Review Laminectomy for Cervical Myelopathy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modified Plate-Only Open-Door Laminoplasty Versus Laminectomy and Fusion for the Treatment of Cervical Stenotic Myelopathy
n Feature Article Modified Plate-only Open-door Laminoplasty Versus Laminectomy and Fusion for the Treatment of Cervical Stenotic Myelopathy LILI YANG, MD; YIFEI GU, MD; JUEQIAN SHI, MD; RUI GAO, MD; YANG LIU, MD; JUN LI, MD; WEN YUAN, MD, PHD abstract Full article available online at Healio.com/Orthopedics. Search: 20121217-23 The purpose of this study was to compare modified plate-only laminoplasty and lami- nectomy and fusion to confirm which of the 2 surgical modalities could achieve a better decompression outcome and whether a significant difference was found in postopera- tive complications. Clinical data were retrospectively reviewed for 141 patients with cervical stenotic myelopathy who underwent plate-only laminoplasty and laminectomy and fusion between November 2007 and June 2010. The extent of decompression was assessed by measuring the cross-sectional area of the dural sac and the distance of spinal cord drift at the 3 most narrowed levels on T2-weighted magnetic resonance imaging. Clinical outcomes and complications were also recorded and compared. Significant en- largement of the dural sac area and spinal cord drift was achieved and well maintained in both groups, but the extent of decompression was greater in patients who underwent Figure: T2-weighted magnetic resonance image laminectomy and fusion; however, a greater decompression did not seem to produce a showing the extent of decompression assessed by better clinical outcome. No significant difference was observed in Japanese Orthopaedic measuring the cross-sectional area of the dural sac Association and Nurick scores between the 2 groups. Patients who underwent plate-only (arrow). laminoplasty showed a better improvement in Neck Dysfunction Index and visual ana- log scale scores. -
2019 Spine Coding Basics
2019 Spine Coding Basics Presenter: Kerri Larson, CPC Directory of Coding and Audit Services 2019 Spine Surgery 01 Spine Surgery Terminology & Anatomy 02 Spine Procedures 03 Case Study 04 Diagnosis 05 Q & A Spine Surgery Terminology & Anatomy Spine Surgery Terminology & Anatomy Term Definition Arthrodesis Fusion, or permanent joining, of a joint, or point of union of two musculoskeletal structures, such as two bones Surgical procedure that replaces missing bone with material from the patient's own body, or from an artificial, synthetic, or Bone grafting natural substitute Corpectomy Surgical excision of the main body of a vertebra, one of the interlocking bones of the back. Cerebrospinal The protective body fluid present in the dura, the membrane covering the brain and spinal cord fluid or CSF Decompression A procedure to remove pressure on a structure. Diskectomy, Surgical removal of all or a part of an intervertebral disc. discectomy Dura Outermost of the three layers that surround the brain and spinal cord. Electrode array Device that contains multiple plates or electrodes. Electronic pulse A device that produces low voltage electrical pulses, with a regular or intermittent waveform, that creates a mild tingling or generator or massaging sensation that stimulates the nerve pathways neurostimulator Spine Surgery Terminology & Anatomy Term Definition The space that surrounds the dura, which is the outermost layer of membrane that surrounds the spinal canal. The epidural space houses the Epidural space spinal nerve roots, blood and lymphatic vessels, and fatty tissues . Present inside the skull but outside the dura mater, which is the thick, outermost membrane covering the brain or within the spine but outside Extradural the dural sac enclosing the spinal cord, nerve roots and spinal fluid. -
Analysis of the Cervical Spine Alignment Following Laminoplasty and Laminectomy
