This Article Appeared in a Journal Published by Elsevier. the Attached

Total Page:16

File Type:pdf, Size:1020Kb

This Article Appeared in a Journal Published by Elsevier. the Attached This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Tectonophysics 460 (2008) 178–185 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Tectonic rotations in the Deseado Massif, southern Patagonia, during the breakup of Western Gondwana Rubén Somoza a,b,⁎, Haroldo Vizán a,b, Graeme K. Taylor c a CONICET, Argentina b Departamento de Ciencias Geológicas, FCEyN, Universidad de Buenos Aires, Argentina c School of Earth, Ocean and Environmental Sciences, University of Plymouth, UK article info abstract Article history: Paleomagnetic investigation in the Deseado Massif, southern Patagonia, suggests that Triassic sedimentary Received 13 May 2008 rocks carry a latest Triassic to Jurassic remagnetization and that earliest Jurassic plutonic complexes carry a Received in revised form 4 August 2008 reversed polarity magnetization of thermoremanent origin. Despite uncertainties in the timing of the Accepted 5 August 2008 observed remanence in the Triassic rocks and the lack of paleohorizontal control on the plutonic complexes, Available online 15 August 2008 comparison of the derived pole positions with the most reliable Late Triassic–Jurassic apparent polar wander Keywords: paths indicates that the study areas underwent significant clockwise vertical-axis rotation. In contrast, Patagonia paleomagnetic results from mid-Cretaceous rocks in the region indicate no rotation. The observed crustal Jurassic rotations in the Deseado Massif are thus bracketed to have occurred between Jurassic and Early Cretaceous Gondwana breakup times, documenting southern Patagonian deformation during the breakup of Western Gondwana and then Paleomagnetism enlarging the regional record of clockwise rotations associated with this event. These results suggest a more complex than previously supposed tectonic evolution of this part of South America. © 2008 Elsevier B.V. All rights reserved. 1. Introduction context, all reconstructions that leave the FMI in continuity with the Cape foldbelt for Early Jurassic times require or imply a dislocation The relationship between Patagonia and the Falkland–Malvinas within or offshore of present-day Patagonia (e.g. Fig. 1). Islands (FMI) is a controversial theme in Gondwana paleogeography. However, evidence for such a microplate boundary is not obvious. Simple closure of the South Atlantic, based on continental outlines or There is no tectonic record from Patagonia and the Argentine shelf to continent–ocean boundary reconstructions and assuming a rigid suggest the presence of a cryptic tectonic suture (e.g. Biddle et al., southern South America (e.g. Rabinowitz and LaBrecque, 1979), leaves 1996; Ramos, 1996). In particular, the structural style and the the FMI south of southern Africa. In contrast, paleomagnetic data disposition of the basins surrounding the islands seem to be from dolerite dykes in the FMI led to postulate that the islands, incompatible with major microplate interactions, at least since pre ~180 Ma, were located in a position adjacent to and eastward of the Callovian times (e.g. Platt and Philip, 1995; Biddle et al., 1996; Cape foldbelt of South Africa (Mitchell et al., 1986; Taylor and Shaw, Richards et al., 1996; Ross et al., 1996). However, paleomagnetic data 1989; Musset and Taylor, 1994). This reconstructed position had from the North Patagonian Massif (NPM) have shown the occurrence previously been proposed by Adie (1952) and after the paleomagnetic of clockwise tectonic rotations during the Early Cretaceous reconstruction has received widespread support on stratigraphic, (Geuna et al., 2000), which are kinematically compatible with the sedimentological and structural grounds (e.g. Curtis and Hyam, 1998; rotation recorded in the Jurassic dolerites from the FMI. The possibility Thomson, 1998; Jacobs et al., 1999; Trewin et al., 2002). The paleogeo- that these Patagonian rotations may have a more regional expression graphic scenario implies that the FMI (or Lafonian) microplate rotated led us to carry out a paleomagnetic sampling of Mesozoic rocks in the ~100° clockwise away from southern Africa during the dismemberment Deseado Massif, the closest continental area to the FMI. The results of the supercontinent (Ben-Avraham et al.,1993; Marshall,1994; Barker, suggest that the sampling localities have also undergone substantial, 1999; Storey et al., 1999; MacDonald et al., 2003). The implication, tacit pre-Aptian clockwise rotations, thus enlarging the record of rotational or otherwise in many of these studies, is of an independent FMI deformation in Patagonia during the breakup of Western Gondwana. microplate and therefore there should be a plate boundary between this microplate and its nearest neighbour, southern Patagonia. In this 2. Geological setting of the Deseado Massif and paleomagnetic sampling ⁎ Corresponding author. Departamento de Ciencias Geológicas, FCEyN, Universidad de Buenos Aires, Argentina. Tel./fax: +54 11 4788 3439. The tectonic history of the Deseado Massif was recently summar- E-mail address: [email protected] (R. Somoza). ized by Ramos (2002). Small and sparse outcrops of Lower Paleozoic 0040-1951/$ – see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.tecto.2008.08.004 Author's personal