Black Hole Apocalypse
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Transient Gravitational-Wave Sky
Home Search Collections Journals About Contact us My IOPscience The transient gravitational-wave sky This content has been downloaded from IOPscience. Please scroll down to see the full text. 2013 Class. Quantum Grav. 30 193002 (http://iopscience.iop.org/0264-9381/30/19/193002) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 194.94.224.254 This content was downloaded on 23/01/2014 at 11:14 Please note that terms and conditions apply. IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY Class. Quantum Grav. 30 (2013) 193002 (45pp) doi:10.1088/0264-9381/30/19/193002 TOPICAL REVIEW The transient gravitational-wave sky Nils Andersson1, John Baker2, Krzystof Belczynski3,4, Sebastiano Bernuzzi5, Emanuele Berti6,7, Laura Cadonati8, Pablo Cerda-Dur´ an´ 9, James Clark8, Marc Favata10, Lee Samuel Finn11, Chris Fryer12, Bruno Giacomazzo13, Jose Antonio Gonzalez´ 14, Martin Hendry15, Ik Siong Heng15, Stefan Hild16, Nathan Johnson-McDaniel5, Peter Kalmus17, Sergei Klimenko18, Shiho Kobayashi19, Kostas Kokkotas20, Pablo Laguna21, Luis Lehner22, Janna Levin23, Steve Liebling24, Andrew MacFadyen25, Ilya Mandel26, Szabolcs Marka27, Zsuzsa Marka28, David Neilsen29, Paul O’Brien30, Rosalba Perna13, Jocelyn Read31, Christian Reisswig7, Carl Rodriguez32, Max Ruffert33, Erik Schnetter22,34,35, Antony Searle17, Peter Shawhan36, Deirdre Shoemaker21, Alicia Soderberg37, Ulrich Sperhake7,38,39, Patrick Sutton40, Nial Tanvir30, Michal Was41 and Stan Whitcomb17 1 School of Mathematics, University of Southampton, -
Listening for Einstein's Ripples in the Fabric of the Universe
Listening for Einstein's Ripples in the Fabric of the Universe UNCW College Day, 2016 Dr. R. L. Herman, UNCW Mathematics & Statistics/Physics & Physical Oceanography October 29, 2016 https://cplberry.com/2016/02/11/gw150914/ Gravitational Waves R. L. Herman Oct 29, 2016 1/34 Outline February, 11, 2016: Scientists announce first detection of gravitational waves. Einstein was right! 1 Gravitation 2 General Relativity 3 Search for Gravitational Waves 4 Detection of GWs - LIGO 5 GWs Detected! Figure: Person of the Century. Gravitational Waves R. L. Herman Oct 29, 2016 2/34 Isaac Newton (1642-1727) In 1680s Newton sought to present derivation of Kepler's planetary laws of motion. Principia 1687. Took 18 months. Laws of Motion. Law of Gravitation. Space and time absolute. Figure: The Principia. Gravitational Waves R. L. Herman Oct 29, 2016 3/34 James Clerk Maxwell (1831-1879) - EM Waves Figure: Equations of Electricity and Magnetism. Gravitational Waves R. L. Herman Oct 29, 2016 4/34 Special Relativity - 1905 ... and then came A. Einstein! Annus mirabilis papers. Special Relativity. Inspired by Maxwell's Theory. Time dilation. Length contraction. Space and Time relative - Flat spacetime. Brownian motion. Photoelectric effect. E = mc2: Figure: Einstein (1879-1955) Gravitational Waves R. L. Herman Oct 29, 2016 5/34 General Relativity - 1915 Einstein generalized special relativity for Curved Spacetime. Einstein's Equation Gravity = Geometry Gµν = 8πGTµν: Mass tells space how to bend and space tell mass how to move. Predictions. Perihelion of Mercury. Bending of Light. Time dilation. Inspired by his "happiest thought." Gravitational Waves R. L. Herman Oct 29, 2016 6/34 The Equivalence Principle Bodies freely falling in a gravitational field all accelerate at the same rate. -
Electronic Newsletter December 15, 2016
