Habitat Use of Invasive Monkey Goby (Neogobius Fluviatilis) And

Total Page:16

File Type:pdf, Size:1020Kb

Habitat Use of Invasive Monkey Goby (Neogobius Fluviatilis) And View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library Hydrobiologia (2019) 846:147–158 https://doi.org/10.1007/s10750-019-04060-9 (0123456789().,-volV)( 0123456789().,-volV) PRIMARY RESEARCH PAPER Habitat use of invasive monkey goby (Neogobius fluviatilis) and pumpkinseed (Lepomis gibbosus) in Lake Balaton (Hungary): a comparison of electrofishing and fyke netting István Czeglédi . Bálint Preiszner . Zoltán Vitál . Bernadett Kern . Nóra Boross . András Specziár . Péter Takács . Tibor Erős Received: 5 February 2019 / Revised: 23 August 2019 / Accepted: 26 August 2019 / Published online: 6 September 2019 © The Author(s) 2019 Abstract Detailed knowledge on the habitat pref- assessing habitat use and population structure of erence of invasive fishes and the bias of different invasive fishes. fishing methods in determining their population dynamic parameters are essential in fisheries man- Keywords Non-native fish · agement, ecology and conservation. This study was Anthropogenic habitat degradation · conducted to determine the habitat use and length Sampling methods · Habitat preference · frequency distribution of the invasive monkey goby Large lakes and pumpkinseed in the littoral zone of Lake Balaton (Hungary) using two different sampling methods, electrofishing and fyke netting. In general, both Introduction species preferred anthropogenically modified habitat types (rip-rap shorelines and harbours) compared Biological invasions are major contributors to the loss with natural reed habitats with silty-sand bottom. of biodiversity and the homogenisation of biota Length frequency distribution data showed significant worldwide (Rahel, 2000; Clavero & Garcı´a-Berthou, between-gear differences, since electrofishing 2005; Dudgeon et al., 2006). Human activity is resulted in the capture of larger individuals in greater rapidly transforming natural ecosystems and habitats proportion than fyke nets for both species. This study, which alterations often facilitate the spreading of which includes the first detailed data about the habitat non-native species (Byers, 2002; Johnson et al., use of the highly invasive monkey goby in lakes, 2008). Fishes are amongst the most common intro- suggests that invasive species may benefit from the duced taxa worldwide, mainly for societal demands alteration of the littoral zone. It also highlights that of fish products, angling and ornamental market reliance on single gear surveys can be misleading in (Gozlan, 2008). However, introduction of non-native freshwater fishes can often cause catastrophic eco- logical consequences (Vitule et al., 2009). Lakes are Handling editor: Fernando M. Pelicice particularly vulnerable to introduction of non-native fishes and these ecosystems often maintain several I. Czegle´di (&) · B. Preiszner · Z. Vita´l· unique endemism. For instance, the introduction of B. Kern · N. Boross · A. Speczia´r · P. Taka´cs · T. Ero˝s Nile perch [Lates niloticus (Linnaeus, 1758)] along Balaton Limnological Institute, MTA Centre for with several tilapiine species into Lake Victoria Ecological Research, TihanyKlebelsberg K. u. 3, 8237, Hungary caused dramatic reductions of the previously abun- e-mail: [email protected] dant endemic haplochromine species (Hughes, 1986; 123 148 Hydrobiologia (2019) 846:147–158 Ogutu-Ohwayo, 1990; Witte et al., 1992). For pumpkinseed [Lepomis gibbosus (Linnaeus, 1758)] predicting the ecosystem impacts of non-native are the most dominant invasive species (Speczia´r, species and developing more effective management 2010). However, compared to watercourses, few strategies to control their negative impacts and detailed data exist about their abundance and habi- spreading, detailed information about their spatial tat-use patterns in this and other European lakes (e.g. distribution and habitat preference is a prerequisite Neophitous & Giapis 1994; Vila-Gispert & Moreno- (Cooper et al., 2009; Verhelst et al., 2015). Amich, 1998; Dembski et al., 2008; Didenko, 2013). Identifying effective sampling techniques of non- The monkey goby is a small, invasive benthic fish, native fishes is crucial to