copy R. Somoza et al. / Tectonophysics 460 (2008) 178–185 179 high-K, calcalkaline monzonites at ~200 Ma (Pankhurst et al., 1993; Rapela and Pankhurst, 1996; Márquez et al., 2002). Widespread Middle to Upper Jurassic lavas, ignimbrites, and volcaniclastics (Bajo Pobre, Chon Aike and La Matilde formations, respectively) accumu- lated under the extensional conditions that preceded the opening of the South Atlantic Ocean (Gust et al., 1985; Homovc and Constantini, 2001). Resting on a regional unconformity of supposed Early Cretaceous age, flat-lying Aptian and younger rocks document the relative tectonic stability that characterizes the later stages of the geological history of this region. One of the original aims of this fieldwork was to re-sample the Jurassic Chon Aike Formation and re-assess earlier results (e.g. Valencio and Vilas, 1970; Creer et al., 1972; Vilas, 1974) but we were unable to locate suitable outcrops that would have provided a reliable and meaningful result. Indeed, most of the visited Chon Aike localities, Fig. 1. Early Jurassic configuration of Gondwana proposed by Dalziel et al. (2000). Several of the crustal blocks between the main continents are denoted, Patagonia (PT), including the study area of Valencio and Vilas (1970), were composed Falklands/Malvinas (FMI), Ellsworth Mountains (EM), and Antarctica Peninsula (AP). of just one or two thick ignimbrites, which would not have allowed Note that the space problems derived from the correlation between the Falklands reliable averaging of paleosecular variation (PSV) of the paleomag- Islands and the Cape foldbelt (CFB) are resolved by dividing Patagonia into independent netic field. Likewise, geographically widespread sampling of sites crustal blocks. The location of the Gastre Fault System (GFS) is also shown. from, potentially, different structural blocks would not have allowed us to recognize effects of PSV versus relative block rotation nor plutonic and metamorphic rocks yield limited insight into the nature multiple repeat sampling of the same individual ignimbrites. In of its basement (Giacosa, 1996; Ramos, 2002). In Permo-Triassic times order to try to recognise and define the magnitude of any large scale the region was subjected to rifting (Homovc and Constantini, 2001) crustal block rotation, the study was then re-focussed upon ~200 Ma which culminated with the emplacement of localized intrusions of calcalkaline plutonic complexes (Pankhurst et al., 1993; Rapela and Fig. 2. Map of the surveyed area in the Deseado Massif showing the sampling localities: a) El Tranquilo, b) La Calandria and La Juanita, c) La Leona. Inset shows the location of the studied area, dot indicates the area in the North Patagonian Massif studied by Geuna et al. (2000). Author's personal copy 180 R. Somoza et al. / Tectonophysics 460 (2008) 178–185 1993; Courtillot et al., 1994; Torsvik et al., 2001) and South America does not escape these uncertainties. Proposed APW paths based on South American data have all included a significant number of Patagonian poles whose consideration to analyze our results, given that we are trying to test for deformation in the region, would be inappropriate. The alternative is therefore to use recently published synthetic APW paths transferred to South American coordinates (Fig. 3). Differences between the resultant synthetic curves arise in part from different pole selection criteria but more significantly differences in assumptions about Pangea's paleogeography. The reference curves are as follows. APW curve A is a combined European and North American APW path (Torsvik et
Recommended publications
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • Download Download
    ISSN 2683-9288 Science Reviews Volume 1 Number 1 from the end of the world December 2019 Susana Fedrano - “El ala” (1991) Science Reviews from the end of the world Science Reviews - from the end of the world is a quaterly publication that aims at providing authoritative reviews on hot research topics developed mainly by scientists that carry out their work far away from the main centers of science. Its research reviews are short, concise, critical and easy-reading articles describing the state of the art on a chosen hot topic, with focus on the research carried out by the authors of the article. These articles are commissioned by invitation and are accessible not only to hardcore specialists, but also to a wider readership of researchers interested in learning about the state-of-the-art in the reviewed subject. The reviews cover all fields of science and are written exclusively in English. They are refereed by peers of international prestige and the evaluation process follows standard international procedures. Centro de Estudios sobre Ciencia, Desarrollo y Educación Superior 538 Pueyrredón Av. - 2° C – Second building Buenos Aires, Argentina - C1032ABS (54 11) 4963-7878/8811 [email protected] www.scirevfew.net Vol. 1, No. 1 December 2019 AUTHORITIES AAPC President Science Reviews Susana Hernández from the end of the world Centro REDES President María Elina Estébanez Table of Contents EDITORIAL COMMITTEE EDITORIAL Editor-in-Chief An editorial anomaly 4 Miguel A. Blesa Miguel A. Blesa Co-Editors IN THIS ISSUE Daniel Cardinali (Medicine) List of authors Vol. 1, No. 1 Diego de Mendoza (Biochemistry 5 and Molecular Biology) Fabio Doctorovich (Chemistry) ARTICLES Esteban G.
