A Molecular and Chemical Perspective in Defining Melatonin Receptor Subtype Selectivity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Circadian Disruption: What Do We Actually Mean?
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Eur J Neurosci Manuscript Author . Author manuscript; Manuscript Author available in PMC 2020 May 07. Circadian disruption: What do we actually mean? Céline Vetter Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA Abstract The circadian system regulates physiology and behavior. Acute challenges to the system, such as those experienced when traveling across time zones, will eventually result in re-synchronization to the local environmental time cues, but this re-synchronization is oftentimes accompanied by adverse short-term consequences. When such challenges are experienced chronically, adaptation may not be achieved, as for example in the case of rotating night shift workers. The transient and chronic disturbance of the circadian system is most frequently referred to as “circadian disruption”, but many other terms have been proposed and used to refer to similar situations. It is now beyond doubt that the circadian system contributes to health and disease, emphasizing the need for clear terminology when describing challenges to the circadian system and their consequences. The goal of this review is to provide an overview of the terms used to describe disruption of the circadian system, discuss proposed quantifications of disruption in experimental and observational settings with a focus on human research, and highlight limitations and challenges of currently available tools. For circadian research to advance as a translational science, clear, operationalizable, and scalable quantifications of circadian disruption are key, as they will enable improved assessment and reproducibility of results, ideally ranging from mechanistic settings, including animal research, to large-scale randomized clinical trials. -
And Low-Dose Melatonin Therapies
diseases Review Divergent Importance of Chronobiological Considerations in High- and Low-dose Melatonin Therapies Rüdiger Hardeland Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany; [email protected] Abstract: Melatonin has been used preclinically and clinically for different purposes. Some applica- tions are related to readjustment of circadian oscillators, others use doses that exceed the saturation of melatonin receptors MT1 and MT2 and are unsuitable for chronobiological purposes. Conditions are outlined for appropriately applying melatonin as a chronobiotic or for protective actions at elevated levels. Circadian readjustments require doses in the lower mg range, according to receptor affinities. However, this needs consideration of the phase response curve, which contains a silent zone, a delay part, a transition point and an advance part. Notably, the dim light melatonin onset (DLMO) is found in the silent zone. In this specific phase, melatonin can induce sleep onset, but does not shift the circadian master clock. Although sleep onset is also under circadian control, sleep and circadian susceptibility are dissociated at this point. Other limits of soporific effects concern dose, duration of action and poor individual responses. The use of high melatonin doses, up to several hundred mg, for purposes of antioxidative and anti-inflammatory protection, especially in sepsis and viral diseases, have to be seen in the context of melatonin’s tissue levels, its formation in mitochondria, and detoxification of free radicals. Citation: Hardeland, R. Divergent Keywords: circadian; entrainment; inflammation; melatonin; mitochondria; receptor saturation Importance of Chronobiological Considerations in High- and Low-dose Melatonin Therapies. Diseases 2021, 9, 18. -
Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development
Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development Gerlie Gieser, Ph.D. Office of Clinical Pharmacology, Div. IV Objectives • Outline the Phase 1 studies conducted to characterize the Clinical Pharmacology of a drug; describe important design elements of and the information gained from these studies. • List the Clinical Pharmacology characteristics of an Ideal Drug • Describe how the Clinical Pharmacology information from Phase 1 can help design Phase 2/3 trials • Discuss the timing of Clinical Pharmacology studies during drug development, and provide examples of how the information generated could impact the overall clinical development plan and product labeling. Phase 1 of Drug Development CLINICAL DEVELOPMENT RESEARCH PRE POST AND CLINICAL APPROVAL 1 DISCOVERY DEVELOPMENT 2 3 PHASE e e e s s s a a a h h h P P P Clinical Pharmacology Studies Initial IND (first in human) NDA/BLA SUBMISSION Phase 1 – studies designed mainly to investigate the safety/tolerability (if possible, identify MTD), pharmacokinetics and pharmacodynamics of an investigational drug in humans Clinical Pharmacology • Study of the Pharmacokinetics (PK) and Pharmacodynamics (PD) of the drug in humans – PK: what the body does to the drug (Absorption, Distribution, Metabolism, Excretion) – PD: what the drug does to the body • PK and PD profiles of the drug are influenced by physicochemical properties of the drug, product/formulation, administration route, patient’s intrinsic and extrinsic factors (e.g., organ dysfunction, diseases, concomitant medications, -
MELATONIN and HUMAN RHYTHMS INTRODUCTION It Has