estimate their abundances, from the Ponto–Caspian region, which was first and also for feasible population control measures documented in Lake Balaton in 1970 (Bı´ro´, 1971). (Trebitz et al., 2009; Collins et al., 2015). It is known Previous studies suggested that monkey goby prefers that different sampling gears can provide different inshore habitats with finer substrata (i.e. silty sand, estimations of the abundance of a given species even sand, small gravel) in rivers (Ero˝s et al., 2005; in the same location, which complicates the choice of Ada´mek et al., 2007;Cˇ a´pova´ et al., 2008; Borcherd- an appropriate sampling method (Johnson et al., ing et al., 2013). The habitat use of the species is 2005; Brandner et al., 2013). Moreover, fish size understudied in lakes, although Didenko (2013) selectivity and sampling cost and effort could also found most of the adult and sub-adult individuals differ between sampling methods (e.g. Ero˝s et al., on sandy bottoms. The pumpkinseed is a centrarchid 2009; Ribeiro et al., 2015). Although electrofishing is fish (sunfish) native to North America. In several the most commonly used method in the routine European countries (including Hungary), it has monitoring of fish assemblages in the littoral zone of become widely established and form invasive popu- lakes (Minns et al., 1994; Pierce et al., 2001; CEN, lations in many, but not all cases (Cucherousset et al., 2003; Eggleton et al., 2010), several studies empha- 2009; Copp et al., 2017). The species inhabits both sise the use of complementary sampling methods for lentic and lotic environments (Robinson et al., 2000; a more complete estimation of fish assemblage Fox & Copp, 2014) and has various negative impacts structure (e.g. Weaver & Magnuson, 1993; Clark on native fauna (Tomecˇek et al., 2007; Van Kleef et al., 2007; Bonvechio et al., 2014; Hinlo et al., et al., 2008). According to Bı´ro´ (1997), pumpkinseed 2017). Unlike other gears, fyke nets may be univer- began to colonise Lake Balaton presumably from a sally applicable for monitoring fish communities in a nearby fishpond between 1904 and 1908. Nowadays, wide variety of littoral meso-habitats. In fact, several it has stable and self-sustaining populations in the studies indicated that fyke nets were highly effective whole lake and its drainage (Bı´ro´ et al., 2003). in catching small-bodied fishes and tended to collect Although these two fish species may seriously impact more individuals and more species of fishes than food web in the littoral zone of the lake via the other gears (Weaver & Magnuson, 1993; Clark et al., competition of food resources and space with native 2007; Eggleton et al., 2010). Nevertheless, less fishes (Speczia´r, 2010), no study to date examined research has been devoted to compare the habitat their habitat-use patterns, especially with different use and population dynamic parameters of non-native sampling methods, which may halt effective man- fish species using different sampling methods (but agement measures. see, e.g. Trebitz et al., 2009; Bauer-Haa´z et al., 2014). This study was conducted to determine the habitat Several non-native fishes settled in European use and length frequency distribution of the monkey lakes, which may threaten biodiversity and ecosystem goby and the pumpkinseed in the littoral zone of Lake functioning (e.g. Musil et al., 2010; Ciutti et al., Balaton using two different sampling methods, elec- 2011; Ferincz et al., 2016; Taka´cs et al., 2017). Yet trofishing and fyke netting. We hypothesised that data are sporadic about their abundance and habitat- both non-native species might prefer anthropogeni- use patterns, which may hinder the determination of cally modified habitat types (rip-rap shorelines and population trends and eradication strategies. In the harbours) to natural reed covered areas with silty- littoral zone of Lake Balaton, which is the largest sand bottom. We were especially interested to shallow lake in Central Europe, the monkey goby compare whether the two different sampling methods [Neogobius fluviatilis (Pallas, 1814)] and the characterise the habitat-use patterns of the two 123 Hydrobiologia (2019) 846:147–158 149 species consistently. Finally, regarding the length Fish sampling frequency distribution of the