Single-Photon Detection, Kinetic Inductance, and Non-Equilibrium Dynamics in Niobium and Niobium Nitride Superconducting Nanowires
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides
Article pubs.acs.org/cm Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides Wenhao Sun,†,‡ Aaron Holder,§,⊥ Bernardo Orvañanos,‡ Elisabetta Arca,§ Andriy Zakutayev,§ Stephan Lany,§ and Gerbrand Ceder*,†,‡,∥ † Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States ‡ Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States § National Renewable Energy Laboratory, Golden, Colorado 80401, United States ∥ Department of Materials Science and Engineering, Univeristy of California, Berkeley, California 94720, United States ⊥ Department of Chemical and Biological Engineering, Univeristy of Colorado, Boulder, Colorado 80309, United States *S Supporting Information ABSTRACT: Compared to oxides, the nitrides are relatively unexplored, making them a promising chemical space for novel materials discovery. Of particular interest are nitrogen-rich nitrides, which often possess useful semiconducting properties for electronic and optoelectronic applications. However, such nitrogen-rich compounds are generally metastable, and the lack of a guiding theory for their synthesis has limited their exploration. Here, we review the remarkable metastability of observed nitrides, and examine the thermodynamics of how reactive nitrogen precursors can stabilize metastable nitrogen-rich compositions during materials synthesis. We map these thermodynamic strategies onto a predictive computational search, training a data-mined -
Nonlinear Dynamics of Josephson Junction Chains
Nonlinear dynamics of Josephson Junction Chains and Superconducting Resonators ADEM ERGUL¨ Doctoral Thesis in Physics Stockholm, Sweden 2013 KTH-Royal Institute of Technology TRITA FYS 2013:52 School of Engineering Sciences ISSN 0280-316X Department of Applied Physics ISRN KTH/FYS/- -13:52- -SE SE-100 44 Stockholm ISBN 978-91-7501-869-0 SWEDEN Akademisk avhandling som med tillst˚and av Kungliga Tekniska H¨ogskolan framl¨agges till offentlig granskning f¨or avl¨aggande av teknologie doktorsexamen i fysik torsda- gen den 28 november 2013 klockan 13:00 i sal FA32, AlbaNova Universitetscentrum, Kungliga Tekniska H¨ogskolan, Roslagstullsbacken 21, Stockholm. Opponent: Prof. Per Delsing Huvudhandledare: Prof. David B. Haviland © ADEM ERGUL,¨ 2013 Tryck: Universitetsservice US AB iii Abstract This thesis presents the results of the experimental studies on two kind of Superconducting circuits: one-dimensional Josephson junction chains and superconducting coplanar waveguide (CPW) resonators. One-dimensional Josephson junction chains are constructed by connecting many Supercon- ducting quantum interference devices (SQUIDs) in series. We have stud- ied DC transport properties of the SQUID chains and model their nonlinear dynamics with Thermally Activated Phase-Slips (TAPS). Experimental and simulated results showed qualitative agreement revealing the existence of a uniform phase-slipping and phase-sticking process which results in a voltage- independent current on the dissipative branch of the current-voltage char- acteristics (IVC). By modulating the effective Josephson coupling energy of the SQUIDs (EJ ) with an external magnetic field, we found that the ra- tio EJ /EC is a decisive factor in determining the qualitative shape of the IVC. A quantum phase transition between incoherent Quantum Phase Slip, QPS (supercurrent branch with a finite slope) to coherent QPS (IVC with well-developed Coulomb blockade) via an intermediate state (supercurrent branch with a remnant of Coulomb blockade) is observed as the EJ /EC ra- tio is tuned. -
Ultra-Thin Niobium Nitride Films for Hot Electron Bolometer and Thz Applications
THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING Ultra-thin Niobium Nitride Films for Hot Electron Bolometer and THz Applications SASCHA KRAUSE Group for Advanced Receiver Development Department of Earth and Space Science CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2016 i Ultra-thin Niobium Nitride Films for Hot Electron Bolometer and THz Applications SASCHA KRAUSE © SASCHA KRAUSE, 2016. Thesis for the degree of Licentiate of Engineering Group for Advanced Receiver Development Department of Earth and Space Science Chalmers University of Technology SE-412 96 Gothenburg Sweden Telephone + 46 (0)31-772 1000 Cover: Upper left corner: The Atacama Path Finder Experiment representing the exploration of space in the submillimeter and THz frequency range, upper right corner: HRTEM image of ultra-thin NbN film that is grown onto a GaN buffer-layer in an epitaxial manner, lower left corner: SEM image of the employed HEB used for measuring the phonon escape time, lower right corner: Resistance versus temperature behavior of the investigated ultra-thin NbN films which were grown onto different buffer-layers and substrates. [Printed by Chalmers Repro Service] Gothenburg, 2016 ii Ultra-thin Niobium Nitride Films for Hot Electron Bolometer and THz Applications SASCHA KRAUSE Group for Advanced Receiver Development Department of Earth and Space Science Chalmers University of Technology Gothenburg, Sweden 2016 Abstract The part of the electromagnetic spectrum between microwaves and infrared, also known as the terahertz band, is of particular interest for radio astronomy. The radiation intensity of the cold universe peaks at this frequency band, thus defining the demand on sensitive low-noise instruments in this particular frequency range. -
Development of a Nbn Deposition Process for Superconducting Quantum Sensors
1 Development of a NbN Deposition Process for Superconducting Quantum Sensors D. M. Glowacka, D. J. Goldie, S. Withington, H. Muhammad, G. Yassin , and B. K. Tan occurs with the addition of the reactive gas during sputtering, Abstract— We have carried out a detailed programme to which in turn affects stoichiometry. It is very important to explore the superconducting characteristics of reactive DC- quantify the location of the best operating point, and this magnetron sputtered NbN. The basic principle is to ignite a requires a careful study of the effects of deposition conditions. plasma using argon, and then to introduce a small additional Thakoor et al. [2] found that high-Tc NbN films were nitrogen flow to achieve the nitridation of a Nb target. Subsequent sputtering leads to the deposition of NbN onto the deposited at the point where the total sputter pressure started host substrate. The characteristics of a sputtered film depend on to increase rapidly with increasing nitrogen flow. In this paper, a number of parameters: argon pressure, nitrogen flow rate and we outline work that we have done to create a high-yield time-evolution profile, substrate material, etc. Crucially, the highly-reproducible deposition process for high-Tc NbN. We hysteresis in the target voltage as a function of the nitrogen flow also briefly describe work on realising and measuring can be used to provide a highly effective monitor of nitrogen resonators of the kind that would be suitable for a KID array consumption during the reactive process. By studying these dependencies we have been able to achieve highly reproducible operating at 3.5 K in an easy-to-use closed-cycle refrigerator. -
SKIFFS: Superconducting Kinetic Inductance Field-Frequency Sensors for Sensitive Magnetometry in Moderate Background Magnetic Fields
SKIFFS: Superconducting Kinetic Inductance Field-Frequency Sensors for sensitive magnetometry in moderate background magnetic fields Cite as: Appl. Phys. Lett. 113, 172601 (2018); https://doi.org/10.1063/1.5049615 Submitted: 24 July 2018 . Accepted: 10 October 2018 . Published Online: 25 October 2018 A. T. Asfaw , E. I. Kleinbaum, T. M. Hazard , A. Gyenis, A. A. Houck, and S. A. Lyon ARTICLES YOU MAY BE INTERESTED IN Multi-frequency spin manipulation using rapidly tunable superconducting coplanar waveguide microresonators Applied Physics Letters 111, 032601 (2017); https://doi.org/10.1063/1.4993930 Publisher's Note: “Anomalous Nernst effect in Ir22Mn78/Co20Fe60B20/MgO layers with perpendicular magnetic anisotropy” [Appl. Phys. Lett. 111, 222401 (2017)] Applied Physics Letters 113, 179901 (2018); https://doi.org/10.1063/1.5018606 Tunneling anomalous Hall effect in a ferroelectric tunnel junction Applied Physics Letters 113, 172405 (2018); https://doi.org/10.1063/1.5051629 Appl. Phys. Lett. 113, 172601 (2018); https://doi.org/10.1063/1.5049615 113, 172601 © 2018 Author(s). APPLIED PHYSICS LETTERS 113, 172601 (2018) SKIFFS: Superconducting Kinetic Inductance Field-Frequency Sensors for sensitive magnetometry in moderate background magnetic fields A. T. Asfaw,a) E. I. Kleinbaum, T. M. Hazard, A. Gyenis, A. A. Houck, and S. A. Lyon Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA (Received 24 July 2018; accepted 10 October 2018; published online 25 October 2018) We describe sensitive magnetometry using lumped-element resonators fabricated from a supercon- ducting thin film of NbTiN. Taking advantage of the large kinetic inductance of the superconduc- tor, we demonstrate a continuous resonance frequency shift of 27 MHz for a change in the magnetic field of 1.8 lT within a perpendicular background field of 60 mT. -