Electronic Newsletter December 15, 2016 In this issue • April Meeting (in January) Washington, DC • DAP Nominations • APS Fellows from DAP • 2017 Bethe Prize • April Meeting Overview • DAP Awards Ceremony • Public Lecture and Plenary Session Highlights • DAP Session Schedule • Focus Sessions sponsored by the DAP • Invited Session Highlights APS DAP Officers 2016–2017: Finalize your plans now to attend the April 2017 meeting held Chair: Julie McEnery this year in January in Washington, DC. A number of plenary and invited sessions will feature presentations by DAP mem- Chair-Elect: Fiona Harrison bers. Here are the key details: Vice Chair: Priyamvada Natarajan Past Chair: Paul Shapiro What: April 2017 APS Meeting Secretary/Treasurer: Scott Dodelson When: Saturday, Jan 28 – Tuesday, Jan 31, 2016 Deputy Sec./Treasurer: Where: Washington, DC (Marriott Wardman Park) Keivan Stassun Member-at-Large: Registration Deadline: January 6, 2017 Brenna Flaugher Division Councilor: The 2017 April Meeting will take place at the Marriott Ward- Miriam Forman man Park. Detailed information for the meeting, including details Member-at-Large: on registration and the scientific program can be found online at Daniel Kasen http://www.aps.org/meetings/april Member-at-Large: Marc Kamionkowski Note that you can still register on-site, if you don’t do so by the Member-at-Large: deadline. Tracy Slatyer Registration fees range from $30 for undergraduates to $480 for full members. Questions? Comments? Newsletter Editor: Keivan Stassun [email protected] Nominations for the APS DAP Executive Committee Officers Deadline: December 21, 2016 Each year the Division of Astrophysics (DAP) of the APS elects new members for the open positions on the DAP Executive Committee. -
LIST of PUBLICATIONS Priyamvada Natarajan, Yale University 1
LIST OF PUBLICATIONS Priyamvada Natarajan, Yale University 1. Meneghetti, M; Davoli, G; Bergamini, P; Rosati, P; Natarajan, P. et al. 2020 An excess of small-scale gravitational lenses observed in galaxy clusters Science, Vol. 369, Issue 6509, 1347-1353. 2. Natarajan, Priyamvada. 2020 A new channel to form Intermediate Mass Black Holes throughout cosmic time MNRAS, submitted. 3. Tam, S-I., et al. 2020. The distribution of dark matter and gas spanning 6 Mpc around post-merger galaxy cluster MS- 0451-03 MNRAS, 496, 4032. 4. Ricarte, Angelo; Tremmel, Michael; Natarajan, Priyamvada & Quinn, Thomas. 2020 A Link between Ram Pressure Stripping and Active Galactic Nuclei ApJ, 895, L8. 5. Niemeic, Anna., et al. 2020 hybrid-LENSTOOL: a self-consistent algorithm to model galaxy clusters with strong- and weak- lensing simultaneously MNRAS, 493, 3331. 6. Steinhardt, C., et al., 2020 The BUFFALO HST Survey ApJS, 247, 64. 7. Natarajan, Priyamvada et al. 2019. Disentangling nature from nurture: tracing the origin of seed black holes, White paper submitted to the 2020 Decadal Survey, the NAS White Paper Repository, BAAS, 51, 7, 73. 8. Cornish, Neil., et al. 2019. The Discovery Potential of Space-Based Gravitational Wave Astronomy, White paper submitted to the 2020 Decadal Survey, the NAS White Paper Repository, BAAS, 51, 7, 76. 9. Pacucci, Fabio., et al. 2019. Detecting the Birth of Supermassive Black Holes Formed from Heavy Seeds, White paper submitted to the 2020 Decadal Survey, the NAS White Paper Repository, BAAS, 51, 7, 117. 10. Baker, John., et al. 2019. Multi-messenger science opportunities with mHz gravitational waves, White paper submitted to the 2020 Decadal Survey, the NAS White Paper Repository, BAAS, 51, 7, 123. -
LIST of PUBLICATIONS Priyamvada Natarajan, Yale University 1
