Capturing Interactions in Architectural Patterns

Total Page:16

File Type:pdf, Size:1020Kb

Capturing Interactions in Architectural Patterns Capturing Interactions in Architectural Patterns Dharmendra K Yadav Rushikesh K Joshi Department of Computer Science and Engineering Department of Computer Science and Engineering Indian Institute of Technology Bombay Indian Institute of Technology Bombay Powai, Mumbai 400076, India Powai, Mumbai 400076, India Email: [email protected] Email: [email protected] TABLE I Abstract—Patterns of software architecture help in describing ASUMMARY OF CCS COMBINATORS structural and functional properties of the system in terms of smaller components. The emphasis of this work is on capturing P rimitives & Descriptions Architectural the aspects of pattern descriptions and the properties of inter- Examples Significance component interactions including non-deterministic behavior. Prefix (.) Action sequence intra-component Through these descriptions we capture structural and behavioral p1.p2 sequential flow specifications as well as properties against which the specifications Summation (+) Nondeterminism choice within a component are verified. The patterns covered in this paper are variants of A1 + A2 Proxy, Chain, MVC, Acceptor-Connector, Publisher-Subscriber Composition (|) Connect matching multiple connected and Dinning Philosopher patterns. While the machines are CCS- A1 | A2 i/o ports in assembly components based, the properties have been described in Modal µ-Calculus. Restriction (\) Hiding ports from Internal The approach serves as a framework for precise architectural A\{p1, k1, ..} further composition features descriptions. Relabeling ([]) Renaming of ports syntactic renaming A[new/old, ..] I. INTRODUCTION In component/connector based architectural descriptions [6], [13], components are primary entities having identities in the represents interface points as ports uses a subset of CSP for system and connectors provide the means for communication it’s formal semantics. It allows architects to specify temporal between them. This view is very similar to the abstractions communication protocols and check properties such as dead- provided by CCS [12], in which, components can be seen as lock freedom. Besides special purpose ADLs, general purpose non-movable agents and connectors as channels. Specification modeling techniques such as UML have also been found to of software architectures from designer’s point of view occurs be useful for modeling high level software architectures [7], at different levels such as process, component, module and [9]. object levels. The focus of this work is on modeling some We take an ADL-like approach in describing architectures commonly occurring architectural patterns at the component in terms of components and connectors, and use CCS, a level in terms of CCS. µ-Calculus [8] is used to specify process calculus, to model and analyze software architectures example properties against which the architectural descriptions as it provides abstractions (agents and channels) which are can be verified. The CCS based approach effectively captures very similar to components and connector abstractions found interactions occurring at architectural level through its fea- commonly in software architecture descriptions. tures such as components and their compositions, input/output In CCS, agents have input and output ports. The processes actions over channels and non-deterministic behavior. The or agent expression for an agent is constructed from a set of machines described in this paper have been verified with the atomic actions involving ports. A port name with an overbar Concurrency Workbench [4]. The grammar used in specifica- such as p represents an output port. In the basic form of the tions of the properties is as provided in [14]. language, data values can not be passed unlike in the value passing form as in expression p(x). Agents communicate with II. RELATED WORK AND BACKGROUND each other via connected pairs of input and output ports. Basic Various approaches for specifying and verifying software combinators in CCS are summarized in Table I. architectures can be found in the literature. Architecture The formal semantics of the CCS [12] is given Description Language (ADL) based approaches consist of by transitional semantics. In this the general notion of languages defined to describe, model and implement software labeled transition system as given below is used architectures. A classification of ADL based languages can t (S,T, {→: t ∈ T }) be found in [11]. Some of these languages have formal semantics supporting formal analysis. For example, Darwin Which consists of a set S of states, a set T of t [10] is a general purpose configuration language for distributed transition labels, and a transition relation →⊆ S ×S for dynamic system that uses π-calculus to model the component each t ∈ T . In this transition system S is taken to be E, the interaction and composition properties. Wright [2], which agent expression, and T is taken to be Act, the actions. The TABLE II Syntax of modal mu-calculus prop Φ ::= tt | ff | X | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [K]Φ | hKiΦ | νX.