Novel Semiconductor-Superconductor Structure Features Versatile Gallium Nitride 8 March 2018, by Tom Fleischman
Novel semiconductor-superconductor structure features versatile gallium nitride 8 March 2018, by Tom Fleischman niobium nitride (NbN), a proven superconductor material used in quantum communications, astronomy and a host of other applications. The group's paper, "GaN/NbN Epitaxial Semiconductor/Superconductor Heterostructures," is being published online March 8 in Nature. Former postdoctoral researcher Rusen Yan and current postdoc Guru Khalsa are co-lead authors. Other key contributors were Grace Xing, the Bandgap, lattice constant, crystallinity and Richard Lundquist Sesquicentennial Professor in superconductivity in epitaxial NbNx on SiC. a, Bandgap ECE and MSE, and David Muller, the Samuel B. versus lattice constant for select nitride semiconductors as well as for SiC. b, Cross-section HAADFSTEM Eckert Professor of Engineering in the Department images in black/white (left) and false-colour (right) of of Applied and Engineering Physics. 5-nm NbNx grown on an SiC substrate with a AlN capping layer. c, Resistance versus temperature The method for combining the two materials – (normalized to the resistance at 16K), showing the molecular beam epitaxy (MBE), essentially spray superconducting phase transition of 5-nm (red) and painting of gallium and nitrogen atoms onto the 35-nm (blue) . Credit: Nature (2018). DOI: NbN in a vacuum environment – creates an 10.1038/nature25768 extremely clean interface and is key to the success of the novel structure. This advance, the group says, opens up a range of Silicon has been the semiconductor material of possibilities that can now combine the macroscopic choice for electronics pretty much since the quantum effects of superconductors with the rich transistor effect was first observed and identified electronic and photonic properties of group III- nearly 80 years ago. -
Discovery of Superconductivity in Hard Hexagonal Ε-Nbn
BNL-111904-2016-JA Discovery of Superconductivity in Hard Hexagonal ε-NbN Yongtao Zou1,2, Xintong Qi3, Cheng Zhang4, Shuailing Ma1, Wei Zhang5, Ying Li2, Ting Chen3, Xuebing Wang3, Zhiqiang Chen2, David Welch4,6, Pinwen Zhu1, Bingbing Liu1, Qiang Li4, Tian Cui1 & Baosheng Li2 1State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China. 2Mineral Physics Institute, State University of New York, Stony Brook, N.Y. 11794, United States. 3Department of Geosciences, State University of New York, Stony Brook, N.Y. 11794, United States. 4Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, N.Y. 11973, United States. 5School of Science, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China. 6Department of Materials Science and Engineering, State University of New York, Stony Brook, N.Y. 11794, United States. *Correspondence and requests for materials should be addressed to Y. Z. (E-mail: [email protected] ), Y. L . (E-mail:[email protected]) **The current ultrasonic, magnetization and electrical resistivity measurements were performed in the U. S. when Yongtao Zou was working at the State University of New York (Stony Brook). Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ~11.6 K, which is significantly higher than that for boron-doped diamond. -
Ligand-Based Reduction of CO2 to CO Mediated by an Anionic Niobium Nitride Complex