LIST OF PUBLICATIONS Priyamvada Natarajan, Yale University 1. Natarajan, Priyamvada. 2020 Black Hole Formation at Late Cosmic Epochs MNRAS, submitted. 2. Meneghetti, M., et al. 2020. A new gap between observations and theory revealed by cluster lensing Science, accepted. 3. Tam, S-I., et al. 2020. The distribution of dark matter and gas spanning 6 Mpc around post-merger galaxy cluster MS- 0451-03 MNRAS, in press. 4. Ricarte, Angelo; Tremmel, Michael; Natarajan, Priyamvada & Quinn, Thomas. 2020 A Link between Ram Pressure Stripping and Active Galactic Nuclei ApJ, 895, L8. 5. Niemeic, Anna., et al. 2020 hybrid-LENSTOOL: a self-consistent algorithm to model galaxy clusters with strong- and weak- lensing simultaneously MNRAS, 493, 3331. 6. Steinhardt, C., et al., 2020 The BUFFALO HST Survey ApJS, 247, 64. 7. Natarajan, Priyamvada et al. 2019. Disentangling nature from nurture: tracing the origin of seed black holes, White paper submitted to the 2020 Decadal Survey submitted to NAS White Paper Repository, BAAS, 51, 7, 73. 8. Cornish, Neil., et al. 2019. The Discovery Potential of Space-Based Gravitational Wave Astronomy, White paper submitted to the 2020 Decadal Survey submitted to NAS White Paper Repository, BAAS, 51, 7, 76. 9. Pacucci, Fabio., et al. 2019. Detecting the Birth of Supermassive Black Holes Formed from Heavy Seeds, White paper submitted to the 2020 Decadal Survey submitted to NAS White Paper Repository, BAAS, 51, 7, 117. 10. Baker, John., et al. 2019. Multi-messenger science opportunities with mHz gravitational waves, White paper submitted to the 2020 Decadal Survey submitted to NAS White Paper Repository, BAAS, 51, 7, 123. -
Quasar Outflows and the Formation of Dwarf Galaxies
Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 2 October 2018 Quasar outflows and the formation of dwarf galaxies Priyamvada Natarajan,1, Steinn Sigurdsson1 and Joseph Silk1,2,3 1Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, U. K. 2Department of Astronomy and Physics, Univ. of California at Berkeley, Berkeley, CA 97420, U. S. A. 3Center for Particle Astrophysics, Univ. of California at Berkeley, Berkeley, CA 97420, U. S. A. 2 October 2018 ABSTRACT In this paper we propose a scenario for the formation of a population of baryon rich, dark matter deficient dwarf galaxies at high redshift from the mass swept out in the Inter-Galactic Medium (IGM) by energetic outflows from luminous quasars. We pre- dict the intrinsic properties of these galaxies, and examine the prospects for their ob- servational detection in the optical, X-ray and radio wavebands. Detectable thermal Sunyaev-Zeldovich decrements on arc-minute scales in the cosmic microwave back- ground radiation maps are expected during the shock-heated expanding phase from these hot bubbles. We conclude that the optimal detection strategy for these dwarfs is via narrow-band Lyman-α imaging of regions around high redshift quasars. A scaled down (in the energetics) version of the same model is speculated upon as a possible mechanism for forming pre-galactic globular clusters. Key words: 1 INTRODUCTION sponding to the mass of dwarf galaxy size objects, akin to the explosion-driven galaxy formation scenarios proposed Galaxy formation is a complex physical process involving by McKee & Ostriker (1977), Ostriker & Cowie (1981) and several length, mass and time scales, therefore it is expected Ostriker & Ikeuchi (1983). -
Gravity's Reverb: Listening to Space-Time, Or Articulating The