Φ | µX.Φ | not prop | (prop) | AG prop | AF prop | A (prop ∪ prop ) | A (prop W prop ) | EG prop | EF prop | E (prop ∪ prop ) | A (prop W prop ) α semantics for E consists in the definition of each transition → over E. The transitions of each composite agent is defined in terms of the transitions of its component agent or agents. The general rule of inference will be: α α Fig. 1. Caching Proxy Pattern From E → E′ infer E|F → E′|F and it can be written in the form α E→E′ α req.request.reply.ans.P roxy E|F →E′|F Server = request.reply.Server There will be one or more transition rules associated with each combinator. The set of transition rules are as follows: Arch = Client|P roxy|Server The names Act, Sum, Com, Res and Rel indicates that The desirable properties of interaction can be captured in the rules are associated respectively with Prefix, Summation, modal µ calculus. These properties can be used as verification Composition, Restriction and Relabeling. properties to model-check the architectural descriptions. Some α ′ Ej →Ej properties are outlined below. It can be noted that the proper- Act α Sumj α ′ (j ∈ I) α.E→E Ei→E ties are expressed in terms of τ actions that occur in the above Pi∈I j machine. For each τ action, a separate observation action α α l l E→E′ F →F ′ E→E′ F →F ′ is introduced in the machine. The properties below use these Com1 α Com2 α Com3 τ E|F →E′|F E|F →E|F ′ E|F →E′|F ′ observation actions. The property-friendly verifiable machine α α E→E′ E→E′ is listed subsequently. The properties mentioned below are Rel α ′ (α, α∈ / L) Res f(α) E\L→E \L E[f] → E′[f] necessary properties. They are not sufficient. Through these properties we have tried to capture some of the essential For the specification of properties, Modal µ-Calculus has behaviours of the patterns. been used. The modal calculus [16], [17] used here is µ prop P = AG(not htreqitt) ∨ AF (htansitt) an extension of Henessy-Milner logic with two fixed point 1 prop P = A(not(htansitt)W htreqitt) operators. These two operators, least fixed and 2 µX.φ(X) prop P = AG(not( htreqitt) ∨ AF (htansitt∨ greatest fixed points allow specification of iterative 3 νX.φ(X) htrequestitt)) behavior in the system, where is a state predicate in φ(X) prop p = max X = htihtreqihtihtrequestihtihtreplyihti which state predicate variable X can occur. The syntax of 4 htansiX modal µ calculus is summarized in Table II for reference. prop p5 = max Y = htihtreqihtihtansiY III. PROXY In the verifiable machine below, the observation actions In this section, the interactions occurring in a caching proxy introduced corresponding to the τ actions are tans, treq, [3] that hides the actual server and also caches information trequest, treply. The observation actions are introduced as from the server are modeled. When a client makes a request, input actions, and they are inserted uniformly immediately the reply may be handed over to the client either by the proxy following input actions of the corresponding τ actions. The or from the server through the proxy. The CCS model shown in same structure is followed for other patterns described in the Figure 1 captures the sequence of flow of messages. The CCS subsequent sections. model includes the two possibilities through non-deterministic summation. The pattern is a composition of three components. ′ The description of the components is given below. Client = req.ans.tans.Client P roxy = req.treq.′ans.P roxy + A. Pattern Description req.treq.′request.reply.treply.′ans.P roxy Server = request.trequest.′reply.Server Client = req.ans.Client Arch = (Client|P roxy|Server)\ P roxy = req.ans.P roxy + {req, ans, request, reply} The properties can be read as below. • Whenever a client makes a request, eventually there will Controller = change-m.Controller always be an answer to the client (P ). 1 Model = change-m.change-v.Model + • Whenever there is an answer to the client, there is a prior info-req.info-rep.Model request from the client (P2). • Immediately after a request, either an answer or a further V iew = change-v.info-req.info-rep.V iew request will be generated from the proxy component (P3). Arch = Controller|Model|V iew • There is a possibility of a request from client, followed by request generated from the proxy, followed by a reply B. Verification Properties from the server and finally an answer from the proxy. some of the interaction properties for the MVC patterns are This sequence of actions may repeat infinitely(P4). listed below. • There is a possibility of a request from client, followed • If there is a request for updated information, eventually by an answer from the proxy. This sequence of actions there will be a reply (P1). may also repeat infinitely(P5).
