483.Full.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

483.Full.Pdf Copyright 8 1988 by the Genetics Society for America Molecular Analysis of the Neurogenic Locus mastermind of Drosophila melanogaster Barry Yedvobnick, David Smoller, Pamela Young and Diane Mills Department of Biology, Emoq University, Atlanta, Georgia 30322 Manuscript received August 25, 1987 Revised copy accepted November 21, 1987 ABSTRACT The neurogenic loci comprise a small group of genes which are required for proper division between the neural and epidermal pathways of differentiation within the neuroectoderm. Loss of neurogenic gene function results in the misrouting of prospective epidermal cells into neuroblasts. A molecular analysis of the neurogenic locus mastermind (mam)has been initiated through transposon tagging with P elements. Employing the Harwich strain as the source of P in a hybrid dysgenesis screen, 6000 chromosomes were tested for the production of lethal mam alleles and eight mutations were isolated. The mam region is the site of residence of a P element in Harwich which forms the focus of a chromosome breakage hotspot. Hybrid dysgenic induced mum alleles elicit cuticular and neural abnormalities typical of the neurogenic phenotype, and in five of the eight cases the mutants appear to retain a P element in the cytogenetic region (50CD) of mum. Utilizing P element sequence as probe, mam region genomic DNA was cloned and used to initiate a chromosome walk extending over 120 kb. The physical breakpoints associated with the hybrid dysgenic alleles fall within a 60- kb genomic segment, predicting this as the minimal size of the mam locus barring position effects. The locus contains a high density of repeated elements of two classes; Opa (CAX), and (dC-dA), * (dG-dT),. A preliminary study of the transcriptional activity of the mum region is presented. HE ventral and cephalic portions of the central (E[spQ),mmtemnind (mum),big brain (bib)and neuralized T nervous system of Drosophila derive from a (neu). A maternal classof neurogenic mutations, restricted section of the ectoderm termed the neu- including almondex (am)(LEHMAN et al. 1983), pecanex rogenic region (POULSON1950). The ventral region (pcx) and several female-sterile mutations (PERRIMON consists of cells situated lateral to the mesoderm at et al. 1986), have also been isolated. An intriguing the blastoderm stage, and flanking the ventral mid- characteristic of the neurogenic gene classis the line during gastrulation. Although the neurogenic interactions observed between certain genes (WEL- ectoderm appears homogeneous, it is composed of SHONS 1956; CAMPOS-ORTEGAet al. 1984; VASSIN, cell populations destined to form two major tissues. VIELMETTERand CAMPOS-ORTEGA1985; M. A. T. Approximately 25% of the cells will form neuroblasts, MUSKAVITCH, personal communication). For in- the precursors of the central nervous system, whereas stance, E(sp1) enhances the phenotype of a Notch the remaining 75% will differentiate into epidermal locus allele(spl), while chromosome breaks associated structures (HARTENSTEINand CAMPOS-ORTEGA1984). with reversion of the enhancer phenotype produce The choice between these two developmental paths a neurogenic lethal allele at the E(sp1) locus (termed can be disrupted through mutation. Members of the E[spQR).Further, E(~p1)~alleles do not complement neurogenic class of mutations display an embryonic Delta or Notch alleles in double heterozygous combi- lethal phenotype associatedwith a misrouting of nations, suchas E(s@ + I + Dl. In addition, epidermal precursors into neuroblasts (POULSON embryos hyperploid for certain wild type neurogenic 1950; CAMPOS-ORTEGA1985). Thus, the neurogenic loci can reduce the neurogenic phenotype of specific loci represent agroup of genes which effect a specific mutant embryos. For instance, homozygous bib, mum, developmental decision. or neu embryos can bepartially rescued by the Saturation mutagenesis screens for zygotic lethal introduction of extra wild-type Notch loci. These mutations detected six genes that are mutable to a observations suggest that particular neurogenic loci neurogenic state (LEHMANet al. 1983; JURGENS et al. share a common function and possibly comprise a 1984; NUSSLEIN-VOLHARD, WIESCHAUSand KLUDING developmental pathway. 