GRAVITY’S REVERB: Listening to Space-Time, or Articulating the Sounds of Gravitational-Wave Detection STEFAN HELMREICH Massachusetts Institute of Technology http://orcid.org/0000-0003-0859-5881 I heard gravitational waves before they were detected.1 I was sitting in a pub in May 2015 with MIT physicists Scott Hughes and David Kaiser, my headphones looped into a laptop. Hughes was readying to play us some interstellar sounds: digital audio files, he explained, that were sonic simulations of what gravitational waves might sound like if, one day, such cosmic undulations arrived at detection devices on Earth. Gravitational waves are tiny but consequential wriggles in space-time, first theorized by Einstein in 1916— vibrations generated, for example, by such colossal events as the collision of black holes or the detonation of supernovae. Listening to Hughes’s .wav representations of black holes spiraling into one another, I heard washing-machine whirs, Ther- emin-like glissandos, and cybernetic chirps—noises reminiscent, I mused, of mid- twentieth century sci-fi movies (see Taylor 2001 on space-age music). Audio 1. Circular inspiral, spin 35.94% of maximum, orbital plane 0Њ,0Њ viewing angle. Created by Pei-Lan Hsu, using code written by Scott Hughes. Audio 2. Generic inspiral, eccentricity e = 0.7, inclination i =25Њ. Created by Pei-Lan Hsu, using code written by Scott Hughes. CULTURAL ANTHROPOLOGY, Vol. 31, Issue 4, pp. 464–492, ISSN 0886-7356, online ISSN 1548-1360. ᭧ by the American Anthropological Association. All rights reserved. DOI: 10.14506/ca31.4.02 GRAVITY’S REVERB These were sounds that, as it turned out, had a family resemblance to the actual detection signal that, come February 2016, would be made public by astronomers at the Laser Interferometer Gravitational-Wave Observatory (LIGO), an MIT-Caltech astronomy collaboration anchored at two massive an- tennae complexes, one in Hanford, Washington, another in Livingston, Louisiana. -
1 Katherine Freese George E. Uhlenbeck Professor of Physics
1 Katherine Freese George E. Uhlenbeck Professor of Physics Department of Physics University of Michigan Ann Arbor, MI 48109 (734) 604-1325 (cell) [email protected] Citizenship: USA Education: Sept. 1973 - June 1974: Massachusetts Institute of Technology Sept. 1974 - June 1977: Princeton University, B.A. in Physics '77 Sept. 1979 - Jan. 1982: Columbia University, M.A. in Physics '81 Feb. 1982 - Aug. 1984: University of Chicago, Ph.D. in Physics '84 Thesis Advisor: Dr. David N. Schramm Positions: 1984-85 Postdoctoral fellow at Harvard Center for Astrophysics 1985-87 Postdoctoral fellow at Institute for Theoretical Physics, Santa Barbara, California 1987-88 Presidential Fellow at UC Berkeley 1988-91 Assistant Professor of Physics, Massachusetts Institute of Technology 1991-99 Associate Professor of Physics (with tenure), University of Michigan 1999-2009 Professor of Physics, University of Michigan 2009{ George E. Uhlenbeck Professor of Physics, University of Michigan Awards, Honors and National/International Service: 2012: awarded Honorary Doctorate (Honoris Causa) at the University of Stockholm 2012: Simons Foundation Fellowship in Theoretical Physics 2011-2012: Member, Executive Board of the American Physical Society 2009{ : named George E. Uhlenbeck Professor of Physics at the Univ. of Michigan 2009{ : named Fellow, American Physical Society 2008-2113: American Physical Society General Councillor 2005-2008: Member, Astronomy and Astrophysics Advisory Committee (AAAC) mandated by Congress 2007: Visiting Professor, Perimeter Institute for Theoretical Physics 2006-2007: Visiting Miller Professor, UC Berkeley 2006: NSF Panel to evaluate Theory Proposals 2006: Reviewer, Deep Underground Science and Engineering Laboratory (DUSEL) 2006-2007: Member, Dark Matter Scientific Advisory Group (DMSAG) reporting to DOE and NSF 2005: External Review Committee, Physics Dept. -
The Sudden Death of the Nearest Quasar