Recommended publications
  • Patterns Senior Member of Technical Staff and Pattern Languages Knowledge Systems Corp
    Kyle Brown An Introduction to Patterns Senior Member of Technical Staff and Pattern Languages Knowledge Systems Corp. 4001 Weston Parkway CSC591O Cary, North Carolina 27513-2303 April 7-9, 1997 919-481-4000 Raleigh, NC [email protected] http://www.ksccary.com Copyright (C) 1996, Kyle Brown, Bobby Woolf, and 1 2 Knowledge Systems Corp. All rights reserved. Overview Bobby Woolf Senior Member of Technical Staff O Patterns Knowledge Systems Corp. O Software Patterns 4001 Weston Parkway O Design Patterns Cary, North Carolina 27513-2303 O Architectural Patterns 919-481-4000 O Pattern Catalogs [email protected] O Pattern Languages http://www.ksccary.com 3 4 Patterns -- Why? Patterns -- Why? !@#$ O Learning software development is hard » Lots of new concepts O Must be some way to » Hard to distinguish good communicate better ideas from bad ones » Allow us to concentrate O Languages and on the problem frameworks are very O Patterns can provide the complex answer » Too much to explain » Much of their structure is incidental to our problem 5 6 Patterns -- What? Patterns -- Parts O Patterns are made up of four main parts O What is a pattern? » Title -- the name of the pattern » A solution to a problem in a context » Problem -- a statement of what the pattern solves » A structured way of representing design » Context -- a discussion of the constraints and information in prose and diagrams forces on the problem »A way of communicating design information from an expert to a novice » Solution -- a description of how to solve the problem » Generative:
    [Show full text]
  • Wiki As Pattern Language
    Wiki as Pattern Language Ward Cunningham Cunningham and Cunningham, Inc.1 Sustasis Foundation Portland, Oregon Michael W. Mehaffy Faculty of Architecture Delft University of Technology2 Sustasis Foundation Portland, Oregon Abstract We describe the origin of wiki technology, which has become widely influential, and its relationship to the development of pattern languages in software. We show here how the relationship is deeper than previously understood, opening up the possibility of expanded capability for wikis, including a new generation of “federated” wiki. [NOTE TO REVIEWERS: This paper is part first-person history and part theory. The history is given by one of the participants, an original developer of wiki and co-developer of pattern language. The theory points toward future potential of pattern language within a federated, peer-to-peer framework.] 1. Introduction Wiki is today widely established as a kind of website that allows users to quickly and easily share, modify and improve information collaboratively (Leuf and Cunningham, 2001). It is described on Wikipedia – perhaps its best known example – as “a website which allows its users to add, modify, or delete its content via a web browser usually using a simplified markup language or a rich-text editor” (Wikipedia, 2013). Wiki is so well established, in fact, that a Google search engine result for the term displays approximately 1.25 billion page “hits”, or pages on the World Wide Web that include this term somewhere within their text (Google, 2013a). Along with this growth, the definition of what constitutes a “wiki” has broadened since its introduction in 1995. Consider the example of WikiLeaks, where editable content would defeat the purpose of the site.
    [Show full text]
  • Automatic Verification of Java Design Patterns
    Automatic Verification of Java Design Patterns Alex Blewitt, Alan Bundy, Ian Stark Division of Informatics, University of Edinburgh 80 South Bridge, Edinburgh EH1 1HN, UK [email protected] [email protected] [email protected] Abstract 2. Design patterns There are a number of books which catalogue and de- Design patterns are widely used by object oriented de- scribe design patterns [4, 1, 6] including an informal de- signers and developers for building complex systems in ob- scription of the key features and examples of their use. ject oriented programming languages such as Java. How- However, at the moment there are no books which attempt ever, systems evolve over time, increasing the chance that to formalise these descriptions, possibly for the following the pattern in its original form will be broken. reasons: We attempt to show that many patterns (implemented in Java) can be verified automatically. Patterns are defined 1. The implementation (and description) of the pattern is in terms of variants, mini-patterns, and constraints in a language-specific. pattern description language called SPINE. These specifi- 2. There are often several ways to implement a pattern cations are then processed by HEDGEHOG, an automated within the same language. proof tool that attempts to prove that Java source code 3. Formal language descriptions are not common within meets these specifications. the object oriented development community. Instead, each pattern is presented as a brief description, and an example of its implementation and use. Designers and developers are then expected to learn the ‘feel’ of a pat- 1.