1984; WIESCHAUS,NUSSLEIN-VOHARD and JURGENS Inan effort to determinethe function of the 1984), including Notch (N),Delta (Dl),Enhancer of split neurogenic loci, these genes have become the targets The sequence data presented in this article have been submittedto the of cloning in several laboratories. At this time, only EMBUGenBank Data Libraries under the accession numberY00611. the Notch locus has been well characterized at the Genetics 118: 483-497 (March, 1988). 484 B. Yedvobnick et al. molecular level. Notch spans approximately 38 kb of MATERIALS AND METHODS genomic DNA and encodes a poly(A+) RNA of 10.5 kb (ARTAVANIS-TSAKONAS,MUSKAVITCH and YEDVOB- Strains: Harwich and seF8, P and M strains, respectively, were supplied by M. KIDWELL.A multiply marked balancer NICK 1983; KIDD, LOCKETTand YOUNG1983; GRIM- M strain was supplied by V. FINNERTY.Males from this WADE et al. 1985). cDNAs spanning the entire 10.5 stock were outcrossed to P mutants to reduce the back- kb transcript have been synthesized and sequenced ground of P elements in the stockused for molecular (YEDVOBNICKet al. 1985; WHARTONet al. 1985b; KIDD, cloning. Mam'J'13 and bib''" were provided by E. WIES- KELLYand YOUNG 1986). Conceptual translation of CHAUS. Mam"J'4 was provided by C. NUSSLEIN-VOLHARD. Zn(2R)N2GISM5 was obtained from Cal Tech. Canton S the cDNA sequence demonstrated thatNotch appears was obtained from Bowling Green. All crosses were per- toencode a membrane-spanningpolypeptide with formed at 25" on standard corn meal and molasses medium. epidermal growth factor-like repeats in the extracel- In situ hybridization and cytology: Cloned DNA was lular domain. The putative structure of the Notch biotinylated through nick translation and hybridized to protein immediately implicated cell: cell interactions polytene chromosome preparations as described by LAN- GER-SAFER,LEVINE and WARD(1982). The hybridized probe as a component in the process of neurogenic ecto- was visualized employing a horseradish peroxidase detec- derm differentiation (WHARTONet al. 1985b; KIDD, tionsystem (Enzo Biochemicals)against Giemsa-stained KELLYand YOUNG1986). Subsequent DNA sequence chromosomes. The preparations were photographed using studies of a Delta locuscDNA suggested a similar Kodachrome film (ASA 25 or 64) and an NCB 10 filter. Cuticle preparation:Cuticles from mature embryos were function for theproduct of this neurogenic locus prepared according to the methods of VANDER MEER(1977) (VASSINet al. 1987). This hypothesis is made more and photographed using Kodachrome film (ASA 25 or 64) attractive by the observations of DOE and GOODMAN and an NCB 10 filter. (1985a,b). Employing laser ablation to eliminate in- Staining of embryonic central nervous systems: Direct dividual neurogenic ectodermal cells in grasshopper immunofluorescence of embryo whole mounts was per- formed using a protocol supplied by MARCMUSKAVITCH embryos, itwas demonstrated that neuroblasts appear (Indiana University). It is a variation of a method of T. toinhibit adjacent cells from forming neuroblasts, KARRand B. M. ALBERTS(UCSF), developed by N. PATEL thereby implicating cell contact as a component in and C. GOODMAN(Stanford University).Adults wereal- the decisionmechanism. Similar conclusions have lowed to lay eggs on heavily yeasted bottles for 8 hr at 18", beenreached by TECHNAUand CAMPOS-ORTEGA and the embryos were aged12-16 hr at 18". Aged embryos were collected on a nylon screen, washed and transferred (1986, 1987) whoreported that transplanted ecto- to silanizedglass culture tubes (12 mm X 75 mm). The dermal cells of early Drosophila gastrulaexhibit a embryos were dechorionated in 50% bleach for 5 min, and degree of nonautonomous differentiation, as well as rinsed with 0.02% Triton X-100. After aspiration of the by Hoppe and Greenspan (personal communication) rinse buffer, the embryos were fixed by suspension in 0.5 through the analysis of Notch mosaic embryos. ml4% w/v paraformaldehyde to which were added 1.5 ml heptane. The suspension was vortexed repeatedly for 10- The observationscited above have established a 20 min, and the lower phase was removed by aspiration. provisional model for how ectodermal cells within The vitelline membranes were removed through addition the neurogenic region enter the neuralor epidermal of 0.5 ml 100% methanol for 1-2 min. The solution was path of differentiation. However, the model does not aspirated and the embryos were rinsed 2 times in 1.5 ml