THE SUDDEN DEATH OF THE NEAREST QUASAR The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Schawinski, Kevin, Daniel A. Evans, Shanil Virani, C. Megan Urry, William C. Keel, Priyamvada Natarajan, Chris J. Lintott, et al. “THE SUDDEN DEATH OF THE NEAREST QUASAR.” The Astrophysical Journal 724, no. 1 (October 26, 2010): L30–L33. © 2010 The American Astronomical Society As Published http://dx.doi.org/10.1088/2041-8205/724/1/l30 Publisher IOP Publishing Version Final published version Citable link http://hdl.handle.net/1721.1/95688 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal Letters, 724:L30–L33, 2010 November 20 doi:10.1088/2041-8205/724/1/L30 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE SUDDEN DEATH OF THE NEAREST QUASAR Kevin Schawinski1,2,18, Daniel A. Evans3,4,5, Shanil Virani1,2,6, C. Megan Urry1,2,6, William C. Keel7,19, Priyamvada Natarajan1,2,6, Chris J. Lintott8,9, Anna Manning7,19, Paolo Coppi1,2,6, Sugata Kaviraj8,10, Steven P. Bamford11, Gyula I. G. Jozsa´ 12,13, Michael Garrett12,14,15, Hanny van Arkel12, Pamela Gay16, and Lucy Fortson17 1 Department of Physics, Yale University, New Haven, CT 06511, USA; [email protected] 2 Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520, USA 3 Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 5 Elon University, Elon, NC 27244, USA 6 Department of Astronomy, Yale University, New Haven, CT 06511, USA 7 Department of Physics and Astronomy, University of Alabama, P.O. -
The BUFFALO HST Survey
The Astrophysical Journal Supplement Series, 247:64 (20pp), 2020 April https://doi.org/10.3847/1538-4365/ab75ed © 2020. The American Astronomical Society. All rights reserved. The BUFFALO HST Survey Charles L. Steinhardt1,2 , Mathilde Jauzac3,4,5 , Ana Acebron6 , Hakim Atek7 , Peter Capak1,8 , Iary Davidzon1,2 , Dominique Eckert9 , David Harvey10 , Anton M. Koekemoer11 , Claudia D. P. Lagos1,12,13 , Guillaume Mahler14 , Mireia Montes15 , Anna Niemiec14, Mario Nonino16 , P. A. Oesch17,18 , Johan Richard19 , Steven A. Rodney20 , Matthieu Schaller21 , Keren Sharon14 , Louis-Gregory Strolger22,23 , Joseph Allingham24 , Adam Amara25 , Yannick Bahé21 , Céline Bœhm26 , Sownak Bose27 , Rychard J. Bouwens28 , Larry D. Bradley11 , Gabriel Brammer1,2 , Tom Broadhurst29,30,83, Rodrigo Cañas13,31 , Renyue Cen32 , Benjamin Clément33, Douglas Clowe34, Dan Coe11 , Thomas Connor35,36 , Behnam Darvish37 , Jose M. Diego38 , Harald Ebeling39 , A. C. Edge3 , Eiichi Egami40 , Stefano Ettori41,42 , Andreas L. Faisst8 , Brenda Frye43 , Lukas J. Furtak44 , C. Gómez-Guijarro45 , J. D. Remolina González14 , Anthony Gonzalez46 , Or Graur27,47,84 , Daniel Gruen48,49 , David Harvey10, Hagan Hensley1,50, Beryl Hovis-Afflerbach1,51, Pascale Jablonka52,53, Saurabh W. Jha54 , Eric Jullo55 , Jean-Paul Kneib33,55 , Vasily Kokorev1,2 , David J. Lagattuta3,4,19 , Marceau Limousin56, Anja von der Linden57 , Nora B. Linzer1,51 , Adrian Lopez1,50, Georgios E. Magdis1,2,58 , Richard Massey3 , Daniel C. Masters35 , Matteo Maturi59, Curtis McCully60,61 , Sean L. McGee62 , Massimo Meneghetti63 , Bahram Mobasher64, Leonidas A. Moustakas35 , Eric J. Murphy65 , Priyamvada Natarajan66 , Mark Neyrinck67,68 , Kyle O’Connor20, Masamune Oguri69,70,71 , Amanda Pagul72 , Jason Rhodes35,73 , R. Michael Rich74 , Andrew Robertson4 , Mauro Sereno42,75 , Huanyuan Shan76, Graham P. -
Priyamvada Natarajan