    [Show full text]
  • Enterprise Integration Patterns Introduction
    Enterprise Integration Patterns Gregor Hohpe Sr. Architect, ThoughtWorks [email protected] July 23, 2002 Introduction Integration of applications and business processes is a top priority for many enterprises today. Requirements for improved customer service or self-service, rapidly changing business environments and support for mergers and acquisitions are major drivers for increased integration between existing “stovepipe” systems. Very few new business applications are being developed or deployed without a major focus on integration, essentially making integratability a defining quality of enterprise applications. Many different tools and technologies are available in the marketplace to address the inevitable complexities of integrating disparate systems. Enterprise Application Integration (EAI) tool suites offer proprietary messaging mechanisms, enriched with powerful tools for metadata management, visual editing of data transformations and a series of adapters for various popular business applications. Newer technologies such as the JMS specification and Web Services standards have intensified the focus on integration technologies and best practices. Architecting an integration solution is a complex task. There are many conflicting drivers and even more possible ‘right’ solutions. Whether the architecture was in fact a good choice usually is not known until many months or even years later, when inevitable changes and additions put the original architecture to test. There is no cookbook for enterprise integration solutions. Most integration vendors provide methodologies and best practices, but these instructions tend to be very much geared towards the vendor-provided tool set and often lack treatment of the bigger picture, including underlying guidelines and principles. As a result, successful enterprise integration architects tend to be few and far in between and have usually acquired their knowledge the hard way.
    [Show full text]
  • Co-Occurrence of Design Patterns and Bad Smells in Software Systems
    XI Brazilian Symposium on Information System, Goi^ania,GO, May 26-29, 2015. Co-Occurrence of Design Patterns and Bad Smells in Software Systems: An Exploratory Study Bruno Cardoso Eduardo Figueiredo Software Engineering Lab (LabSoft) Software Engineering Lab (LabSoft) Federal University of Minas Gerais (UFMG) Federal University of Minas Gerais (UFMG) Belo Horizonte, MG - Brazil Belo Horizonte, MG - Brazil [email protected] [email protected] ABSTRACT In a previous work [1], we performed a systematic literature A design pattern is a general reusable solution to a recurring review in order to understand how studies investigate these two problem in software design. Bad smells are symptoms that may topics, design patterns and bad smells, together. Our results indicate something wrong in the system design or code. showed that, in general, studies have a narrow view concerning Therefore, design patterns and bad smells represent antagonistic the relation between these concepts. Most of them focus on structures. They are subject of recurring research and typically refactoring opportunities. Among these, some tools [3][7][15][17] appear in software systems. Although design patterns represent have been proposed to identify code fragments that can be good design, their use is often inadequate because their refactored to patterns. Other studies [2][6] establish a structural implementation is not always trivial or they may be unnecessarily relationship between the terms design pattern and bad smell. In employed. The inadequate use of design patterns may lead to a addition, there are reported cases in the literature where the use of bad smell. Therefore, this paper performs an exploratory study in design patterns may not always be the best option and the wrong order to identify instances of co-occurrences of design patterns use of a design pattern can even introduce bad smells in code [19] and bad smells.
    [Show full text]
  • Enterprise Development with Flex
    Enterprise Development with Flex Enterprise Development with Flex Yakov Fain, Victor Rasputnis, and Anatole Tartakovsky Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo Enterprise Development with Flex by Yakov Fain, Victor Rasputnis, and Anatole Tartakovsky Copyright © 2010 Yakov Fain, Victor Rasputnis, and Anatole Tartakovsky.. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or [email protected]. Editor: Mary E. Treseler Indexer: Ellen Troutman Development Editor: Linda Laflamme Cover Designer: Karen Montgomery Production Editor: Adam Zaremba Interior Designer: David Futato Copyeditor: Nancy Kotary Illustrator: Robert Romano Proofreader: Sada Preisch Printing History: March 2010: First Edition. Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Enterprise Development with Flex, the image of red-crested wood-quails, and related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps. While every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information con- tained herein.
