Fourier Analyzer and Two Fast-Transform Periph- Erals Adapt to a Wide Range of Applications

Total Page:16

File Type:pdf, Size:1020Kb

Fourier Analyzer and Two Fast-Transform Periph- Erals Adapt to a Wide Range of Applications JUNE 1972 TT-PACKARD JOURNAL The ‘Powerful Pocketful’: an Electronic Calculator Challenges the Slide Rule This nine-ounce, battery-po wered scientific calcu- lator, small enough to fit in a shirt pocket, has log a rithmic, trigon ome tric, and exponen tia I functions and computes answers to IO significant digits. By Thomas M. Whitney, France Rod& and Chung C. Tung HEN AN ENGINEER OR SCIENTIST transcendental functions (that is, trigonometric, log- W NEEDS A QUICK ANSWER to a problem arithmic, exponential) or even square root. Second, that requires multiplication, division, or transcen- the HP-35 has a full two-hundred-decade range, al- dental functions, he usually reaches for his ever- lowing numbers from 10-” to 9.999999999 X lo+’’ present slide rule. Before long, to be represented in scientific however, that faithful ‘slip stick’ notation. Third, the HP-35 has may find itself retired. There’s five registers for storing con- now an electronic pocket cal- stants and results instead of just culator that produces those an- one or two, and four of these swers more easily, more quickly, registers are arranged to form and much more accurately. an operational stack, a feature Despite its small size, the new found in some computers but HP-35 is a powerful scientific rarely in calculators (see box, calculator. The initial goals set page 5). On page 7 are a few for its design were to build a examples of the complex prob- shirt-pocket-sized scientific cal- lems that can be solved with the culator with four-hour operation HP-35, from rechargeable batteries at a cost any laboratory and many Data Entry individuals could easily justify. The photograph of the calcu- The resulting nine-ounce prod- lator on this page shows how uct surprises even many who are the keys are arranged. Numbers acquainted with what today’s enter the display, which is also large-scale integrated circuits called the X register, from left can achieve. to right exactly as the keys are The HP-35 has basically the pressed. Entry is entirely free- same functions and accuracy of field, that is, digits will be dis- other HP calculators, and it is played exactly as they are en- portable. It is a close cousin to tered, including leading or trail- the many four-function elec- ing zeros. tronic calculators which have The enter-exponent key, EEX, appeared in recent years, ini- is used for entering numbers in tially from Japan and now from scientific notation. For example, many US. manufacturers. However, three features the number 612,000 may be entered as 6.12 EEX 5 or set the HP-35 apart from four-function calculators. 612 EEX 3 or -0612 EEX 7 as well as 612000. The First, none of the four-function calculators has change-sign key, CHS, changes the sign of the man- PRINTED IN U.S.A. 2 @ HEWLETT.PACKAR0 COMPANY, 1972 tissa or, if pressed immediately following EEX, the Answers greater than 1O1O0 (overflow) are dis- sign of the exponent. Mistakes during data entry played as 9.999999999 X loee, and answers smaller can be corrected by use of the clear x key, CLx. A than are returned as zeros. These are the special key is provided for entering T- HP-35's 'closest' answers. Improper operations, such as division by zero or the square root of a Display negative number, cause a blinking zero to appear. The dispIay consists of 15 seven-segment-plus- decimal-point light-emitting-diode (LED) numerals. Single-Operand Function Keys Answers between 1010 and will always be dis- The function keys operate on the number dis- ed as floating-point numbers with the decimal played in the X register, replacing it with the func- point properly located and the exponent field blank. tion of that argument. The trigonometric functions, Outside this range the HP-35 displays the answer in sin, cos, tan, arc sin, arc cos, and arc tan operate in scientific notation with the decimal point to the degrees only. For inverse trigonometric functions right of the first significant digit and the proper the function key is preceded by the arc key. The power of 10 showing at the far right of the display. angle obtained will be the principal value. To make the display more readable, a separate digit The functions log x and In x compute the log- position is provided for the decimal point. arithm of x to base 10 and base e respectively, The The display is always left justified with trailing exponential function ex is also provided. Other sin- zeros suppressed. For instance, the answer to 3 + 4 gle-operand