Chronobiology International, 23(1&2): 21–37, (2006) Copyright # 2006 Taylor & Francis Group, LLC ISSN 0742-0528 print/1525-6073 online DOI: 10.1080/07420520500464361 MELATONIN AND HUMAN RHYTHMS Josephine Arendt Centre for Chronobiology, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, England Melatonin signals time of day and time of year in mammals by virtue of its pattern of secretion, which defines ‘biological night.’ It is supremely important for research on the physiology and pathology of the human biological clock. Light suppresses melatonin secretion at night using pathways involved in circadian photoreception. The melatonin rhythm (as evidenced by its profile in plasma, saliva, or its major metabolite, 6-sulphatoxymelatonin [aMT6s] in urine) is the best peripheral index of the timing of the human circadian pacemaker. Light suppression and phase-shifting of the melatonin 24 h profile enables the characterization of human circadian photore- ception, and circulating concentrations of the hormone are used to investigate the general properties of the human circadian system in health and disease. Suppression of melatonin by light at night has been invoked as a possible influence on major disease risk as there is increasing evidence for its oncostatic effects. Exogenous melatonin acts as a ‘chronobiotic.’ Acutely, it increases sleep propensity during ‘biological day.’ These properties have led to successful treatments for serveal circadian rhythm disorders. Endogenous melatonin acts to reinforce the functioning of the human circadian system, probably in many ways. The future holds much promise for melatonin as a research tool and as a therapy for various conditions. Keywords Melatonin, Light, Circadian and Circaanual Rhythms, Chronobiotic, Sleep, Sleep Disorders, Photoperiodism INTRODUCTION It has been nearly 50 yrs since Aaron Lerner identified melatonin and, after self-administration, reported that it made him feel sleepy (Lerner et al., 1958). -
Drugs and Drug Development: Making a Drug
Drugs and drug development: Making a drug Developing a novel drug Drug development is a long and expensive process A drug can be developed in a whole host of different ways. Constant improvement in technology has transformed drug design over the past few decades. Now, many laboratories in both universities and pharmaceutical companies make use of computers, robotics and artificial intelligence to aid in drug design. These techniques coupled with more traditional methods are becoming increasingly successful in designing novel drugs. One commonality between all the methods of drug design is that they are fraught with challenges. A pharmaceutical company may start with thousands of chemical compounds as potential drug candidates. Rigorous testing will whittle this down to a single chemical compound that can then be licensed to treat patients. Developing drugs is a risky and expensive business, but the potential profits are huge. The following step-by-step process provides a guide to how a compound in the laboratory becomes a disease-fighting drug. Option 1 explains the process of transforming initial research in a university lab (or biotechnology company) into a potential drug – about a quarter of drugs approved by the FDA between 1998 and 2007 began in this way. The remaining three-quarters began in pharmaceutical companies, as explained in option 2. STEP 1 – OPTION 1: Origins in the research lab In universities and research institutes all over the globe, many scientists dedicate their lives to understanding the molecular details of disease – how disease works. By using animal models, usually mice, they are able to identify specific biochemical pathways that are altered by the disease. -
Early-Phase Drug Discovery
Early-Phase Drug Discovery In partnership with the North Carolina Translational & Clinical Sciences (NC TraCs) Institute, RTI International is participating in the Early-Phase Drug Discovery Service (EPDD) to help researchers navigate challenges in the drug discovery process and move technologies toward development. This new RTI-based NC TraCS service can provide researchers with biological assay development and optimization, hit or lead identification, medicinal chemistry optimization, in vitro absorption, distribution, metabolism, excretion, and toxicology (ADMET), and in vivo pharmacokinetics. Overview Early stages of the drug discovery process contain hurdles that must be cleared before more robust drug development can commence. Once a molecular target is selected, drug discovery begins with identification of a hit and progresses toward a lead candidate through a series of structural optimizations. If no hit or lead molecules exist, a researcher must have a validated biological assay that can be optimized for high-throughput screening (HTS). Screening hits typically do not possess optimal drug- like properties. Therefore, their affinity, selectivity, and pharmacokinetic (PK) properties must be improved through structural modifications by a medicinal chemist. Once acceptable drug-like properties have been achieved, efficacy is validated through proof-of-principle studies in vivo. The most promising set of optimized compounds is then slated for further development. The EPDD can assist researchers by providing target development and assay miniaturization, identification of hits through HTS in a 25,000-compound library, lead optimization, in vitro ADMET assays, and preliminary in vivo PK studies. Services will be provided on a tiered basis. Tier 1 consists of consulting services designed to inform the researcher of gaps in his or her early-phase drug discovery plan. -