Spinal Cord (1999) 37, 20± 24 ã 1999 International Medical Society of Paraplegia All rights reserved 1362 ± 4393/99 $12.00 http://www.stockton-press.co.uk/sc Analysis of the cervical spine alignment following laminoplasty and laminectomy Shunji Matsunaga1, Takashi Sakou1 and Kenji Nakanisi2 1Department of Orthopaedic Surgery, Faculty of Medicine, Kagoshima University; 2Department of Mechanical Engineering, Faculty of Engineering, Kagoshima University, Sakuragaoka, Kagoshima, Japan Very little detailed biomechanical examination of the alignment of the cervical spine following laminoplasty has been reported. We performed a comparative study regarding the buckling- type alignment that follows laminoplasty and laminectomy to know the mechanical changes in the alignment of the cervical spine. Lateral images of plain roentgenograms of the cervical spine were put into a computer and examined using a program we developed for analysis of the buckling-type alignment. Sixty-four patients who underwent laminoplasty and 37 patients who underwent laminectomy were reviewed retrospectively. The subjects comprised patients with cervical spondylotic myelopathy (CSM) and those with ossi®cation of the posterior longitudinal ligament (OPLL). The postoperative observation period was 6 years and 7 months on average after laminectomy, and 5 years and 6 months on average following laminoplasty. Development of the buckling-type alignment was found in 33% of patients following laminectomy and only 6% after laminoplasty. Development of buckling-type alignment following laminoplasty appeared markedly less than following laminectomy in both CSM and OPLL patients. These results favor laminoplasty over laminectomy from the aspect of mechanics. Keywords: laminoplasty; laminectomy; buckling; kyphosis; swan-neck deformity Introduction In 1930, Eiselberg1 reported a case of postoperative of postoperative abnormal alignment from the aspect kyphosis of the spine following laminectomy from the of the presence or absence of buckling-type alignment. -
Lumbar Laminectomy
Patient Education Lumbar Laminectomy Description The spine consists of five separate divisions: cervical (seven vertebrae), thoracic (12 vertebrae), lumbar (five vertebrae), the sacrum, and the coccyx. Each vertebra, interlocks with the segment above and below it through the superior and inferior articular processes. Between each vertebra is an intervertebral disc that provides cushioning for the spine. The lamina and pedicle, along with the vertebral body, provide the borders that create the spinal canal, which the spinal cord runs through to transmit nerve signals. There are several different scenarios or conditions that may produce symptoms that would lead your physician to further Medical Illustration © 2016 Nucleus Medical Art, Inc. investigate, and possibly recommend this surgery. Stenosis causing Radicular Pain Spinal stenosis is the narrowing of the articular spaces within the spine; this may impinge on the nerves or the spinal cord. This is a degenerative process and may eventually lead to further changes on the spine over time. Radicular symptoms are pain, numbness, weakness, tingling, etc., that radiate along a specific nerve root (or dermatome) to other parts of the body outside of the spine. Surgical correction of this problem may include a minimally invasive decompression (shaving bone away to create more space around the nerve), often referred to as laminectomy (removing part or all of the lamina in order to provide more space and relieve impingement). In some cases, movement of one vertebrae slipping against another (spondylolisthesis), may require a vertebral fusion. This may be performed open vs. minimally invasive. Disc Herniation Herniation of the intervertebral disc may be due to an acute traumatic incident. -
Modern Advances in Joint Replacement and Rapid Recovery
Modern Advances in Joint Replacement and Rapid Recovery UCSF Osher Mini-Med School Lecture Series Jeffrey Barry, M.D. Assistant Professor of Orthopaedic Surgery Division of Adult Reconstruction University of California, San Francisco Disclosures . No relevant disclosures to this talk About Me . Bay Area Native . UCSF - U Can Stay Forever Outline . Burden of Disease and Epidemiology . The Basics of Hip and Knee Replacement . What’s improving over the last decade - Longevity - Pain Management - Hospital Stay - Thromboembolism prophylaxis - Risk Reduction Question What is the most common inpatient surgery performed in the US? 1. Percutaneous coronary angioplasty 2. Total hip replacement 3. Lumbar Laminectomy 4. Appendectomy 5. Total knee replacement Burden of Disease . Arthritis = most common cause of disability in the US . 