functions are the square root of x, appears as .75 instead of 0.750000000. and the reciprocal of x, llx. - Arithmetic Keys: Two-Operand Functions The arithmetic functions, +, -, X, and +, and the power function xy,operate on the X and Y regis- Cover: Our thanks to Dr. ters, with the answer appearing in X. Numbers are Dennis R. Clark of the Stan- copied from X into Y by use of the ENTER?' key. "I ford University Department Thus to raise 2 to the 7th power the key sequence Iof Pharmacology for allow- is 7, ENTER?, 2, xy and the answer 128 is displayed ing us to photograph him at immediately after xy is pressed. This is a general work with his HP-35 Pocket principle: when a key is pressed, the correspond- Calculator. ing operation is performed immediately. E Although raising x to a power can be accom- plished via the formula xy = ey In and in fact is done this way internally, the single-keystroke op- eration is much more convenient. The power, y, can In this Issue: be any positive or negative integer or fraction, while x must be positive. The 'Powerful Pocketful': an Elec- tronic Calculator Challenges the Slide Registers and Control Keys Rule, by Thomas M. Whitney, France Five registers are available to the user. Four of these, called X, Y, Z, and T, form an operational Rode, and Chung C. Tung. , . , . Page 2 stack. The fifth, S, is for constant storage. (For Algorithms and Accuracy in the HP- clarity, capital letters refer to the registers and 35, by David S. Cochran. page 10 lower-case letters refer to the contents of the registers .) Packaging the Pocket Calculator, by Five keys are used to transfer data between regis- ters. The ENTER? key pushes the stack up, that is, Edward T. Liljenwall.. , . , . page 12 x is copied into Y, y into Z, z into T, and t is lost. New Capabilities in Digital Low- This key is used as a separator between consecu- tive data entries, such as in the power example Frequency Spectrum Analysis, by just described. Roll down, R&, is used to view the Stephan G. Cline and Norman D. contents of X, Y, Z, and T. Four consecutive opera- Marschke. page 14 tions of this key return the registers to the original state with no loss of data. 3 3 in display (X register) \ 3 duplicated into Y register by ENTER+ 4 in display. Product (12) appears in X and stack drops. Automatic ENTER? pushes 12 into Y. Display shows 5. ENTER+ pushes y into 2, x into Y. x is unchanged. 6 in display. Product (30) appears in X and stack drops. Sum (42) appears in X and stack drops. Fig. 1. HP-35 Pocket Calculator has a four-register opera- tional stack (last-in-first-out memory). Here's how the stack works to solve (3 X 4) -I- (5 X 6). Answers appear in display register X, in floating-point or scientific notation, Fig. 2. Instruction panel on back of calculator answers to 10 significant digits. most frequently asked questions. The contents of X and Y can be exchanged using semiconductor/large-scale-integration) circuits: cy;this is useful if the operands have been entered three read-only-memories (ROMs), an arithmetic in the improper order for xy, -, or +. The constant and register circuit (A&R],and a control and timing storage location, S, is accessed via the two keys circuit (C&T).The logic design was done by HP and store, STO, and recall, RCL. the circuits were developed and manufactured The operational stack is automatically pushed up by two outside vendors. Three custom bipolar cir- for data entries following any operation other than cuits are manufactured by HP's Santa Clara Divi- ENTER'?, STO, and CLx. This saves many uses of the sion: a two-phase clock driver, an LED anode ENTER? key. The stack automatically drops down driver/clock generator, and an LED cathode driver. following any two-operand function (+, -, X, +, Fig. 3 is a block diagram of the calculator. xy).For example, to do the problem (3x4) + (5x6) The HP-35 is assembled on two printed circuit the key sequence is: 3, ENTER?, 4, X, 5, ENTER'?, boards (see Fig. 4). The upper board contains the 6, X, + (see Fig. 1).ENTER? is unnecessary be- display and drivers and the keyboard. The lower tween X and 5 because the answer to the first term, and smaller board has all the MOS logic, the clock 12, is automatically transferred to Y when the 5 is driver, and the power supply. entered. Also, no RCis necessary after the second X The calculator is organized on a digit-serial, bit- since the first term, 12, is automatically transferred serial basis. This organization minimizes the num- from Z to Y after the multiplication. ber of connections on each chip and between chips, The clear-all key, CLR, clears all registers includ- thereby saving area and cost and improving reliabil- ing storage.