    [Show full text]
  • The Mesozoic Megafossil Genus Linguifolium Arber 1917
    Acta Palaeobotanica 55(2): 123–147, 2015 DOI: 10.1515/acpa-2015-0009 The Mesozoic megafossil genus Linguifolium Arber 1917 GARY A. PATTEMORE1, JOHN F. RIGBY 2 and GEOFFREY PLAYFORD 3 1 School of Earth Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; e-mail: [email protected] 2 School of Earth, Environmental and Biological Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia; e-mail: [email protected] 3 School of Earth Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia; e-mail: [email protected] Received 24 April 2015; accepted for publication 3 September 2015 ABSTRACT. The plant megafossil genus Linguifolium Arber 1917 is chiefly known from the Middle and Upper Triassic of Gondwana. The range of Linguifolium extended beyond Gondwana by the Late Triassic, persisting there through the earliest Jurassic (Hettangian). The parent plants probably grew in a well-watered, canopied environment. Diagnoses of the genus and four of its species – Linguifolium tenison-woodsii (Shirley 1898) Retallack 1980, L. waitakiense Bell in Bell et al. 1956, L. parvum Holmes & Anderson in Holmes et al. 2010, and L. steinmannii (Solms-Laubach 1899) Arber 1917 – are emended with particular reference to venation and leaf morphology; consequently, the stratigraphic ranges of the species have been more precisely defined. Coalescent venation has previously been reported in some species of Linguifolium and is identified in new material described herein. Although the vast majority of specimens assigned to the genus are from the Upper Triassic, none shows coalescent venation. This character is entirely restricted to the Middle Triassic, in particu- lar to two species: L.
    [Show full text]
  • Technical Report Gold –Silver Resource Estimate of the La Josefina Project Santa Cruz, Argentina
    Technical Report Gold –Silver Resource Estimate of the La Josefina Project Santa Cruz, Argentina C. Gustavo Fernandez, P. Geo. UAKO Consultora Geológica September 29th, 2010. Prepared for Hunt Mining Corp. Gold - Silver Resource Estimate for the La Josefina Project Page 1 Contents 1.0 Summary ................................................................................................................................. 8 2.0 Introduction .......................................................................................................................... 13 2.1. Project Scope and Terms of Reference ................................................................................ 14 2.2. Frequently used acronyms, abbreviations, definitions and units of measure ................... 14 3.0 Reliance on other experts .................................................................................................... 15 4.0 Property description and location ....................................................................................... 15 4.1. General ................................................................................................................................. 15 4.2. Mineral tenure...................................................................................................................... 17 4.3. Cerro Cazador – Fomicruz agreement................................................................................. 20 4.4. Royalties ..............................................................................................................................