Comparative Thermodynamics of Partial Agonist Binding to An
COMPARATIVE THERMODYNAMICS OF PARTIAL AGONIST BINDING TO AN AMPA RECEPTOR BINDING DOMAIN A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Madeline Martínez May 2015 © 2015 Madeline Martínez ALL RIGHTS RESERVED Comparative Thermodynamics of Partial Agonist Binding to an AMPA Receptor Binding Domain Madeline Martínez, Ph.D. Cornell University 2015 AMPA receptors, ligand-gated cation channels endogenously activated by glutamate, mediate the majority of rapid excitatory synaptic transmission in the vertebrate central nervous system and are crucial for information processing within neural networks. Their involvement in a variety of neuropathologies and injured states makes them important therapeutic targets, and understanding the forces that drive the interactions between the ligands and protein binding sites is a key element in the development and optimization of potential drug candidates. Calorimetric studies yield quantitative data on the thermodynamic forces that drive binding reactions. This information can help elucidate mechanisms of binding and characterize ligand- induced conformational changes, as well as reduce the potential unwanted effects in drug candidates. The studies presented here characterize the thermodynamics of binding of a series of 5’substituted willardiine analogues, partial agonists to the GluA2 LBD under several conditions. The moiety substitutions (F, Cl, I, H, and NO2) explore a range of electronegativity, pKa, radii, and h-bonding capability. Competitive binding of these ligands to glutamate-bound GluA2 LBD at different pH conditions demonstrates the effects of charge in the enthalpic and entropic components of the Gibb’s free energy of binding. -
Dark-Phase Light Contamination Disrupts Circadian Rhythms in Plasma Measures of Endocrine Physiology and Metabolism in Rats
Comparative Medicine Vol 60, No 5 Copyright 2010 October 2010 by the American Association for Laboratory Animal Science Pages 348–356 Dark-Phase Light Contamination Disrupts Circadian Rhythms in Plasma Measures of Endocrine Physiology and Metabolism in Rats Robert T Dauchy,1,* Erin M Dauchy,1 Robert P Tirrell,2 Cody R Hill,1 Leslie K Davidson,2 Michael W Greene,2 Paul C Tirrell,2 Jinghai Wu,2 Leonard A Sauer,2 and David E Blask1 Dark-phase light contamination can significantly disrupt chronobiologic rhythms, thereby potentially altering the endocrine physiology and metabolism of experimental animals and influencing the outcome of scientific investigations. We sought to de- termine whether exposure to low-level light contamination during the dark phase influenced the normally entrained circadian rhythms of various substances in plasma. Male Sprague–Dawley rats (n = 6 per group) were housed in photobiologic light-exposure chambers configured to create 1) a 12:12-h light:dark cycle without dark-phase light contamination (control condition; 123 µW/cm2, lights on at 0600), 2) experimental exposure to a low level of light during the 12-h dark phase (with 0.02 , 0.05, 0.06, or 0.08 µW/cm2 light at night), or 3) constant bright light (123 µW/cm2). Dietary and water intakes were recorded daily. After 2 wk, rats underwent 6 low-volume blood draws at 4-h intervals (beginning at 0400) during both the light and dark phases. Circadian rhythms in dietary and water intake and levels of plasma total fatty acids and lipid fractions remained entrained during exposure to either control conditions or low-intensity light during the dark phase. -
Role of Melatonin in the Regulation of Human Circadian Rhythms and Sleep
Journal of Neuroendocrinology, 2003, Vol. 15, 432–437 Role of Melatonin in the Regulation of Human Circadian Rhythms and Sleep C. Cajochen, K. Kra¨ uchi and A. Wirz-Justice Center for Chronobiology, Psychiatric University Clinic, Basel, Switzerland. Key words: chronobiotic, soporific, EEG power density, thermoregulation, sleepiness. Abstract The circadian rhythm of pineal melatonin is the best marker of internal time under low ambient light levels. The endogenous melatonin rhythm exhibits a close association with the endogenous circadian component of the sleep propensity rhythm. This has led to the idea that melatonin is an internal sleep ‘facilitator’ in humans, and therefore useful in the treatment of insomnia and the readjustment of circadian rhythms. There is evidence that administration of melatonin is able: (i) to induce sleep when the homeostatic drive to sleep is insufficient; (ii) to inhibit the drive for wakefulness emanating from the circadian pacemaker; and (iii) induce phase shifts in the circadian clock such that the circadian phase of increased sleep propensity occurs at a new, desired time. Therefore, exogenous melatonin can act as soporific agent, a chronohypnotic, and/or a chronobiotic. We describe the role of melatonin in the regulation of sleep, and the use of exogenous melatonin to treat sleep or circadian rhythm disorders. entrained (6, 7) and in sighted subjects with non 24-sleep–wake Endogenous melatonin and the circadian sleep–wake cycle syndrome (8, 9). Even more impressive are the results cycle and thermoregulation obtained from studies using the forced desynchrony protocol to Under entrained conditions, the phase relationship between the separate out circadian- and wake-dependent components of beha- endogenous circadian rhythm of melatonin and the sleep–wake viour. -