address the role of maternal vs. zygotic contributions 100% methanol, and 3 times in 0.5 ml phosphate-buffered saline (PBS: 130 mM sodium chloride, 7 mM dibasic sodium of these genes, nor does it position the neurogenic phosphate, 3m~monobasic sodium phosphate). The em- loci within the larger framework of the regulatory bryos were rinsed in 200 p1 of PNS (PBS + 1% v/v normal hierarchy that unfolds during earlyDrosophila devel- goat serum, Worthington Cappel). This rinse was removed opment. Thus, the establishment of a cell-cell inter- and an additional 200 pl PNS was added. One microliter action is an event that occurs within a continuum. of a preparation of fluoresceinated anti-horseradish per- oxidase (rabbit sera, Worthington-Cappel) was added to This interaction must be preceded and followed by the suspension, and the tubes were sealed and
Recommended publications
  • Cerevls Ae RNA14 Suggests That Melanogaster by Suppressor Of
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Homology with Saccharomyces cerevls ae RNA14 suggests that phenotypic suppression in Drosophila melanogaster by suppressor of f. o.rked occurs at the level of RNA stabd ty Andrew Mitchelson, Martine Simonelig, 1 Carol Williams, and Kevin O'Hare 2 Department of Biochemistry, Imperial College of Science Technology and Medicine, London SW7 2AZ, UK The suppressor of forked [su(f)] locus of Drosophila melanogaster encodes at least one cell-autonomous vital function. Mutations at su(f) can affect the expression of unlinked genes where retroviral-like transposable elements are inserted. Changes in phenotype are correlated with changes in mRNA profiles, indicating that su(f) affects the production and/or stability of mRNAs. We have cloned the su(f) gene by P-element transposon tagging. Alterations in the DNA map of eight lethal alleles were detected in a 4.3-kb region. P-element- mediated transformation using a fragment including this interval rescued all aspects of the su(f) mutant phenotype. The gene is transcribed to produce a major 2.6-kb RNA and minor RNAs of 1.3 and 2.9 kb, which are present throughout development, being most abundant in embryos, pupae, and adult females. The major predicted gene product is an 84- kD protein that is homologous to RNA14 of Saccharomyces cerevisiae, a vital gene where mutation affects mRNA stability. This suggests that phenotypic modification by su(f) occurs at the level of RNA stability. [Key Words: Drosophila; modifier gene; transposable element; suppression] Received October 12, 1992; accepted November 23, 1992.
    [Show full text]
  • Transposon Insertion Mutagenesis in Mice for Modeling Human Cancers: Critical Insights Gained and New Opportunities
    International Journal of Molecular Sciences Review Transposon Insertion Mutagenesis in Mice for Modeling Human Cancers: Critical Insights Gained and New Opportunities Pauline J. Beckmann 1 and David A. Largaespada 1,2,3,4,* 1 Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] 2 Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA 3 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA 4 Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA * Correspondence: [email protected]; Tel.: +1-612-626-4979; Fax: +1-612-624-3869 Received: 3 January 2020; Accepted: 3 February 2020; Published: 10 February 2020 Abstract: Transposon mutagenesis has been used to model many types of human cancer in mice, leading to the discovery of novel cancer genes and insights into the mechanism of tumorigenesis. For this review, we identified over twenty types of human cancer that have been modeled in the mouse using Sleeping Beauty and piggyBac transposon insertion mutagenesis. We examine several specific biological insights that have been gained and describe opportunities for continued research. Specifically, we review studies with a focus on understanding metastasis, therapy resistance, and tumor cell of origin. Additionally, we propose further uses of transposon-based models to identify rarely mutated driver genes across many cancers, understand additional mechanisms of drug resistance and metastasis, and define personalized therapies for cancer patients with obesity as a comorbidity. Keywords: animal modeling; cancer; transposon screen 1. Transposon Basics Until the mid of 1900’s, DNA was widely considered to be a highly stable, orderly macromolecule neatly organized into chromosomes.