    [Show full text]
  • 1-S2.0-S1342937X20303221-Main.Pdf (13.28Mb)
    Gondwana Research 91 (2021) 205–230 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Provenance and tectonic setting of the Paleozoic Tamatán Group, NE Mexico: Implications for the closure of the Rheic Ocean Juan Moisés Casas-Peña a, Juan Alonso Ramírez-Fernández b, Fernando Velasco-Tapia b, Eduardo Alejandro Alemán-Gallardo a, Carita Augustsson c,BodoWeberd, Dirk Frei e,UweJenchenb,⁎ a Programa de Posgrado de la Facultad de Ciencias de la Tierra, Universidad Autónoma de Nuevo León Facultad de Ciencias de la Tierra, Carretera a Cerro Prieto Km 8, Ex. Hacienda de Guadalupe, Linares, N.L. 67700, Mexico b Facultad de Ciencias de la Tierra, Universidad Autónoma de Nuevo León, Carretera a Cerro Prieto Km 8, Ex. Hacienda de Guadalupe, Linares, N.L. 67700, Mexico c Faculty of Science and Technology, Department of Energy Resources, Universitetet i Stavanger, Stavanger 4036, Norway d Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico e Department of Earth Sciences, University of the Western Cape, Cape Town, South Africa article info abstract Article history: The Huizachal–Peregrina Anticlinorium in northeastern Mexico comprises a wide variety of Precambrian Received 8 June 2020 and Paleozoic basement units. In this work, Silurian-to-Permian unmetamorphosed siliciclastic succes- Received in revised form 2 November 2020 sions (i.e., Cañón de Caballeros, Vicente Guerrero, Del Monte, and Guacamaya formations) forming the Accepted 15 December 2020 Tamatán Group is described; the group overlies the Novillo metamorphic complex, which is the north- Available online 7 January 2021 ernmost exposed region of the Oaxaquia microcontinent.
    [Show full text]
  • Dinosaur Diversification Linked with the Carnian Pluvial Episode
    ARTICLE DOI: 10.1038/s41467-018-03996-1 OPEN Dinosaur diversification linked with the Carnian Pluvial Episode Massimo Bernardi 1,2, Piero Gianolla 3, Fabio Massimo Petti 1,4, Paolo Mietto5 & Michael J. Benton 2 Dinosaurs diversified in two steps during the Triassic. They originated about 245 Ma, during the recovery from the Permian-Triassic mass extinction, and then remained insignificant until they exploded in diversity and ecological importance during the Late Triassic. Hitherto, this 1234567890():,; Late Triassic explosion was poorly constrained and poorly dated. Here we provide evidence that it followed the Carnian Pluvial Episode (CPE), dated to 234–232 Ma, a time when climates switched from arid to humid and back to arid again. Our evidence comes from a combined analysis of skeletal evidence and footprint occurrences, and especially from the exquisitely dated ichnofaunas of the Italian Dolomites. These provide evidence of tetrapod faunal compositions through the Carnian and Norian, and show that dinosaur footprints appear exactly at the time of the CPE. We argue then that dinosaurs diversified explosively in the mid Carnian, at a time of major climate and floral change and the extinction of key herbivores, which the dinosaurs opportunistically replaced. 1 MUSE—Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38122 Trento, Italy. 2 School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. 3 Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, via Saragat 1, 44100 Ferrara, Italy. 4 PaleoFactory, Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Rome, Italy. 5 Dipartimento di Geoscienze, Universitàdegli studi di Padova, via Gradenigo 6, I-35131 Padova, Italy.
    [Show full text]
  • Proceedings of the Linnean Society of New South Wales 131, 37-42
    PROCEEDINGS NEW SOUTH WALES VOLUME 131 • \ NATURAL HISTORY IN ALL ITS BRANCHES THE LINNEAN SOCIETY OF NEW SOUTH WALES ISSN 0370-047X Founded 1874 Incorporated 1 884 The Society exists to promote the cultivation and study of the science of natural history in all its branches. The Society awards research grants each year in the fields of Life Sciences (the Joyce Vickery fund) and Earth Sciences (the Betty Mayne fund), offers annually a Linnean Macleay Fellowship for research, contributes to the stipend of the Linnean Macleay Lecturer in Microbiology at the University of Sydney, and publishes the Proceedings. It holds field excursion and scienUfic meetings, including the biennial Sir William Macleay Memorial Lecture delivered by a person eminent in some branch of natural science. Membership enquiries should be addressed in the first instance to the Secretary. Candidates for elecfion to the Society must be recommended by two members. The present annual subscription is $A56.00. The current subscription rate to the Proceedings is set at A$l 10.00 per volume. In recent years a volume consists of a single annual issue. Back issues of all but a few volumes and parts of the Proceedings are available for purchase. Prices are listed on our home page and can also be obtained from the Secretary. OFFICERS AND COUNCIL 2010/2011 President: David Keith Vice-presidents: M. Cotton, D.R. Murray, M.L. Augee Treasurer: I.G. Percival Secretary: J-C. Herremans Council: M.L. Augee, J.P. Barkas, M. Cotton, M.R. Gray, J-Cl. Herremans, D. Keith, R.J. King, H.A.