Recommended publications
  • Slide Rules: How Quickly We Forget Charles Molían If You Have Not Thrown out Your Old Slide Rule, Treasure It, Especially If It Is One of the More Sophisticated Types
    HISTORY OF PHYSICS91 Instrumental Background Slide Rules: How Quickly We Forget Charles Molían If you have not thrown out your old slide rule, treasure it, especially if it is one of the more sophisticated types. It is a relic of a recent age In 1614 John Napier published details of invention of the electronic calculator. Fig 1 top A straight slide rule from A.W. Faber of Bavaria his logarithms which reduced multiplica­ The bigger the slide rule, the more cl 905. (The illustration is from a 1911 catalogue). In this engraving the number 1 on the bottom scale of the slide tion and division to simple addition and accurate the calculations. But there are is placed above 1.26 on the lower scale on the main body subtraction. To make logarithms easier he limits to practicable lengths so various of the rule. The number 2 on the slide corresponds to devised rectangular rods inscribed with ingenious people devised ways of increas­ 2.52 on the lower scale, the number 4 to 5.04, and any numbers which became known as ing the scale while maintaining the device other number gives a multiple of 1.26. The line on the ‘Napier’s Bones’. By 1620, Edmund Gunter at a workable size. Several of these slide transparent cursor is at 4.1, giving the result of the had devised his ‘Gunter scale’, or Tine of rules became fairly popular, and included multiplication 1.26 x 4.1 as 5.15 (it should be 5.17 but the engraving is a little out).The longer the slide rule and numbers’, a plot of logarithms on a line.
    [Show full text]
  • The Concise Stadia Computer, Or the Text Printed on the Instrument Itself, Or Any Other Documentation Prepared by Concise for This Instrument
    Copyright. © 2005 by Steven C. Beadle (scbead 1e @ earth1ink.net). Permission is hereby granted to the members of the International Slide Rule Group (ISRG; http://groups.yahoo.com/group/sliderule) and the Slide Rule Trading Group (SRTG; http://groups.yahoo.com/group/sliderule-trade) to make unlimited copies of this doc- ument, in either electronic or printed format, for their personal use. Commercial redistribution, without the written permission of the copyright holder, is prohibited. THE CONCISE Disclaimer. This document is an independently written guide for the Concise STADIA Stadia Computer, a product of the Concise Co. Ltd., located at 2-16-23, Hirai, Edogawa-ku, Tokyo, Japan (“Concise”). This guide was prepared without the authori- zation, consent, or cooperation of Concise. The copyright holder, and not Concise or COMPUTER the ISRG, is responsible for any errors or omissions. This document was developed without translation of the Japanese language manual Herman van Herwijnen for the Concise Stadia Computer, or the text printed on the instrument itself, or any other documentation prepared by Concise for this instrument. Thus, there is no Memorial Edition assurance that the guidance presented in this document accurately reflects the uses of this instrument as intended by the manufacturer, or that it offers an accurate inter- pretation of the scales, labels, tables, and other features of this instrument. The interpretations presented in this document are distributed in the hope that they may be useful to English-speaking users of the Concise Stadia Computer. However, the copyright holder and the ISRG provide the document “as is” without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
    [Show full text]
  • The Demise of the Slide Rule (And the Advent of Its Successors)
    OEVP/27-12-2002 The Demise of the Slide Rule (and the advent of its successors) Every text on slide rules describes in a last paragraph, sadly, that the demise of the slide rule was caused by the advent of the electronic pocket calculator. But what happened exactly at this turning point in the history of calculating instruments, and does the slide rule "aficionado" have a real cause for sadness over these events? For an adequate treatment of such questions, it is useful to consider in more detail some aspects like the actual usage of the slide rule, the performance of calculating instruments and the evolution of electronic calculators. Usage of Slide Rules During the first half of the 20th century, both slide rules and mechanical calculators were commercially available, mass-produced and at a reasonable price. The slide rule was very portable ("palmtop" in current speak, but without the batteries), could do transcendental functions like sine and logarithms (besides the basic multiplication and division), but required a certain understanding by the user. Ordinary people did not know how to use it straight away. The owner therefore derived from his knowledge a certain status, to be shown with a quick "what-if" calculation, out of his shirt pocket. The mechanical calculator, on the other hand, was large and heavy ("desktop" format), and had addition and subtraction as basic functions. Also multiplication and division were possible, in most cases as repeated addition or subtraction, although there were models (like the Millionaire) that could execute multiplications directly. For mechanical calculators there was no real equivalent of the profession-specific slide rule (e.g.