22.7% of adults have doctor-diagnosed arthritis - 43.2% of patients with arthritis report activity limitations due to disease . By 2030: - 3.5 million TKA (673%) - 570,000 THA (174%) . Curve updated 2014 – just as predicted! Causes of Increased Utilization . Aging Population . Patients receiving arthroplasty at a younger age - Improvements in technology - Obesity Why Replace a Joint? Arthritis arthro – joint itis – inflammation What is Arthritis – Disease of Cartilage . Cartilage Degeneration - Pain - Limp - Swelling - Loss of range of motion - Eventual deformity Arthritis Affects on Your Life • Quality of Life • Independence • Movement, Walking, Exercise • Self-image • Self-esteem • Family Life • Sleep • Everything and Everybody Causes of Arthritis . Osteoarthritis - “wear and tear” . Inflammatory arthritis . Trauma, old fractures . Infection . Osteonecrosis - “lack of oxygen to the bone” . Childhood/ developmental disease Diagnosis . Clinical Symptoms + Radiographic . Radiographs – Standing or Weight bearing! . MRI is RARELY needed!!! - Expensive - Brings in other issues - Unnecessary treatment - Unnecessary explanations Knee Arthritis . -
Lumbar Laminectomy Or Laminotomy
Patient Instructions: Lumbar Laminectomy or Laminotomy Surgical Technique A lumbar laminectomy or laminotomy is a surgical approach performed from the back of the lumbar spine. It is usually done through an incision in the middle of the back. Using minimally invasive techniques a small window of bone is drilled in the lamina to allow the surgeon to unpinch the underlying nerves (laminotomy), or in more severe cases the bone is removed completely on both sides to allow nerves on both sides of the spinal canal to be decompressed (laminectomy). It is done using an operating microscope and microsurgical technique. It is used to treat spinal stenosis or lateral recess stenosis and alleviate the pain and/or numbness that occurs in a patients lower back or legs. It can many times be performed on an outpatient basis without the need for an overnight stay in a hospital. Before Surgery • Seven days prior to surgery, please do not take any anti-inflammatory NSAID medications (Celebrex, Ibuprofen, Aleve, Naprosyn, Advil, etc.) as this could prolong your bleeding time during surgery. • Do not eat or drink anything after midnight the day before surgery. This means nothing to drink the morning of surgery except you may take your normal medication with a sip of water if needed. This includes your blood pressure medicine, which in general should be taken. Consult your surgeon or primary care doctor regarding insulin if you take it. • Please do not be late to check in on the day of surgery or it may be cancelled. • Please bring your preoperative folder with you to the surgery and have it when you check in. -
Cervical Fusion
Medical Coverage Policy Effective Date ............................................. 6/15/2021 Next Review Date ....................................... 6/15/2022 Coverage Policy Number .................................. 0527 Cervical Fusion Table of Contents Related Coverage Resources Overview .............................................................. 1 Acupuncture Coverage Policy ................................................... 1 Bone, Cartilage and Ligament Graft Substitutes General Background ............................................ 4 Bone Growth Stimulators: Electrical (Invasive, Medicare Coverage Determinations .................... 9 Noninvasive), Ultrasound Coding/Billing Information .................................... 9 Discography Intervertebral Disc (IVD) Prostheses References ........................................................ 11 Intraoperative Monitoring Lumbar Fusion for Spinal Instability and Degenerative Disc Conditions, Including Sacroiliac Fusion Minimally Invasive Intradiscal/Annular Procedures and Trigger Point Injections INSTRUCTIONS FOR USE The following Coverage Policy applies to health benefit plans administered by Cigna Companies. Certain Cigna Companies and/or lines of business only provide utilization review services to clients and do not make coverage determinations. References to standard benefit plan language and coverage determinations do not apply to those clients. Coverage Policies are intended to provide guidance in interpreting certain standard benefit plans administered by Cigna Companies. -
Long-Term Follow-Up Review of Patients Who Underwent Laminectomy for Lumbar Stenosis: a Prospective Study