    [Show full text]
  • A Survey of Architectural Styles.V4
    Survey of Architectural Styles Alexander Bird, Bianca Esguerra, Jack Li Liu, Vergil Marana, Jack Kha Nguyen, Neil Oluwagbeminiyi Okikiolu, Navid Pourmantaz Department of Software Engineering University of Calgary Calgary, Canada Abstract— In software engineering, an architectural style is a and implementation; the capabilities and experience of highest-level description of an accepted solution to a common developers; and the infrastructure and organizational software problem. This paper describes and compares a selection constraints [30]. These styles are not presented as out-of-the- of nine accepted architectural styles selected by the authors and box solutions, but rather a framework within which a specific applicable in various domains. Each pattern is presented in a software design may be made. If one were to say “that cannot general sense and with a domain example, and then evaluated in be called a layered architecture because the such and such a terms of benefits and drawbacks. Then, the styles are compared layer must communicate with an object other than the layer in a condensed table of advantages and disadvantages which is above and below it” then one would have missed the point of useful both as a summary of the architectural styles as well as a architectural styles and design patterns. They are not intended tool for selecting a style to apply to a particular project. The to be definitive and final, but rather suggestive and a starting paper is written to accomplish the following purposes: (1) to give readers a general sense of several architectural styles and when point, not to be used as a rule book but rather a source of and when not to apply them, (2) to facilitate software system inspiration.
    [Show full text]
  • Pattern Languages in HCI: a Critical Review
    HUMAN–COMPUTER INTERACTION, 2006, Volume 21, pp. 49–102 Copyright © 2006, Lawrence Erlbaum Associates, Inc. Pattern Languages in HCI: A Critical Review Andy Dearden Sheffield Hallam University Janet Finlay Leeds Metropolitan University ABSTRACT This article presents a critical review of patterns and pattern languages in hu- man–computer interaction (HCI). In recent years, patterns and pattern languages have received considerable attention in HCI for their potential as a means for de- veloping and communicating information and knowledge to support good de- sign. This review examines the background to patterns and pattern languages in HCI, and seeks to locate pattern languages in relation to other approaches to in- teraction design. The review explores four key issues: What is a pattern? What is a pattern language? How are patterns and pattern languages used? and How are values reflected in the pattern-based approach to design? Following on from the review, a future research agenda is proposed for patterns and pattern languages in HCI. Andy Dearden is an interaction designer with an interest in knowledge sharing and communication in software development. He is a senior lecturer in the Com- munication and Computing Research Centre at Sheffield Hallam University. Janet Finlay is a usability researcher with an interest in design communication and systems evaluation. She is Professor of Interactive Systems in Innovation North at Leeds Metropolitan University. 50 DEARDEN AND FINLAY CONTENTS 1. INTRODUCTION 2. THE SCOPE OF THIS REVIEW 2.1. General Software Design Patterns 2.2. Interface Software Design Patterns 2.3. Interaction Design Patterns 3. A SHORT HISTORY OF PATTERNS 3.1.
    [Show full text]
  • Prof. Catalin Boja, Phd [email protected] Source Code Quality
    Design patterns Prof. Catalin Boja, PhD [email protected] http://acs.ase.ro/software-quality-testing Source code quality Principles for writing the code: • Easy to read / understand - clear • Easy to modify - structured • Easy to reuse • Simple (complexity) • Easy to test • Implement patterns for the standard problem Left: Simply Explained: Code Reuse 2009-12- acs.ase.ro [email protected] 03.By Oliver Widder, Webcomics Geek Aad Poke.2 Source code quality Forces that influence it: • Available time (delivery terms) • Costs • The experience of the programmer • Programmer competences • Specifications clarity • Solution complexity • Change rates for specifications, requirements, team, etc http://khristianmcfadyen.com/ acs.ase.ro [email protected] 3 Anti-Pattern: Big ball of mud “A Big Ball of Mud is a haphazardly structured, sprawling, sloppy, duct-tape- and-baling-wire, spaghetti- code jungle.” Brian Foote and Joseph Yoder, Big Ball of Mud, September 1997 acs.ase.ro [email protected] 4 Anti-Pattern: Big ball of mud Where from ? Why ? • Throwaway code - Temporary (Prototyping) solutions to be replaced / rewritten • Cut and Paste code • Adapting code by commenting / deleting other solutions • Very short or unrealistic deadlines • Lack of experience • Lack of standards / procedures acs.ase.ro [email protected] 5 Anti-Pattern: Big ball of mud How do you avoid it? • Rewriting the code (Refactoring) to an acceptable maturity level • Use Clean Code Principles • Design Patterns Implementation acs.ase.ro [email protected] 6 Design-pattern • A pattern is a reusable solution for a standard problem in a given context • Facilitates the reuse of architectures and software design • They are not data structures acs.ase.ro [email protected] 7 Design-pattern “A pattern involves a general “..