Ligand-Based Reduction of CO2 to CO Mediated by an Anionic Niobium Nitride Complex The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Silvia, Jared S., and Christopher C. Cummins. “Ligand-Based Reduction of CO2 to CO Mediated by an Anionic Niobium Nitride Complex.” Journal of the American Chemical Society 132.7 (2010) : 2169-2171. As Published http://dx.doi.org/10.1021/ja910445r Publisher American Chemical Society Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/65162 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Ligand-Based Reduction of CO2 to CO Mediated by an Anionic Niobium Nitride Complex Jared S. Silvia and Christopher C. Cummins Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139 RECEIVED DATE (automatically inserted by publisher); E-mail: [email protected] There are several motivations for producing chemicals from Scheme 1 CO2 whenever possible, and in particular, CO is a promising target being both a versatile chemical precursor and a fuel.1 Reducing metal complexes capable of O-atom abstraction from CO2 typically lead to the formation of strong metal- oxygen bonds that represent a challenge to catalytic turnover.2 In a special case for which the binding of CO2 evidently involves insertion into a Cu–B linkage, catalytic turnover producing CO was accomplished by taking advantage of the ultimate delivery of oxygen into a stable B–O–B reservoir.3 This is to be compared with electrocatalytic methods for CO2 reduction to CO in systems that likely involve a direct interaction between CO2 and the metal center at some point in the catalytic cycle.4 Another commonly observed trend in metal-mediated CO2 reduction is disproportionation reactivity 2– leading to the formation of CO and CO3 , highlighted by the reaction of Li2[W(CO)5] with CO2 to give W(CO)6 and 5 Li2CO3. -
On-Chip Intercalated-Graphene Inductors for Next-Generation Radio Frequency Electronics
ARTICLES https://doi.org/10.1038/s41928-017-0010-z On-chip intercalated-graphene inductors for next-generation radio frequency electronics Jiahao Kang 1, Yuji Matsumoto2, Xiang Li3, Junkai Jiang1, Xuejun Xie1, Keisuke Kawamoto2, Munehiro Kenmoku2, Jae Hwan Chu1, Wei Liu1, Junfa Mao3, Kazuyoshi Ueno2 and Kaustav Banerjee 1* On-chip metal inductors that revolutionized radio frequency electronics in the 1990s suffer from an inherent limitation in their scalability in state-of-the-art radio frequency integrated circuits. This is because the inductance density values for con- ventional metal inductors, which result from magnetic inductance alone, are limited by the laws of electromagnetic induc- tion. Here, we report inductors made of intercalated graphene that uniquely exploit the relatively large kinetic inductance and high conductivity of the material to achieve both small form-factors and high inductance values, a combination that has proved difficult to attain so far. Our two-turn spiral inductors based on bromine-intercalated multilayer graphene exhibit a 1.5-fold higher inductance density, leading to a one-third area reduction, compared to conventional inductors, while pro- viding undiminished Q-factors of up to 12. This purely material-enabled technique provides an attractive solution to the longstanding scaling problem of on-chip inductors and opens an unconventional path for the development of ultra-compact wireless communication systems. he Internet of Things (IoT) promises unprecedented connec- the conductor in the Drude model for a.c. electrical conductivity. tivity between people and 50 billion things by 20201,2, with a Hence, the magnetic inductance is determined by the geometrical/ potential economic impact of US$2.7 trillion to US$6.2 tril- structural design of the inductor, while kinetic inductance is purely T 1,3 lion per year by 2025 . -
The Impact of Anionic Vacancies on the Mechanical Properties of Nbc and Nbn: an Ab Initio Study
The Impact of Anionic Vacancies on the Mechanical Properties of NbC and NbN: An ab initio Study P. W. Muchiria,c, K. K. Korirb,c, N. W. Makauc, G. O. Amoloa,c aMaterials Modeling Group, School of Physics and Earth Sciences, The Technical University of Kenya, P.O. Box, 52428-00200, Nairobi, Kenya. bPhysics Department, Moi University, P.O. Box, 3900-30100, Eldoret, Kenya. cComputational Material Science Group, Physics Department, University of Eldoret, P.O. Box, 1125-30100, Eldoret, Kenya. Abstract The development of super-hard materials has recently focused on systems containing heavy transition metal and light main group elements. Niobium carbides and nitrides have previously been identified as potential candidates, however, the volatility of carbon and nitrogen during synthesis make them prone to formation of anionic vacancies, which have the ability of changing the electronic structure, dynamical stability and adversely affecting the mechanical properties. Here, we present ab initio Density Functional Theory calculations that probe the occurrence of anionic