species, we predicted that fyke netting would catch smaller individuals, and We sampled fishes during three sampling periods in electrofishing would catch larger individuals, and 2017: (1) spring (from 24 April to 04 May), summer hereby complement each other on the size-structured (from 12 July to 19 July), and autumn (from 18 habitat use of the two species (see e.g. Chick et al., September to 11 October). Three distinct mesohabitat 1999; Ruetz et al., 2007; Warry et al., 2013; Francis types can be distinguished in the littoral zone of the et al., 2014 for other small-bodied species). lake: (1) semi-natural reed covered areas, (2) rip-rap shoreline and (3) harbours. Reed habitats had a depth of 40–140 cm and had silty-sand bottom. Reed strip Materials and methods width along the shoreline varied between 8 and 40 m. The rip-rap shorelines consisted of large rocks and Study area boulders with diameter size of 20–40 cm. They had a depth of 35–140 cm and they gradually sloped. The Lake Balaton (Hungary) is the largest lake (surface harbours could be characterised by deep water (110– area: 593 km2; mean depth: 3.2 m) in Central Europe 330 cm) and heavy boat traffic. Most part of the (Fig. 1). The lake is mesotrophic (Istva´novics et al., shoreline of this habitat type was strengthened by 2007). About 40% of the littoral zone is covered by concrete which was usually perpendicular to the common reed [Phragmites australis (Cav.) Trin. ex bottom creating a concrete “wall”. Substrate of the Steud.] (Speczia´r et al., 2013), but the rest of the harbours consisted of silty sand. Electrofishing and shoreline is anthropogenically modified (mainly rip- fyke netting were performed in reed and rip-rap rap sections, beaches, and harbours).
Recommended publications
  • Article Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Article Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape Maxime Policarpo1, Katherine E Bemis2, James C Tyler3, Cushla J Metcalfe4, Patrick Laurenti5, Jean-Christophe Sandoz1, Sylvie Rétaux6 and Didier Casane*,1,7 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. 2 NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A. 4 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 5 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- Yvette, France. 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. * Corresponding author: e-mail: [email protected]. !1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role.
    [Show full text]
  • Neogobius Melanostomus (Pallas, 1814) Lacking the Black Spot on the fi Rst Dorsal fi N – a Morphometric and Meristic Comparison
    Bulletin of Fish Biology Volume 16 Nos. 1/2 31.12.2016 1-14 Neogobius melanostomus (Pallas, 1814) lacking the black spot on the fi rst dorsal fi n – a morphometric and meristic comparison Neogobius melanostomus (Pallas, 1814) ohne schwarzen Fleck auf der ersten Rückenfl osse – ein morphologischer und meristischer Vergleich Mara Roß*, Iris Woltmann & Heiko Brunken Research Group Fish Ecology, City University of Applied Sciences Bremen, Neustadtswall 30, D-28199 Bremen, Germany *Corresponding author: [email protected] Summary: In 2014 a total of 488 specimens of round gobies was captured in the lower River Weser. These specimens exhibited two distinct pigmentation patterns of the fi rst dorsal fi n. Whereas in approximately 80 % of the individuals the characteristic large oblong black spot on the posterior part of the fi rst dorsal fi n was present, it was lacking in about 20 % of the specimens. This black spot is regarded as an important feature in species identifi cation. 200 voucher specimens, 100 individuals with spot and 100 lacking the typi- cal spot, were analyzed morphologically and meristically and compared statistically. Despite some scattered differences (i.e. ratio of preventral distance/standard length, the number of mid-lateral scales and number of mid-lateral scales of the caudal fi n) the two groups broadly corresponded. The results are consistent with fi ndings from invasive N. melanostomus in Lake Erie/North America, where a similar variation in pigmentation pattern was observed. Thus we assign the specimens of gobies exhibiting morphological characteristics of round gobies but lacking the black spot on the dorsal fi n to the species N.