    [Show full text]
  • Reducing Maintenance Costs Through the Application of Modern Software Architecture Principles
    Reducing Maintenance Costs Through the Application of Modern Software Architecture Principles Christine Hulse and Michael Ubnoske Louis Vazquez Scott Edgerton Architecture Technology Department of the Army United Defense, LP Minneapolis, Minnesota Picatinny Arsenal, Minneapolis, Minnesota 1.612.829.5864 New Jersey 1.612.572.6109/6156 [email protected] 1.973.724.5259 [email protected] [email protected] [email protected] 1. ABSTRACT 1.1 Keywords Large software programs are usually long lived Architecture, design patterns, software maintenance, modeling, real-time software and continually evolve. Substantial maintenance effort is often extended by 2. INTRODUCTION engineers trying to understand the software The Crusader Field Artillery System is the U.S. Army's next prior to making changes. To successfully generation 155-mm self-propelled howitzer (SPH) and its companion resupply vehicle (RSV). The Crusader is a evolve the software, a thorough understanding software-intensive system that is being designed to last well of the architect's intentions about software into the next century. Ada95 is the implementation language organization is required. Software for all software development on the Crusader program. maintenance costs can be reduced significantly Modern software architecture methods are being applied to if the software architecture is well defined, capture the general principles used throughout the design and to provide a guide for further development of the clearly documented, and creates an software. The architecture is being modeled using the environment that promotes design consistency Unified Modeling Language (UML) to bring together the through the use of guidelines and design design vision of all of the key stakeholders.
    [Show full text]
  • HEDGEHOG: Automatic Verification of Design Patterns in Java
    HEDGEHOG: Automatic Verification of Design Patterns in Java Alex Blewitt I V N E R U S E I T H Y T O H F G E R D I N B U Doctor of Philosophy School of Informatics University of Edinburgh 2006 Abstract Design patterns are widely used by designers and developers for building complex systems in object-oriented programming languages such as Java. However, systems evolve over time, increasing the chance that the pattern in its original form will be broken. To verify that a design pattern has not been broken involves specifying the original intent of the design pattern. Whilst informal descriptions of patterns exist, no formal specifications are available due to differences in implementations between programming languages. This thesis shows that many patterns (implemented in Java) can be verified automatically. Patterns are defined in terms of variants, mini-patterns, and artefacts in a pattern description language called SPINE. These specifications are then processed by HEDGEHOG, an automated proof tool that attempts to prove that Java source code meets these specifications. iii Acknowledgements I am indebted to Alan Bundy who has given me the freedom to work on this thesis whilst at the same time guiding me towards the final production and presentation of these results. I not would have been able to achieve this without Alan’s support through a sometimes difficult, but always busy part of my life. This project, and especially the production of this thesis, would not have been possible without the care and attention that Alan provided. Ian Stark has provided invaluable feedback on all aspects of this thesis, from the low-level technical intricacies of Java’s design patterns through to the high-level structure of the thesis as a whole.
    [Show full text]
  • The Origins of Pattern Theory the Future of the Theory, and the Generation of a Living World
    THE ORIGINS OF PATTERN THEORY THE FUTURE OF THE THEORY, AND THE GENERATION OF A LIVING WORLD Christopher Alexander Introduction by James O. Coplien nce in a great while, a great idea makes it across the boundary of one discipline to take root in another. The adoption of Christopher O Alexander’s patterns by the software community is one such event. Alexander both commands respect and inspires controversy in his own discipline; he is the author of several books with long-running publication records, the first recipient of the AIA Gold Medal for Research, a member of the Swedish Royal Academy since 1980, a member of the American Academy of Arts and Sciences, recipient of dozens of awards and honors including the Best Building in Japan award in 1985, and the American Association of Collegiate Schools of Architecture Distinguished Professor Award. It is odd that his ideas should have found a home in software, a discipline that deals not with timbers and tiles but with pure thought stuff, and with ephemeral and weightless products called programs. The software community embraced the pattern vision for its relevance to problems that had long plagued software design in general and object-oriented design in particular. September/October 1999 IEEE Software 71 Focusing on objects had caused us to lose the pattern discipline that the software community has system perspective. Preoccupation with design yet scarcely touched: the moral imperative to build method had caused us to lose the human perspec- whole systems that contribute powerfully to the tive. The curious parallels between Alexander’s quality of life, as we recognize and rise to the re- world of buildings and our world of software con- sponsibility that accompanies our position of influ- struction helped the ideas to take root and thrive in ence in the world.
    [Show full text]