    [Show full text]
  • Warrington, G. 2019. Triassic Literature – 2016
    Albertiana 45 5 Triassic Literature TRIASSIC LITERATURE – 2016 Geoffrey Warrington Honorary Visiting Fellow, School of Geography, Geology and the Environment, University of Leicester, LE1 7RH, UK Email: [email protected] This compilation is based on the contents of over 500 serial Al-Sheikhly, S.S., Al-Bazi, N.T.Sh. & Oboh-Ikuenobe, F.E. 2016. titles and other publications. It is a continuation of the New The Permian-Triassic boundary in the Kurdistan region of Triassic Literature contributions that appeared in Albertiana up northern Iraq. Journal of Environment and Earth Science, to December 2017 (44: 33–48), and includes items dated 2016, 6(1): 39-51. together with some pre-2016 titles that were not included in Al-Suwaidi, A.H., Steuber, T. & Suarez, M.B. 2016. The Triassic- earlier compilations. Jurassic boundary event from an equatorial carbonate platform (Ghalilah Formation, United Arab Emirates). Journal of the Abbassi, N., Ghavidel-Syooki, M., Yousefi, M. & Navidi Izad, N. Geological Society, London, 173(6): 949-953. 2016. Cruziana ichnofacies from Nayband Formation (Late Alves, T.M. 2016. Polygonal mounds in the Barents Sea reveal Triassic) in the Parvadeh section, southwest Tabas, east Central sustained organic productivity towards the P-T boundary. Iran. Iranian Journal of Geology, 10(38): 1-15. Terra Nova, 28(1): 50-59. Abdolmalekai, J. & Tavakoli, V. 2016. Anachronistic facies Anderson, T., Kristofferson, M. & Elburg, M.A. 2016. How far in the early Triassic successions of the Persian Gulf and can we trust provenance and crustal evolution information its palaeoenvironmental reconstruction. Palaeogeography, from detrital zircons? A South African case study.
    [Show full text]
  • Dinosaur Diversification Linked with the Carnian Pluvial Episode
    Bernardi, M., Gianolla, P., Petti, F. M., Mietto, P., & Benton, M. J. (2018). Dinosaur diversification linked with the Carnian Pluvial Episode. Nature Communications, 9, [1499]. https://doi.org/10.1038/s41467-018-03996-1 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1038/s41467-018-03996-1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Nature at http://www.nature.com/articles/s41467-018-03996-1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ ARTICLE DOI: 10.1038/s41467-018-03996-1 OPEN Dinosaur diversification linked with the Carnian Pluvial Episode Massimo Bernardi 1,2, Piero Gianolla 3, Fabio Massimo Petti 1,4, Paolo Mietto5 & Michael J. Benton 2 Dinosaurs diversified in two steps during the Triassic. They originated about 245 Ma, during the recovery from the Permian-Triassic mass extinction, and then remained insignificant until they exploded in diversity and ecological importance during the Late Triassic. Hitherto, this 1234567890():,; Late Triassic explosion was poorly constrained and poorly dated. Here we provide evidence that it followed the Carnian Pluvial Episode (CPE), dated to 234–232 Ma, a time when climates switched from arid to humid and back to arid again.