    [Show full text]
  • Arrival of Round Goby Neogobius Melanostomus (Pallas, 1814) and Bighead Goby Ponticola Kessleri (Günther, 1861) in the High Rhine (Switzerland)
    BioInvasions Records (2013) Volume 2, Issue 1: 79–83 Open Access doi: http://dx.doi.org/10.3391/bir.2013.2.1.14 © 2013 The Author(s). Journal compilation © 2013 REABIC Short Communication Arrival of round goby Neogobius melanostomus (Pallas, 1814) and bighead goby Ponticola kessleri (Günther, 1861) in the High Rhine (Switzerland) Irene Kalchhauser*, Peter Mutzner, Philipp E. Hirsch and Patricia Burkhardt-Holm Program Man-Society-Environment, Dept. of Environmental Sciences, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland E-mail: [email protected] (IK), [email protected] (PM), [email protected] (PEH), [email protected] (PBH) *Corresponding author Received: 20 July 2012 / Accepted: 31 October 2012 / Published online: 22 November 2012 Handling editor: Vadim Panov Abstract A number of Ponto-Caspian gobiid species are currently invading European coasts and freshwaters. They do not only present a nuisance to fishermen, but evidence suggests that they compete with native benthic fishes and may contribute to changes in ecosystem function. This paper reports the presence of round goby Neogobius melanostomus individuals and an established population of bighead goby Ponticola kessleri in the High Rhine. Key words: gobiidae; non-native; alien; invasion; High Rhine; Switzerland 2001) was predicted to promote westward Introduction migration of fish species (Balon et al. 1986), including Ponto-Caspian gobiids (Proterorhinus Several goby species from the Caspian and Black marmoratus). In the meantime, five of six gobiid Sea are currently spreading in European rivers. species predicted to invade the Rhine (Freyhof Ponticola kessleri (Günther, 1861; Neilson and 2003) have indeed arrived. Their dispersal Stepien 2009), Neogobius melanostomus (Pallas, appears to be facilitated by shipping, as round 1814), Proterorhinus marmoratus (Pallas, 1814), goby dispersal has followed shipping routes Neogobius fluviatilis (Pallas, 1814), and Babka (Brown and Stepien 2009; LaRue et al.
    [Show full text]
  • The Recent Distribution and Abundance of Non-Native Neogobius Fishes in the Slovak Section of the River Danube
    J. Appl. Ichthyol. 21 (2005), 319–323 Received: January 30, 2005 Ó 2005 Blackwell Verlag, Berlin Accepted: June 15, 2005 ISSN 0175–8659 The recent distribution and abundance of non-native Neogobius fishes in the Slovak section of the River Danube By P. Jurajda1,J.Cˇ erny´2, M. Polacˇ ik1,3, Z. Valova´1,3, M. Jana´cˇ 1,3,R.Blazˇ ek3 and M. Ondracˇ kova´1 1Department of Fish Ecology, Institute of Vertebrate Biology AS CR, Brno, Czech Republic; 2Department of Hydrobiology, Institute of Zoology SAS, Bratislava, Slovak Republic; 3Department of Zoology and Ecology, Faculty of Science Masaryk University, Brno, Czech Republic Summary in the Sio´Channel (connecting Lake Balaton and the main The distributions of invasive Neogobius species were investi- Danube channel), and in the River Tisza and its tributary, gated in the Slovak section of the River Danube from the River Bodrog, both in Hungary (Ahnelt et al., 1998). Bratislava downstream to the village of Chl’aba. During More recently, monkey goby has been recorded in the October 2004, the main channel of the Danube was sampled, Slovakian Danube near Hungary (Stra´nˇ ai and Andreji, including by-pass, head-race and tail-race canals of the 2001) and a further upstream expansion of this species into Gabcˇ ı´kovo dam, backwaters and the lower-most sections of the Slovakian part of the River Bodrog can be expected the tributaries Maly´Dunaj, Hron, Va´h and IpelÕ. Three (Ahnelt et al., 1998; Kautman, 2001). Neogobius species already documented in Slovakia were An upstream expansion of racer goby has also been reported captured (monkey goby Neogobius fluviatilis, bighead goby in River Danube basin (summarized in Copp et al., 2005), N.