CURRICULUM VITAE: Priyamvada Natarajan Address: Department of Astronomy Yale University P.O. Box 208101 New Haven, CT 06520-8101 U.S.A. E-Mail: [email protected] Phone(Cell): +1-203-435-2294 Homepage: http://www.astro.yale.edu/priya ACADEMIC QUALIFICATIONS & POSITIONS 2021{ present: Science Editor, Extra-galactic Astrophysics and Cosmology, The American Astronomical Society's The Astrophysical Journals. 2021 { 2022: Chair, National Astronomy and Astrophysics Advisory Committee to NASA, NSF and DoE. 2019 { 2022: Member, National Astronomy and Astrophysics Advisory Committee to NASA, NSF and DoE. 2019: Distinguished Visiting Professor at the International Center for Theoretical Sciences, Bangalore, India. 2019 { present: Advisor, Guggenheim Foundation, New York. 2019: Distinguished Visiting Professor at the Institute for Astronomy, Manoa, Hawaii. 2017 { 2022: Member, NASA LISA Science Team, NASA. 2017 { 2022: Member, International Advisory Committee of the Higgs Center for Fundamental Physics, Edinburgh, Scotland. 2017 { 2023: Director, Franke Program in Science and the Humanities, Yale University. 2017 { present: Associate, Flatiron Institute, Center for Computational Astrophysics, New York, NY. 2017 { present: Affiliate, Black Hole Initiative, Harvard University, Cambridge, MA. 2016 {2020: Chair-line, Division of Astrophysics, American Physical Society. 2014 {2017: Chair, Yale College Science Council. 2013 { present: Primary Investigator of the International CATS Scientific Collaboration. 2012: Honorary Professor (lifetime appointment), University of Delhi, New Delhi, India. 2011 { 2014: Chair, Womens Faculty Forum, Yale University, New Haven, CT. 2011 { 2012: Caroline Herschel Distinguished Visiting Professor, Space Telescope Science Institute, Baltimore, MD. 2010 { 2011: Visiting Professor, Institute for Theory and Computation, Harvard University, Cambridge, MA. 1 2010 { 2011: Visiting Fellow, Joint Institute for Laboratory Astrophysics Fellow, University of Colorado at Boulder, Boulder, CO. -
Black Hole Blues and Other Songs from Outer Space Author: Janna Levin Publishing Date: March 29, 2016 Available As Audio-Book Also
Black Hole Blues and Other Songs from Outer Space Author: Janna Levin Publishing Date: March 29, 2016 Available as audio-book also This book explains what it takes to win a Nobel Prize. It all goes back to Einstein’s general relativity published already in 1916 predicting gravitational waves, later mathematically supported by Schwarzschild’s solution for the collapsing of black holes. The author Janna Levin published her book in 2016, right at the time the announcement of the first direct observation of gravitational waves with a billion $ expensive equipment called LIGO (Laser Interferometer Gravitational-Wave Observatory), and a year before Rainer (Rai) Weiss, Kip Thorne and Barry Barish received the 2017 Nobel Prize in Physics. The LIGO observatory is described as an unbelievable sensitive arrangement of measuring equipment being capable “to measure a change in distance comparable to less than a human hair relative to 100 billion times of the circumference of the world” (10-23 strain). Being a Professor of Physics and Astronomy, Janna Levin had first hand access to the scientists to describe their endeavor from the very beginning in the 1960’s and to illustrate their astonishing and fascinating backgrounds, their life-long struggles, trials and tribulations to contribute their share to cosmological science – and as it turned out, it was not straightforward at all, but finally was honored by the Nobel Prize. Jana Levin wrote this book “at the eve of success” being published on March 29th , 2016 not knowing of the first official announcement of a gravitational wave detection on February 11th 2016, which makes the charm of the book because the author herself believed in the success of the experiment despite almost unsurmountable precision an analytical requirements.