    [Show full text]
  • Ac/Ds-Transposon Activation Tagging in Poplar: a Powerful Tool for Gene Discovery Fladung and Polak
    Ac/Ds-transposon activation tagging in poplar: a powerful tool for gene discovery Fladung and Polak Fladung and Polak BMC Genomics 2012, 13:61 http://www.biomedcentral.com/1471-2164/13/61 (6 February 2012) Fladung and Polak BMC Genomics 2012, 13:61 http://www.biomedcentral.com/1471-2164/13/61 RESEARCHARTICLE Open Access Ac/Ds-transposon activation tagging in poplar: a powerful tool for gene discovery Matthias Fladung* and Olaf Polak Abstract Background: Rapid improvements in the development of new sequencing technologies have led to the availability of genome sequences of more than 300 organisms today. Thanks to bioinformatic analyses, prediction of gene models and protein-coding transcripts has become feasible. Various reverse and forward genetics strategies have been followed to determine the functions of these gene models and regulatory sequences. Using T-DNA or transposons as tags, significant progress has been made by using “Knock-in” approaches ("gain-of- function” or “activation tagging”) in different plant species but not in perennial plants species, e.g. long-lived trees. Here, large scale gene tagging resources are still lacking. Results: We describe the first application of an inducible transposon-based activation tagging system for a perennial plant species, as example a poplar hybrid (P. tremula L. × P. tremuloides Michx.). Four activation-tagged populations comprising a total of 12,083 individuals derived from 23 independent “Activation Tagging Ds” (ATDs) transgenic lines were produced and phenotyped. To date, 29 putative variants have been isolated and new ATDs genomic positions were successfully determined for 24 of those. Sequences obtained were blasted against the publicly available genome sequence of P.
    [Show full text]
  • The Endogenous Transposable Element Tgm9 Is Suitable for Generating Knockout Mutants for Functional Analyses of Soybean Genes and Genetic Improvement in Soybean
    RESEARCH ARTICLE The endogenous transposable element Tgm9 is suitable for generating knockout mutants for functional analyses of soybean genes and genetic improvement in soybean Devinder Sandhu1*, Jayadri Ghosh2, Callie Johnson3, Jordan Baumbach2, Eric Baumert3, Tyler Cina3, David Grant2,4, Reid G. Palmer2,4², Madan K. Bhattacharyya2* a1111111111 1 USDA-ARS, US Salinity Laboratory, Riverside, CA, United States of America, 2 Department of Agronomy, a1111111111 Iowa State University, Ames, IA, United States of America, 3 Department of Biology, University of Wisconsin- a1111111111 Stevens Point, Stevens Point, WI, United States of America, 4 USDA-ARS Corn Insects and Crop Genomics a1111111111 Research Unit, Ames, IA, United States of America a1111111111 ² Deceased. * [email protected] (DS); [email protected] (MKB) OPEN ACCESS Abstract Citation: Sandhu D, Ghosh J, Johnson C, In soybean, variegated flowers can be caused by somatic excision of the CACTA-type trans- Baumbach J, Baumert E, Cina T, et al. (2017) The posable element Tgm9 from Intron 2 of the DFR2 gene encoding dihydroflavonol-4-reduc- endogenous transposable element Tgm9 is suitable for generating knockout mutants for tase of the anthocyanin pigment biosynthetic pathway. DFR2 was mapped to the W4 locus, functional analyses of soybean genes and genetic where the allele containing Tgm9 was termed w4-m. In this study we have demonstrated improvement in soybean. PLoS ONE 12(8): that previously identified morphological mutants (three chlorophyll deficient mutants, one e0180732. https://doi.org/10.1371/journal. male sterile-female fertile mutant, and three partial female sterile mutants) were caused by pone.0180732 insertion of Tgm9 following its excision from DFR2.