    [Show full text]
  • Caspian Goby (Neogobius Caspius) Ecological Risk Screening Summary
    Caspian Goby (Neogobius caspius) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, March 2012 Revised, August 2018 Web Version, 8/2/2019 Photo: K. Abbasi. Licensed under CC BY-SA 3.0. Available: http://eol.org/pages/207518/overview. (August 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “Europe and Asia: Caspian Sea.” From Eschmeyer et al. (2018): “Distribution: Caspian Sea basin, Eurasia.” Status in the United States There are no known occurrences in the United States. It does not appear that this species is in the trade in the United States based on a search of the literature and online aquarium retailers. Means of Introductions in the United States There are no known occurrences in the United States. 1 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2018): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Acanthopterygii Order Perciformes Suborder Gobioidei Family Gobiidae Genus Neogobius Species Neogobius caspius (Eichwald, 1831)” From Eschmeyer et al. (2018): “Current status: Valid as Neogobius caspius (Eichwald 1831). Gobiidae: Gobiinae.” Size, Weight, and Age Range From Froese and Pauly (2018): “Max length : 34.5 cm TL male/unsexed; [Berg 1965]” Environment From Froese and Pauly (2018): “Brackish; demersal.” Climate/Range From Froese and Pauly (2018): “Temperate” Distribution Outside the United States Native From Froese and Pauly (2018): “Europe and Asia: Caspian Sea.” 2 From Eschmeyer et al. (2018): “Distribution: Caspian Sea basin, Eurasia.” Introduced No known introductions. Means of Introduction Outside the United States No known introductions.
    [Show full text]
  • Kırklareli İlinde 2016 Yılında Evsel Isınmada Kullanılan Katı Yakıtların Cinsi, Yakıtların Özellikleri Ve Bu Yakıtların Temin Edildiği Yerler
    T.C KIRKLARELİ VALİLİĞİ ÇEVRE VE ŞEHİRCİLİK İL MÜDÜRLÜĞÜ KIRKLARELİ İLİ 2016 YILI ÇEVRE DURUM RAPORU HAZIRLAYAN : T.C. KIRKLARELİ VALİLİĞİ ÇEVRE VE ŞEHİRCİLİK İL MÜDÜRLÜĞÜ ÇED, İZİN VE DENETİM ŞUBE MÜDÜRLÜĞÜ KIRKLARELİ-2017 ÖNSÖZ Çevre kirliliği, her anımızı etkileyen sağlıklı bir yaşam konusudur. Bu nedenle çevrenin korunmasına yönelik yapılacak her faaliyet, atılacak her adım insanlık için çok önemlidir. Çevre kirliliğinin ve çevresel tahribatın önlenmesi yönünde, İl Müdürlüğümüz tarafından, çevre mevzuatı kapsamındaki denetim/kontrol faaliyetlerine titizlikle devam edilmekte, özellikle, hava, su, toprak ve gürültü kirliliğinin önlenmesi, kırsal ve kentsel alanda arazinin ve doğal kaynakların en uygun şekilde kullanılması ve korunması için çalışmalar sürmektedir. Bu çalışmalar kapsamında, hava kalitesini korumak ve kirliliği önlemek amacıyla ilimizdeki kömür satıcıları ve satılan kömürlerin kontrol/ denetimleri yapılmakta, yetkisiz kömür satışına izin verilmemektedir. İlgili yönetmelik kapsamındaki sanayi tesislerince, periyodik olarak sunulan baca gazı çıkış değerlerinin mevzuata uygunluğu değerlendirilmektedir. Yer seçimi çalışması tamamlanan ve Şubat 2007’de hizmete giren Hava Kalitesi Ölçüm İstasyonu ile yapılacak sürekli ölçümlerle, havadaki SO2 (kükürtdioksit) ve partikül madde (toz) miktarı ölçülerek ve gerekli tedbirlerin zaman kaybetmeden alınması sağlanmaktadır. Ergene Nehri kirliliğinin izleme ve kontrol çalışmaları kapsamında; her yıl nehrin ilimize giriş ve çıkış noktalarından su numuneleri alınarak, sonuçları izlenmektedir.