Research and Development in the Pharmaceutical Industry
Research and Development in the Pharmaceutical Industry APRIL | 2021 At a Glance This report examines research and development (R&D) by the pharmaceutical industry. Spending on R&D and Its Results. Spending on R&D and the introduction of new drugs have both increased in the past two decades. • In 2019, the pharmaceutical industry spent $83 billion dollars on R&D. Adjusted for inflation, that amount is about 10 times what the industry spent per year in the 1980s. • Between 2010 and 2019, the number of new drugs approved for sale increased by 60 percent compared with the previous decade, with a peak of 59 new drugs approved in 2018. Factors Influencing R&D Spending. The amount of money that drug companies devote to R&D is determined by the amount of revenue they expect to earn from a new drug, the expected cost of developing that drug, and policies that influence the supply of and demand for drugs. • The expected lifetime global revenues of a new drug depends on the prices that companies expect to charge for the drug in different markets around the world, the volume of sales they anticipate at those prices, and the likelihood the drug-development effort will succeed. • The expected cost to develop a new drug—including capital costs and expenditures on drugs that fail to reach the market—has been estimated to range from less than $1 billion to more than $2 billion. • The federal government influences the amount of private spending on R&D through programs (such as Medicare) that increase the demand for prescription drugs, through policies (such as spending for basic research and regulations on what must be demonstrated in clinical trials) that affect the supply of new drugs, and through policies (such as recommendations for vaccines) that affect both supply and demand. -
Potential Circadian and Circannual Rhythm Contributions to the Obesity Epidemic in Elementary School Age Children Jennette P
Moreno et al. International Journal of Behavioral Nutrition and Physical Activity (2019) 16:25 https://doi.org/10.1186/s12966-019-0784-7 DEBATE Open Access Potential circadian and circannual rhythm contributions to the obesity epidemic in elementary school age children Jennette P. Moreno1* , Stephanie J. Crowley2, Candice A. Alfano3, Kevin M. Hannay4, Debbe Thompson1 and Tom Baranowski1 Abstract Children gain weight at an accelerated rate during summer, contributing to increases in the prevalence of overweight and obesity in elementary-school children (i.e., approximately 5 to 11 years old in the US). Int J Behav Nutr Phys Act 14:100, 2017 explained these changes with the “Structured Days Hypothesis” suggesting that environmental changes in structure between the school year and the summer months result in behavioral changes that ultimately lead to accelerated weight gain. The present article explores an alternative explanation, the circadian clock, including the effects of circannual changes and social demands (i.e., social timing resulting from societal demands such as school or work schedules), and implications for seasonal patterns of weight gain. We provide a model for understanding the role circadian and circannual rhythms may play in the development of child obesity, a framework for examining the intersection of behavioral and biological causes of obesity, and encouragement for future research into bio-behavioral causes of obesity in children. Keywords: Sleep, Circadian rhythms, Circannual rhythms, Children, School, Summer, Growth -
Effects of Sleep Deprivation on Fire Fighters and EMS Responders
Effects of Sleep Deprivation on Fire Fighters and EMS Responders Effects of Sleep Deprivation on Fire Fighters and EMS Responders Effects of Sleep Deprivation on Fire Fighters and EMS Responders Effects of Sleep Deprivation on Fire Fighters and EMS Responders Final Report, June 2007 Diane L. Elliot, MD, FACP, FACSM Kerry S. Kuehl, MD, DrPH Division of Health Promotion & Sports Medicine Oregon Health & Science University Portland, Oregon Acknowledgments This report was supported by a cooperative agreement between the International Association of Fire Chiefs (IAFC) and the United States Fire Administration (USFA), with assistance from the faculty of Or- egon Health & Science University, to examine the issue of sleep dep- rivation and fire fighters and EMS responders. Throughout this work’s preparation, we have collaborated with Victoria Lee, Program Man- ager for the IAFC, whose assistance has been instrumental in success- fully completing the project. The information contained in this report has been reviewed by the members of the International Association of Fire Chiefs’ Safety, Health and Survival Section; Emergency Medi- cal Services Section and Volunteer and Combination Officers Sec- tion; and the National Volunteer Fire Council (NVFC). We also grate- fully acknowledge the assistance of our colleagues Esther Moe, PhD, MPH, and Carol DeFrancesco, MA, RD. i Effects of Sleep Deprivation on Fire Fighters and EMS Responders Preface The U.S. fire service is full of some of the most passionate individuals any industry could ever have. Our passion, drive and determination are in many cases the drivers that cause us to take many of the courageous actions that have become legendary in our business.