    [Show full text]
  • An Everlasting Pioneer: the Story of Antirrhinum Research
    PERSPECTIVES 34. Lexer, C., Welch, M. E., Durphy, J. L. & Rieseberg, L. H. 62. Cooper, T. F., Rozen, D. E. & Lenski, R. E. Parallel und Forschung, the United States National Science Foundation Natural selection for salt tolerance quantitative trait loci changes in gene expression after 20,000 generations of and the Max-Planck Gesellschaft. M.E.F. was supported by (QTLs) in wild sunflower hybrids: implications for the origin evolution in Escherichia coli. Proc. Natl Acad. Sci. USA National Science Foundation grants, which also supported the of Helianthus paradoxus, a diploid hybrid species. Mol. 100, 1072–1077 (2003). establishment of the evolutionary and ecological functional Ecol. 12, 1225–1235 (2003). 63. Elena, S. F. & Lenski, R. E. Microbial genetics: evolution genomics (EEFG) community. In lieu of a trans-Atlantic coin flip, 35. Peichel, C. et al. The genetic architecture of divergence experiments with microorganisms: the dynamics and the order of authorship was determined by random fluctuation in between threespine stickleback species. Nature 414, genetic bases of adaptation. Nature Rev. Genet. 4, the Euro/Dollar exchange rate. 901–905 (2001). 457–469 (2003). 36. Aparicio, S. et al. Whole-genome shotgun assembly and 64. Ideker, T., Galitski, T. & Hood, L. A new approach to analysis of the genome of Fugu rubripes. Science 297, decoding life. Annu. Rev. Genom. Human. Genet. 2, Online Links 1301–1310 (2002). 343–372 (2001). 37. Beldade, P., Brakefield, P. M. & Long, A. D. Contribution of 65. Wittbrodt, J., Shima, A. & Schartl, M. Medaka — a model Distal-less to quantitative variation in butterfly eyespots. organism from the far East.
    [Show full text]
  • Throughout the Maize Genome for Use in Regional Mutagenesis Judith M. Kolkman* , Liza J. Conrad
    Genetics: Published Articles Ahead of Print, published on November 1, 2004 as 10.1534/genetics.104.033738 Distribution of Activator (Ac) Throughout the Maize Genome for Use in Regional Mutagenesis Judith M. Kolkman*1, Liza J. Conrad*†1, Phyllis R. Farmer*, Kristine Hardeman††, Kevin R. Ahern*, Paul E. Lewis*, Ruairidh J.H. Sawers*, Sara Lebejko††, Paul Chomet†† and Thomas P. Brutnell*2 *Boyce Thompson Institute, Cornell University, Ithaca, NY 14853; †Department of Plant Breeding, Cornell University, Ithaca, NY 14853; ††Monsanto/Mystic Research, Mystic, CT 06355 Sequence data from this article have been deposited with the EMBL/GenBank Libraries under accession nos. AY559172-AY559221, AY559223-AY559234, AY618471-AY618479 1 Running Head: Ac Insertion Sites in Maize Key words: transposition, transposon tagging, mutagenesis, Ac, maize 1 These authors contributed equally to this work. 2 Corresponding author: Thomas P. Brutnell Boyce Thompson Institute Cornell University 1 Tower Road Ithaca, NY 14853 Phone: 607-254-8656 Fax: 607-254-1242 email: [email protected] 2 ABSTRACT A collection of Activator (Ac) containing, near-isogenic W22 inbred lines has been generated for use in regional mutagenesis experiments. Each line is homozygous for a single, precisely positioned Ac element and the Ds reporter, r1-sc:m3. Through classical and molecular genetic techniques, 158 transposed Ac elements (tr-Acs) were distributed throughout the maize genome and 41 were precisely placed on the linkage map utilizing multiple recombinant inbred populations. Several PCR techniques were utilized to amplify DNA fragments flanking tr-Ac insertions up to 8 kb in length. Sequencing and database searches of flanking DNA revealed the majority of insertions are in hypomethylated, low or single copy sequences indicating an insertion site preference for genic sequences in the genome.