    [Show full text]
  • Regional Fish-Based Biostratigraphy of the Late Neogene and Pleistocene of Southeastern Europe
    Vestnik zoologii, 51(5): 375–392, 2017 DOI 10.1515/vzoo-2017-0045 UDC 551.7(82+9):567.5(47) REGIONAL FISH-BASED BIOSTRATIGRAPHY OF THE LATE NEOGENE AND PLEISTOCENE OF SOUTHEASTERN EUROPE О. М. Kovalchuk National Museum of Natural History NAS of Ukraine, B. Khmelnitsky st., 15, Kyiv, 01030 Ukraine E-mail: [email protected] Regional Fish-Based Biostratigraphy of the Late Neogene and Pleistocene of Southeastern Europe. Kovalchuk, О. М. — Th is paper presents analytical results of the study of numerous freshwater fi sh fossils from almost 40 localities in the territory of southeastern Europe. It has been established that freshwater fi shes can be regarded as parastratigraphic group suitable for biostratigraphic studies. Ten ichthyofaunal assemblages have been distinguished and characterized in the paper. Th ese assemblages represent successive developmental stages in freshwater fi sh communities within southeastern Europe during the late Miocene, Pliocene and Pleistocene. Indices of evolutionary transformations (extinction rate, origination rate, taxonomic rotation) for ichthyofaunal assemblages have been calculated, and their trend is discussed herein. Key words: freshwater fi shes, faunal assemblage, evolution, Cenozoic, Eastern Europe. Introduction Th e modern zoogeographical structure of freshwater ichthyofauna of the Northern hemisphere was formed in general terms during the late Cenozoic (Sytchevskaya, 1989). Restoration of the key stages and features of this process is impossible without a detailed study of numerous fossil remains of bony fi shes, originating from alluvial deposits of heterochronous localities. Th e historical and faunal analysis of paleoichthyological material from the south of Eastern Europe allows us tracing the temporal change in the groups of freshwater fi sh, to determine the time of appearance of individual modern taxa and their groups in the paleontological record, to fi nd out the centers of their origin and ways of distribution, as well as to indicate some regional features of the formation of their ranges in time.
    [Show full text]
  • A Dissertation Entitled Evolution, Systematics
    A Dissertation Entitled Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) By Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) ____________________________________ Adviser: Dr. Carol A. Stepien ____________________________________ Committee Member: Dr. Christine M. Mayer ____________________________________ Committee Member: Dr. Elliot J. Tramer ____________________________________ Committee Member: Dr. David J. Jude ____________________________________ Committee Member: Dr. Juan L. Bouzat ____________________________________ College of Graduate Studies The University of Toledo December 2009 Copyright © 2009 This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. _______________________________________________________________________ An Abstract of Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) The University of Toledo December 2009 The study of biodiversity, at multiple hierarchical levels, provides insight into the evolutionary history of taxa and provides a framework for understanding patterns in ecology. This is especially poignant in invasion biology, where the prevalence of invasiveness in certain taxonomic groups could
    [Show full text]
  • The Round Goby (Neogobius Melanostomus):A Review of European and North American Literature
    ILLINOI S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PRODUCTION NOTE University of Illinois at Urbana-Champaign Library Large-scale Digitization Project, 2007. CI u/l Natural History Survey cF Library (/4(I) ILLINOIS NATURAL HISTORY OT TSrX O IJX6V E• The Round Goby (Neogobius melanostomus):A Review of European and North American Literature with notes from the Round Goby Conference, Chicago, 1996 Center for Aquatic Ecology J. Ei!en Marsden, Patrice Charlebois', Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria Illinois Natural History Survey Lake Michigan Biological Station 400 17th Sti Zion, Illinois 6 Aquatic Ecology Technical Report 96/10 The Round Goby (Neogobius melanostomus): A Review of European and North American Literature with Notes from the Round Goby Conference, Chicago, 1996 J. Ellen Marsden, Patrice Charlebois1, Kirby Wolfe Illinois Natural History Survey and 'Illinois-Indiana Sea Grant Lake Michigan Biological Station 400 17th St., Zion IL 60099 David Jude University of Michigan, Great Lakes Research Division 3107 Institute of Science & Technology Ann Arbor MI 48109 and Svetlana Rudnicka Institute of Fisheries Varna, Bulgaria The Round Goby Conference, held on Feb. 21-22, 1996, was sponsored by the Illinois-Indiana Sea Grant Program, and organized by the