Long-term follow-up review of patients who underwent laminectomy for lumbar stenosis: a prospective study Manucher J. Javid, M.D., and Eldad J. Hadar, M.D. Department of Neurological Surgery, University of Wisconsin Hospital and Clinics, Madison, Wisconsin Object. Decompressive laminectomy for stenosis is the most common operation performed on the lumbar spine in older patients. This prospective study was designed to evaluate long-term results in patients with symptomatic lumbar stenosis. Methods. Between January 1984 and January 1995, 170 patients underwent surgery for lumbar stenosis (86 patients), lumbar stenosis and herniated disc (61 patients), or lateral recess stenosis (23 patients). The male/female ratio for each group was 43:43, 39:22, and 14:9, respectively. The average age for all groups was 61.4 years. For patients with lumbar stenosis, the success rate was 88.1% at 6 weeks and 86.7% at 6 months. For patients with lumbar stenosis and herniated disc, the success rate was 80% at 6 weeks and 77.6% at 6 months, with no statistically significant difference between the two groups. For patients with lateral recess stenosis, the success rate was 58.7% at 6 weeks and 63.6% at 6 months; however, the sample was not large enough to be statistically significant. One year after surgery a questionnaire was sent to all patients; 163 (95.9%) responded. The success rate in patients with stenosis had declined to 69.6%, which was significant (p = 0.012); the rate for patients with stenosis and herniated disc was 77.2%; and that for lateral recess stenosis was 65.2%. -
Tension Band Wiring Is As Effective As a Compression Screw in a Neglected, Medial Maleolus Non-Union
Case Report Journal of Orthopaedic Case Reports 2017 Jul-Aug: 7(4):Page 72-75 Tension Band Wiring Is As Effective As A Compression Screw In A Neglected, Medial Maleolus Non-Union: A Case-Based Discussion & Literature Review Rakesh John¹, Mandeep Singh Dhillon¹, Ankit Khurana², Sameer Aggarwal¹, Prasoon Kumar¹ Learning Points for this Article: Compression screw fixation has been the workhorse implant for medial malleolar nonunions; however, tension band wiring may be a better technique for such nonunions, as seen in this rare case of isolated, medial malleolus gap nonunion. Abstract Introduction: Isolated, neglected medial malleolus nonunion cases are a rare entity in orthopedic literature. All studies (except one) have described the use of compression screws (with or without plates) for medial malleolar nonunion management. In acute fractures, tension band wiring (TBW) has shown excellent results both in biomechanical and in clinical studies. On the contrary, it has seldom been used in nonunion or in neglected cases. Case Report: We describe a 6-month-old neglected medial malleolus gap nonunion case who presented with progressive pain and limp. TBW with a monoblock, inlay, tricortical, and iliac crest bone graft for the defect was performed. The fracture united within 12 weeks and patient went back to his normal work routine; on the latest follow-up at 3 years, the patient was asymptomatic with no clinicoradiologic signs of secondary osteoarthritis of the ankle joint. Conclusion: TBW may be better than screw fixation in the management of medial malleolus nonunion as it is technically straightforward and cost-effective, can provide equal or more compression than a screw; it does not damage the sandwiched inlay bone graft, and the amount of compression is surgeon-controlled. -
Case Report Arthroscopic Removal of a Wire Fragment from the Posterior Septum of the Knee Following Tension Band Wiring of a Patellar Fracture
Hindawi Publishing Corporation Case Reports in Orthopedics Volume 2015, Article ID 827140, 5 pages http://dx.doi.org/10.1155/2015/827140 Case Report Arthroscopic Removal of a Wire Fragment from the Posterior Septum of the Knee following Tension Band Wiring of a Patellar Fracture Yasuaki Tamaki, Takashi Nakayama, Kenichiro Kita, Katsutosi Miyatake, Yoshiteru Kawasaki, Koji Fujii, and Yoshitsugu Takeda Department of Orthopedic Surgery, Tokushima Red Cross Hospital, 103 Irinokuchi, Komatsushima-cho, Komatsushima, Tokushima 773-8502, Japan Correspondence should be addressed to Yoshitsugu Takeda; [email protected] Received 25 November 2014; Accepted 22 January 2015 Academic Editor: Dimitrios S. Karataglis Copyright © 2015 Yasuaki Tamaki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Tension band wiring with cerclage wiring is most widely used for treating displaced patellar fractures. Although wire breakage is not uncommon, migration of a fragment of the broken wire is rare, especially migration into the knee joint. We describe here a rare case of migration of a wire fragment into the posterior septum of the knee joint after fixation of a displaced patellar fracture with tension band wiring and cerclage wiring. Although it was difficult to determine whether the wire fragment was located within or outside the knee joint from the preoperative plain radiographs or three-dimensional computed tomography (3D CT), we found it arthroscopically through the posterior transseptal portal with assistance of intraoperative fluoroscopy. Surgeons who treat such cases should bear in mind the possibility that wire could be embedded in the posterior septum of the knee joint. -