vacancies as a function of concentration, thereafter, pertinent mechanical properties are investigated. Our results showed that the presence of anionic vacancies in NbC and NbN tend to deteriorate the mechanical properties and ultimately the mechanical hardness due to vacancy softening that can be attributed to defect induced covalent to metallic bond transition. Further, it was observed that anionic vacancies in NbC tend to modify its toughness, in particular, NbC in ZB becomes brittle while NbC in WZ becomes ductile in presences of C vacancies of up to 6%. On the other hand, the toughness of NbN was found to be insensitive to defect concentration of even up to 8%. -
P451/551 Lab: Superconducting Quantum Interference Devices
P451/551 Lab: Superconducting Quantum Interference Devices (SQUIDs) AN INTRODUCTION TO SUPERCONDUCTIVITY AND SQUIDS Superconductivity was first discovered in 1911 in a sample of mercury metal whose resistance fell to zero at a temperature of four degrees above absolute zero. The phenomenon of superconductivity has been the subject of both scientific research and application development ever since. The ability to perform experiments at temperatures close to absolute zero was rare in the first half of this century and superconductivity research proceeded in relatively few laboratories. The first experiments only revealed the zero resistance property of superconductors, and more than twenty years passed before the ability of superconductors to expel magnetic flux (the Meissner Effect) was first observed. Magnetic flux quantization – the key to SQUID operation – was predicted theoretically only in 1950 and was finally observed in 1961. The Josephson effects were predicted and experimentally verified a few years after that. SQUIDs were first studied in the mid-1960’s, soon after the first Josephson junctions were made. Practical superconducting wire for use in moving machines and magnets also became available in the 1960's. For the next twenty years, the field of superconductivity slowly progressed toward practical applications and to a more profound understanding of the underlying phenomena. A great revolution in superconductivity came in 1986 when the era of high-temperature superconductivity began. The existence of superconductivity at liquid nitrogen temperatures has opened the door to applications that are simpler and more convenient than were ever possible before. The superconducting ground state is one in which electrons pair up with one another such that each resultant pair has the same net momentum (which is zero if no current is flowing). -
Structural and Electrical Properties of Ultrathin Niobium Nitride Films Grown
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Royal Holloway - Pure Structural and electrical properties of ultrathin niobium nitride films grown by atomic layer deposition S. Linzen,1 M. Ziegler,1 O. V. Astafiev,2, 3, 4, 5 M. Schmelz,1 U. Hubner,¨ 1 M. Diegel,1 E. Il’ichev,1 and H.-G. Meyer1 1Leibniz Institute of Photonic Technology, P.O. Box 100239, D-07702 Jena, Germany 2Physics Department, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom 3National Physical Laboratory, Teddington, TW11 0LW, United Kindom 4Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia 5Russian Quantum Center, 100 Novaya Street, Skolkovo, Moscow region 143025, Russia. (Dated: September 28, 2016) We studied and optimised the properties of ultrathin superconducting niobium nitride films fabricated with a plasma-enhanced atomic layer deposition process. By adjusting process parameters, the chemical embedding of undesired oxygen into the films were minimised and a polycrystalline film structure consisting of niobium nitride and niobium grains were formed. For this composition a critical temperature of 13.7 K and critical current densities of 7x106 A/cm2 at 4.2 K were measured on 40 nm thick films. A fundamental correlation between these superconducting properties and the crystal lattice size of the cubic "-niobium-nitride grains were found. Moreover, the film thickness variation between 40 and 2 nm exhibits a pronounced change of the electrical conductivity at room temperature and reveals a superconductor-insulator-transition in the vicinity of 3 nm film thickness at low temperatures. The thicker films with resistances up to 5 kΩ per square in the normal state turn to the superconducting one at low temperatures.