    [Show full text]
  • PDF Full Text
    Digital Signal Processing: A Computer Science Perspective Jonathan Y. Stein Copyright 2000 John Wiley & Sons, Inc. Print ISBN 0-471-29546-9 Online ISBN 0-471-20059-X 16 Function Evaluation Algorithms Commercially available DSP processors are designed to efficiently implement FIR, IIR, and FFT computations, but most neglect to provide facilities for other desirable functions, such as square roots and trigonometric functions. The software libraries that come with such chips do include such functions, but one often finds these general-purpose functions to be unsuitable for the application at hand. Thus the DSP programmer is compelled to enter the field of numerical approximation of elementary functions. This field boasts a vast literature, but only relatively little of it is directly applicable to DSP applications. As a simple but important example, consider a complex mixer of the type used to shift a signal in frequency (see Section 8.5). For every sample time t, we must generate both sin@,) and cos(wt,), which is difficult using the rather limited instruction set of a DSP processor. Lack of accuracy in the calculations will cause phase instabilities in the mixed signal, while loss of precision will cause its frequency to drift. Accurate values can be quickly retrieved from lookup tables, but such tables require large amounts of memory and the values can only be stored for specific arguments. General purpose approximations tend to be inefficient to implement on DSPs and may introduce intolerable inaccuracy. In this chapter we will specifically discuss sine and cosine generation, as well as rectangular to polar conversion (needed for demodulation), and the computation of arctangent, square roots, Puthagorean addition and loga- rithms.
    [Show full text]
  • Learning from Slide Rules
    Document ID: 06_05_99_1 Date Received: 1999-06-05 Date Revised: 1999-08-01 Date Accepted: 1999-08-08 Curriculum Topic Benchmarks: M1.4.1, M.1.4.3, M1.4.6, M1.4.7, M2.4.1, M2.4.3, M2.4.5, M4.4.6, M4.4.8 Grade Level: [9-12] High School Subject Keywords: slide rule, analog computer, isomorphism, logarithm Rating: advanced Learning from Slide Rules By: Martin P Cohen, Environmental Standards, Inc, 52 Hollybrook Drive , Langhorne PA 19047 e-mail: [email protected] From: The PUMAS Collection http://pumas.jpl.nasa.gov ©1999, California Institute of Technology. ALL RIGHTS RESERVED. Based on U.S. Gov't sponsored research. Introduction -- In the days before calculators and personal computers an engineer always had a slide rule nearby. These days it is difficult to locate a slide rule outside of a museum. I don't know how many of those who have used a slide rule ever thought of it as an analog computer, but that is really what it is. As such, the slide rule can be used to teach the modern view of the relationship between nature and mathematics and about the formalization of this concept known as isomorphism, which is one of the most pervasive and important concepts in mathematics. In order to introduce the concepts that will be used, we will start with the simplest type of slide rule – one that is made up of two ordinary rulers. Using Rulers for Addition -- Two rulers can be lined up as in the figure below to show that 5 + 3 = 8.
    [Show full text]
  • One to One Property of Exponents
    One To One Property Of Exponents Yule is unbidden: she passages pettishly and manumitted her domination. Say remains gonococcoid after Vladimir wonderingly.disburthens contradictively or redintegrating any cloudlets. Mighty Jermain usually treed some zootoxin or glazed The following exercises, everyone else has vocabulary or those with a of one exponents to To attain the PRODUCT of two powers with salt ADD the exponents. Key Investigating Exponent Properties Quotient of Powers. What charge the 7 properties of exponents? In the teacher and to add the property one to of exponents and would have a positive numbers have to see it is related directly to negative exponents using power of. How can use what is one side in his goal to each property one to exponents of the base on, evaluate the same base number is rooted in a certain advantages while giving them? While having property overseas an exponential function with stump base b 1 is the same property particular. Exponential Equations MathBitsNotebookA2 CCSS Math. This step to obtain an advanced trigonometry lesson. You should also refund the properties of exponents in memory to be successful in solving exponential. Intro to Adding and Subtracting Logs Same Base Expii. Expressions using the distributive property and collecting like terms MCC. Solving Exponential Equations Varsity Tutors. Properties of Logarithmic Functions. One pat of exponential equations that is initially confusing to some students is determining how many solutions an in will have Exponential equations. Solving Exponential Equations with Different Bases examples. Example Rewrite 4243 using a wage base and exponent. I sign write here whole tune about themmaybe one day.
