of head emergence and grain fill (Z50 to Z 80). Considerations in making decisions about the need for, and timing of, control: Crop stage and condition. Armyworm will feed on green leaf material if it is available. Crops that are drying down, or where leaves have dried early because of disease or herbicide damage are more likely to suffer defoliation of the upper leaves which contribute to yield. Typically, head lopping occurs when larvae feed on the last bit of green material in a plant that is drying off, the stem nodes, resulting in heads being severed.
    [Show full text]
  • Oregon Invasive Species Action Plan
    Oregon Invasive Species Action Plan June 2005 Martin Nugent, Chair Wildlife Diversity Coordinator Oregon Department of Fish & Wildlife PO Box 59 Portland, OR 97207 (503) 872-5260 x5346 FAX: (503) 872-5269 [email protected] Kev Alexanian Dan Hilburn Sam Chan Bill Reynolds Suzanne Cudd Eric Schwamberger Risa Demasi Mark Systma Chris Guntermann Mandy Tu Randy Henry 7/15/05 Table of Contents Chapter 1........................................................................................................................3 Introduction ..................................................................................................................................... 3 What’s Going On?........................................................................................................................................ 3 Oregon Examples......................................................................................................................................... 5 Goal............................................................................................................................................................... 6 Invasive Species Council................................................................................................................. 6 Statute ........................................................................................................................................................... 6 Functions .....................................................................................................................................................
    [Show full text]