Variability in Olecranon Ao Fracture Fixation: a Radiological Study V.M
Original Article East African Orthopaedic Journal VARIABILITY IN OLECRANON AO FRACTURE FIXATION: A RADIOLOGICAL STUDY V.M. Mutiso*, MBChB, MMed(Surg), FCS(ECSA), Department of Orthopaedic Surgery, College of Health Sciences, University of Nairobi, P. O. Box 19676 – 00202, Nairobi, Kenya and J. Chigumbura, MBBS (University of Warwick), GPST1, UHNS *At the time of writing the author was a Clinical Fellow ( Arthroscopy & Arthroplasty) in the Directorate of Orthopaedics and Trauma at the University of North Staffordshire in United Kingdom Correspondence to: Dr. V.M. Mutiso, Department of Orthopaedic Surgery, College of Health Sciences, University of Nairobi, P. O. Box 19676 – 00202, Nairobi, Kenya. Email: [email protected] ABSTRACT Background: Tension Band Wire(TBW) fixation of olecranon fracture is a commonly used technique by orthopaedic surgeons. However surgeons do not strictly adhere to the AO standard. Objectives: To determine the use and variability of this technique by surgeons at the hospital. Design: A hospital based retrospective study using anonymous radiological records. Setting: North Staffordshire University Hospital in United Kingdom. Materials and Methods: Computer software was used to retrieve, review and measure pre and postoperative radiographs of olecranon fracture cases. All identifying information was electronically masked. Results: The mean age was 50.1 years with a median of 56 years. 16.9% were open fractures. Fifty percent of the TBW met the AO standard. INTRODUCTION The triceps muscle attaches to the ulna proximally and it articulates with the distal humerus. It is Olecranon fractures are a relatively common acute subcutaneous along most of its length and is thus injury worldwide and are commonly treated operatively. -
Delayed Diagnosis of Tandem Spinal Stenosis: a Retrospective Institutional Review
International Journal of Spine Surgery, Vol. 13, No. 3, 2019, pp. 283–288 https://doi.org/10.14444/6038 ÓInternational Society for the Advancement of Spine Surgery Delayed Diagnosis of Tandem Spinal Stenosis: A Retrospective Institutional Review AMIT BHANDUTIA, MD, LUKE BROWN, MD, MBA, ALYSA NASH, MD, IAN BUSSEY, MD, MARK SHASTI, MD, EUGENE KOH, MD, PHD, KELLEY BANAGAN, MD, STEVEN LUDWIG, MD, DANIEL GELB, MD Department of Orthopaedics, University of Maryland Medical Center, Baltimore, Maryland ABSTRACT Background: Tandem spinal stenosis (TSS) is defined as simultaneous spinal stenosis in the cervical, thoracic, and/or lumbar regions and may present with both upper and lower motor neuron symptoms, neurogenic claudication, and gait disturbance. Current literature has focused mainly on the prevalence of TSS and treatment methods, while the incidence of delayed TSS diagnosis is not well defined. The purpose of this study was to determine the incidence of delayed TSS diagnosis at our institution and describe the clinical characteristics commonly observed in their particular presentation. Methods: Following institutional review board approval, an institutional billing database review was performed for patients who underwent a spinal decompression procedure between 2006 and 2016. Thirty-three patients who underwent decompression on 2 separate spinal regions within 1 year were included for review. Patients with delayed diagnosis of TSS following the first surgery were differentiated from those with preoperative diagnosis of TSS. Results: TSS requiring surgical decompression occurred in 33 patients, with the incidence being 2.06% in this cohort. Fifteen patients received a delayed diagnosis after the first surgical decompression (45%) and were found to have a longer interval between decompressions (7.6 6 2.1 months versus 4.01 6 3 months, P ¼ .0004).