    [Show full text]
  • Slide Rules and Log Scales
    Name: __________________________________ Lab – Slide Rules and Log Scales [EER Note: This is a much-shortened version of my lab on this topic. You won’t finish, but try to do one of each type of calculation if you can. I’m available to help.] The logarithmic slide rule was the calculation instrument that sent people to the moon and back. At a time when computers were the size of rooms and ran on tapes and punch cards, the ability to perform complex calculations with a slide rule became essential for scientists and engineers. Functions that could be done on a slide rule included multiplication, division, squaring, cubing, square roots, cube roots, (common) logarithms, and basic trigonometry functions (sine, cosine, and tangent). The performance of all these functions have all been superseded in modern practice by the scientific calculator, but as you may have noted by now, the calculator has a “black box” effect; that is, it doesn’t give you much of a feel for what an answer means or whether it is right. Slide rules, by the way they were manipulated, gave users more of an intrinsic feel for how operations were performed. The slide rule consists of nine scales of varying size and rate – some are linear, while others are logarithmic. Part 1 of 2: Calculations (done in class) In this lab, you will use the slide rule to perform some calculations. You may not use any other means of calculation! You will be given a brief explanation of how to perform a given type of calculation, and then will be asked to calculate a few problems of each type.
    [Show full text]
  • Slide Chart Calculators
    Volume 20, Number 1, Spring, 2011 21 Slide Chart Calculators David Sweetman Introduction called a slide rule; a linear or circular slide chart that performs a calculation should be called a slide chart calculator or just Slide rules are manufactured in a variety of forms and styles. a calculator. Some are linear, usually 5, 10, or 20 inches long; others are Basic Operation circular, with diameters varying from ~ 1 inch to greater than 12 inches; others are cylindrical, with a variety of lengths The linear slide chart calculator contains one or more sliding and diameters. Additionally, some slide rules are called slide elements that are aligned with one or more fixed scales. Some- charts. The classic slide rule performs a number of math- times the slide chart calculator is used with a mathematical ematical functions; the specialty slide rule performs specific slide rule to complete the calculation. calculations for a specific application, as well as the basic Both the fixed and sliding scales are based on the loga- mathematical functions. The common slide chart does tabu- rithm of an equation, just as the major scales on a slide rule lar conversions, e.g., English to metric measurements. The are based on the logarithms of numbers. The equation may slide chart calculator performs a function similar to a spe- be a linear, polynomial, or power expression and includes the cialty slide rule in calculating a specific mathematical output applicable constants. When the appropriate input values on for a specific application. A linear calculating slide chart is the applicable scales are aligned, the output value is calcu- somewhat similar in concept to the use of two of Gunter’s lated according to the applicable equation.
    [Show full text]
  • Instructions
    Instructions - circular calculator Slide rules HOME page INSTRUCTIONS MANUALS < SITE MAP > Instruction for Use New Circular Slide Rule Multiplication Of two given numbers Rule: Set 1 on scale C to multiply on scale D. Against the multiplier on scale C read the product on scale D Example 1:1.8 x 2.5 = 4.5 Set on C to 1.8 on D. Against 2.5 on C read 4.5 on D. Of three given numbers: Example 2: 3 x 4 x 5 = 60 Set 4 on Cl to 3 on D. Against 5 on C read 60 on D. Division Of two given numbers: Rule: Set the divisor on C to the dividend on D. Against the index on C read the quotient on D. Example 3: 850 : 25 = 34 Set 25 on C to 850 on D. Against on C read 34 on 0. Of three given numbers: Example 4: 850 : 25 : 8 4.25 Set 25 on C to 850 on D. Against 8 on Cl read 4.25 on D. Multiplication and Division file:///C|/SlideRules/WebPage/collection/inst-circ.htm (1 of 4) [03/03/2001 13:43:36] Instructions - circular calculator When multiplication and division are mixed together, you can of course do them one by one in continuation; but for the sake of speed there is a simpler method. You may do both at once. Example 5: 3 x 6 / 5 = 3.6 Set 5 on C to 3 on D. Against 6 on C read 3.6 on D. Proportion As an example of the mixture of multiplication and division, here are problems in proportion.