    [Show full text]
  • Transposable Elements and Teleost Migratory Behaviour
    International Journal of Molecular Sciences Article Transposable Elements and Teleost Migratory Behaviour Elisa Carotti 1,†, Federica Carducci 1,†, Adriana Canapa 1, Marco Barucca 1,* , Samuele Greco 2 , Marco Gerdol 2 and Maria Assunta Biscotti 1 1 Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; [email protected] (E.C.); [email protected] (F.C.); [email protected] (A.C.); [email protected] (M.A.B.) 2 Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5-34127 Trieste, Italy; [email protected] (S.G.); [email protected] (M.G.) * Correspondence: [email protected] † Equal contribution. Abstract: Transposable elements (TEs) represent a considerable fraction of eukaryotic genomes, thereby contributing to genome size, chromosomal rearrangements, and to the generation of new coding genes or regulatory elements. An increasing number of works have reported a link between the genomic abundance of TEs and the adaptation to specific environmental conditions. Diadromy represents a fascinating feature of fish, protagonists of migratory routes between marine and fresh- water for reproduction. In this work, we investigated the genomes of 24 fish species, including 15 teleosts with a migratory behaviour. The expected higher relative abundance of DNA transposons in ray-finned fish compared with the other fish groups was not confirmed by the analysis of the dataset considered. The relative contribution of different TE types in migratory ray-finned species did not show clear differences between oceanodromous and potamodromous fish. On the contrary, a remarkable relationship between migratory behaviour and the quantitative difference reported for short interspersed nuclear (retro)elements (SINEs) emerged from the comparison between anadro- mous and catadromous species, independently from their phylogenetic position.
    [Show full text]
  • Lllllllllll- 1473
    click for previous page lllllllllll- 1473 - INDEX DES NOMS SCIENTIFIQUES ET VERNACULAIRES INTERNATIONAUX Cet index comprend toutes les citations des noms d’espèces, genres, familles et catégories taxinomiques supérieures à l’exclusion de ceux qui sont mentionnés dans les parties introductives concernant chacun des grands groupes traités. Caractères gras : Noms scientifiques des espèces (avec double entrée: au nom de genre et au nom d’espèce). Les noms scientifiques invalides ou les identifications erronées sont marqués d’un astérisque ROMAIN majuscules : Noms de familles et de catégories taxinomiques supé- rieures. Les noms invalides sont marqués d’un astérisque Romain minuscules : Noms vernaculaires internationaux (appellations FAO).
    [Show full text]
  • Identification and Modelling of a Representative Vulnerable Fish Species for Pesticide Risk Assessment in Europe
    Identification and Modelling of a Representative Vulnerable Fish Species for Pesticide Risk Assessment in Europe Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Lara Ibrahim, M.Sc. aus Mazeraat Assaf, Libanon Berichter: Universitätsprofessor Dr. Andreas Schäffer Prof. Dr. Christoph Schäfers Tag der mündlichen Prüfung: 30. Juli 2015 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar Erklärung Ich versichere, dass ich diese Doktorarbeit selbständig und nur unter Verwendung der angegebenen Hilfsmittel angefertigt habe. Weiterhin versichere ich, die aus benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht zu haben. Lara Ibrahim Aachen, am 18 März 2015 Zusammenfassung Die Zulassung von Pflanzenschutzmitteln in der Europäischen Gemeinschaft verlangt unter anderem eine Abschätzung des Risikos für Organismen in der Umwelt, die nicht Ziel der Anwendung sind. Unvertretbare Auswirkungen auf den Naturhalt sollen vermieden werden. Die ökologische Risikoanalyse stellt die dafür benötigten Informationen durch eine Abschätzung der Exposition der Organismen und der sich daraus ergebenden Effekte bereit. Die Effektabschätzung beruht dabei hauptsächlich auf standardisierten ökotoxikologischen Tests im Labor mit wenigen, oft nicht einheimischen Stellvertreterarten. In diesen Tests werden z. B. Effekte auf das Überleben, das Wachstum und/oder die Reproduktion von Fischen bei verschiedenen Konzentrationen der Testsubstanz gemessen und Endpunkte wie die LC50 (Lethal Concentrations for 50%) oder eine NOEC (No Observed Effect Concentration, z. B. für Wachstum oder Reproduktionsparameter) abgeleitet. Für Fische und Wirbeltiere im Allgemeinen beziehen sich die spezifischen Schutzziele auf das Überleben von Individuen und die Abundanz und Biomasse von Populationen.
    [Show full text]