    [Show full text]
  • A Review on the Tectonic Evolution of the Paleozoic-Triassic Basins from Patagonia: Record of Protracted Westward Migration of the Pre-Jurassic T Subduction Zone
    Journal of South American Earth Sciences 95 (2019) 102256 Contents lists available at ScienceDirect Journal of South American Earth Sciences journal homepage: www.elsevier.com/locate/jsames A review on the tectonic evolution of the Paleozoic-Triassic basins from Patagonia: Record of protracted westward migration of the pre-Jurassic T subduction zone Rodrigo Suáreza,*, Pablo D. Gonzálezb, Matías C. Ghiglionea a Instituto de Estudios Andinos (Universidad de Buenos Aires - CONICET), Buenos Aires, Argentina b Instituto de Investigación en Paleobiología y Geología (Universidad Nacional de Río Negro - CONICET), General Roca, Argentina ARTICLE INFO ABSTRACT Keywords: The Paleozoic-Triassic Patagonian basins, at present comprising the Andean hinterland and structural basement Patagonia of active basins, document a pre-Jurassic evolution associated with accretionary processes at the paleo-Pacific Antarctic Peninsula convergent margin. The Early Cambrian basins constitute the earliest record for the emplacement of the Terra Accretionary orogenesis Australis Orogen in northern Patagonia and preserve metavolcanic strata derived from an extensional magmatic Retreating slab arc. Together, pre-Jurassic basins document the Early Cambrian to Late Triassic oceanward migration of the Pre-Jurassic trench-forearc system, evidencing that slab retreat was the common subduction setup. Tectonostratigraphy of Paleozoic-Triassic basins Detrital zircons these basins can be divided into three major sequences, from east to west: (i) early-middle Cambrian, (ii) Silurian-Carboniferous and (iii) Late Permian-late Triassic, which are separated by angular unconformities, evidencing large deformational pulses (advancing stages?) at Early Ordovician, early-middle Permian, and Late Triassic-Early Jurassic times. The Early Cambrian basins are mainly represented in the North Patagonian Massif by the Nahuel Niyeu forearc basin and the El Jagüelito backarc basin, which were closed and metamorphosed during the Early Ordovician.
    [Show full text]
  • Ginkgoites Patagonica (Berry) Comb. Nov. from the Eocene of Patagonia, Last Ginkgoalean Record in South America Author(S): Liliana Villar De Seoane, N
    Ginkgoites patagonica (Berry) comb. nov. from the Eocene of Patagonia, Last Ginkgoalean Record in South America Author(s): Liliana Villar de Seoane, N. Rubén Cúneo, Ignacio Escapa, Peter Wilf and María A. Gandolfo, Source: International Journal of Plant Sciences, (-Not available-), p. 000 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/10.1086/680221 . Accessed: 24/02/2015 19:49 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to International Journal of Plant Sciences. http://www.jstor.org This content downloaded from 128.118.175.245 on Tue, 24 Feb 2015 19:49:36 PM All use subject to JSTOR Terms and Conditions Int. J. Plant Sci. 176(4):000–000. 2015. q 2015 by The University of Chicago. All rights reserved. 1058-5893/2015/17603-00XX$15.00 DOI: 10.1086/680221 GINKGOITES PATAGONICA (BERRY) COMB. NOV. FROM THE EOCENE OF PATAGONIA, LAST GINKGOALEAN RECORD IN SOUTH AMERICA Liliana Villar de Seoane,1,* N. Rubén Cúneo,† Ignacio Escapa,† Peter Wilf,‡ and María A. Gandolfo§ *División Paleobotánica, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia,” Av.
    [Show full text]
  • Flora of the Late Triassic
    Chapter 13 Flora of the Late Triassic Evelyn Kustatscher, Sidney R. Ash, Eugeny Karasev, Christian Pott, Vivi Vajda, Jianxin Yu, and Stephen McLoughlin Abstract The Triassic was a time of diversification of the global floras following the mass-extinction event at the close of the Permian, with floras of low-diversity and somewhat uniform aspect in the Early Triassic developing into complex vegetation by the Late Triassic. The Earth experienced generally hothouse conditions with low equator-to-pole temperature gradients through the Late Triassic. This was also the time of peak amalgamation of the continents to form Pangea. Consequently, many plant families and genera were widely distributed in the Late Triassic. Nevertheless, E. Kustatscher (*) Museum of Nature South Tyrol, Bindergasse 1, 39100 Bozen/Bolzano, Italy Department für Geo– und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig– Maximilians–Universität, and Bayerische Staatssammlung für Paläontologie und Geologie, Richard–Wagner–Straße 10, 80333 Munich, Germany e-mail: [email protected] S.R. Ash Department of Earth and Planetary Sciences, Northrop Hall, University of New Mexico, Albuquerque, NM 87131, USA e-mail: [email protected] E. Karasev Borissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya 123, Moscow 117647, Russia e-mail: [email protected] C. Pott Palaeobiology Department, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden LWL-Museum of Natural History, Westphalian State Museum and Planetarium, Sentruper Straße 285, 48161 Münster, Germany e-mail: [email protected] V. Vajda • S. McLoughlin Palaeobiology Department, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden e-mail: [email protected]; [email protected] J.
    [Show full text]