    [Show full text]
  • Long Scale Slide Rules
    24 Journal of the Oughtred Society Long Scale Slide Rules Edwin J. Chamberlain Introduction tive. When possible, I used the actual cursor to make the The common slide rule with which we are all familiar estimate of the number of digits that could be read with has number scales that are about 10-inches long. Calcu- interpolation. When I had only a photocopy of the scale lations with slide rules having this scale length usually surface, I used a separate cursor glass with a hairline to can be resolved to a precision of about 3 or 4 digits, or make the readings. Typically, the number of digits could about 0.1% of the result. Smaller slide rules have been not be resolved to a whole number. For example, if the made to make it easier to carry a slide rule in a pocket - TMR at the right end of the scale was 999 and the space usually at some cost to precision, but longer scale lengths between the next to last gradation and the right index were developed to give greater precision. was only large enough to resolve it into 2 intervals, the Before proceeding, I will define some terms. I must next highest reading to 1000 that could be resolved by first define the phrases number scale and long scale. The estimation would be 999.5, or 3.5 digits. number scales on a slide rule that I refer to are the sin- History of Long Scale Slide Rules – gle cycle scales used for multiplication and division. We 17th through the early 19th Centuries often refer to these scales as the C and D scales.
    [Show full text]
  • Comprehensive Index of the Journal of the Oughtred Society by Barry Dreikorn, Updated Jan
    Comprehensive Index of The Journal of the Oughtred Society by Barry Dreikorn, Updated Jan. 9, 2010 Vol 0, No.0, Pilot Issue 1991 Jos-index-v0-n0- 1991 -item 1 -page 1 .txt Title: The Journal of the Oughtred Society Author: Editor Summary: Background leading to, the reasons for, and the plan to start formal publication of the Journal of the Oughtred Society Keywords: Journal of the Oughtred Society Jos-index-v0-n0- 1991 -item2-page3 .txt Title: The June Meeting in Oakland Author: Rodger Shepherd Summary: Meeting of nine attendees exhibiting their collections and discussion of supporting slide rule collecting in future by: (a) forming a society, (b) forming a publication, or (c) doing both. Keywords: slide rule collecting, publishing, organizing, standards Jos-index-v0-n0- 1991 -item3 -page5 .txt Title: Proposed Projects Author: Anon Summary: A second meeting, reprinting Cajori’s book on slide rules and allied instruments, booklets listing slide rules and their makers, attracting more people. Keywords: second meeting, reprints, Cajori, booklets, makers, membership Jos-index-v0-n0- 1991 -item4-page6.txt Title: Saul Moskowitz – In Memoriam Author: Bob Otnes Summary: Recalling Saul Moskowitz, noted antique instrument dealer and publisher of noted catalogs for over 20 years, upon his unexpected death. Keywords: Saul Moskowitz, antique scientific instruments, catalogs Jos-index-v0-n0- 1991 -item5-page7.txt Title: The Otis King Slide Rule Author: Anon Summary: Description of Otis King cylindrical slide rule, its basic operation, models, years of manufacture, figure showing two models. Keywords: Otis King, cylindrical slide rule, British patent, serial numbers, how to use.
    [Show full text]
  • Slide Rules Rule! Presented by Dr
    1 Math Circle WARM UP Questions to consider: Please rank the following events. Make your best guess as to what happened when. Moon Landing • Apollo 13 • Invention of the pocket calculator • Invention of the slide rule • Invention of the first central processing unit (CPU)/ Computer. • Graphing Calculators. • iPhone • Invention of Calculus • John Napier • First Manned Shuttle in Space • First Woman in Space • Slide Rules Rule! Presented by Dr. Brandy Wiegers, San Francisco State University. [email protected] 2 Building the Scale of Multiplication Lines 2.1 Building the Addition Table Starting with a given column and adding the given row value, build an addition table. 10 9 8 7 6 5 4 3 2 1 0 + 0 1 2 3 4 5 6 7 8 9 10 What patterns do you see? • • • 2.2 Building the Multiplication Table Starting with a given column and multiplying the given row value, build a multiplication table. 10 10 20 30 40 50 60 70 80 90 100 9 9 18 27 36 45 54 63 72 81 90 8 8 16 24 32 40 48 56 64 72 80 7 7 14 21 28 35 42 49 56 63 70 6 5 4 3 2 1 x 1 2 3 4 5 6 7 8 9 10 What patterns do you see? • • • Slide Rules Rule! Presented by Dr. Brandy Wiegers, San Francisco State University. [email protected] 3 Making Our Own Sliding Scale 1. Start with a ruler: 2. Let’s create a multiplication scale, a gradation of the ruler at regular intervals that we can use to multiply.
    [Show full text]