    [Show full text]
  • Identification of the Maize Gravitropism Gene Lazy Plant1 by a Transposon-Tagging Genome Resequencing Strategy Thomas P
    University of Rhode Island DigitalCommons@URI Cell and Molecular Biology Faculty Publications Cell and Molecular Biology 2014 Identification of the Maize Gravitropism Gene lazy plant1 by a Transposon-Tagging Genome Resequencing Strategy Thomas P. Howard III Andrew P. Hayward See next page for additional authors Creative Commons License /"> This work is licensed under a Creative Commons Public Domain Dedication 1.0 License. Follow this and additional works at: https://digitalcommons.uri.edu/cmb_facpubs Citation/Publisher Attribution Howard TP, Hayward AP, Tordillos A, Fragoso C, Moreno MA, Tohme J, Kausch AP, Mottinger JP, Dellaporta SL. (2014). "Identification of the maize gravitropism gene lazy plant1 by a transposon-tagging genome resequencing strategy." PLoS One. 9(1): e87053. Available at: http://dx.doi.org/10.1371/journal.pone.0087053 This Article is brought to you for free and open access by the Cell and Molecular Biology at DigitalCommons@URI. It has been accepted for inclusion in Cell and Molecular Biology Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Authors Thomas P. Howard III, Andrew P. Hayward, Anthony Tordillos, Christopher Fragoso, Maria A. Moreno, Joe Tohme, Albert P. Kausch, John P. Mottinger, and Stephen L. Dellaporta This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/cmb_facpubs/12 Identification of the Maize Gravitropism Gene lazy plant1 by a Transposon-Tagging Genome Resequencing Strategy Thomas
    [Show full text]
  • 1471-2164-8-116.Pdf
    BMC Genomics BioMed Central Research article Open Access Sequence-indexed mutations in maize using the UniformMu transposon-tagging population A Mark Settles*1, David R Holding2, Bao Cai Tan1, Susan P Latshaw1, Juan Liu3, Masaharu Suzuki1, Li Li1, Brent A O'Brien1, Diego S Fajardo1, Ewa Wroclawska1, Chi-Wah Tseung1, Jinsheng Lai4, Charles T Hunter III1, Wayne T Avigne1, John Baier1, Joachim Messing4, L Curtis Hannah1, Karen E Koch1, Philip W Becraft3, Brian A Larkins2 and Donald R McCarty1 Address: 1Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA, 2Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA, 3Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA and 4Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA Email: A Mark Settles* - [email protected]; David R Holding - [email protected]; Bao Cai Tan - [email protected]; Susan P Latshaw - [email protected]; Juan Liu - [email protected]; Masaharu Suzuki - [email protected]; Li Li - [email protected]; Brent A O'Brien - [email protected]; Diego S Fajardo - [email protected]; Ewa Wroclawska - [email protected]; Chi-Wah Tseung - [email protected]; Jinsheng Lai - [email protected]; Charles T Hunter - [email protected]; Wayne T Avigne - [email protected]; John Baier - [email protected]; Joachim Messing - [email protected]; L Curtis Hannah - [email protected]; Karen E Koch - [email protected]; Philip W Becraft - [email protected]; Brian A Larkins - [email protected]; Donald R McCarty - [email protected] * Corresponding author Published: 9 May 2007 Received: 29 August 2006 Accepted: 9 May 2007 BMC Genomics 2007, 8:116 doi:10.1186/1471-2164-8-116 This article is available from: http://www.biomedcentral.com/1471-2164/8/116 © 2007 Settles et al; licensee BioMed Central Ltd.
    [Show full text]
  • Floral Homeotic Mutations Produced by Transposon-Mutagenesis in Antirrhinum Majus
    Downloaded from genesdev.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus Rosemary Carpenter ~ and Enrico S. Coen John Innes Institute, AFRC Institute of Plant Science Research, Norwich NR4 7UH, UK To isolate and study genes controlling floral development, we have carried out a large-scale transposon- mutagenesis experiment in Antirrhinum majus. Ten independent floral homeotic mutations were obtained that could be divided into three classes, depending on whether they affect (1) the identity of organs within the same whorl; (2) the identity and sometimes also the number of whorls; and (3) the fate of the axillary meristem that normally gives rise to the flower. The classes of floral phenotypes suggest a model for the genetic control of primordium fate in which class 2 genes are proposed to act in overlapping pairs of adjacent whorls so that their combinations at different positions along the radius of the flower can specify the fate and number of whorls. These could interact with class 1 genes, which vary in their action along the vertical axis of the flower to generate bilateral symmetry. Both of these classes may be ultimately regulated by class 3 genes required for flower initiation. The similarity between some of the homeotic phenotypes with those of other species suggests that the mechanisms controlling whorl identity and number have been highly conserved in plant evolution. Many of the mutations obtained show somatic and germinal instability characteristic of transposon insertions, allowing the cell-autonomy of floral homeotic genes to be tested for the first time.
    [Show full text]
  • Functional Analysis of Tomato Genes Expressed During the Cf-4/Avr4-Induced Hypersensitive Response Suzan Gabriëls
    Functional analysis of tomato genes expressed during the Cf-4/Avr4-induced hypersensitive response Suzan Gabriëls Promotor: Prof. dr. ir. P.J.G.M. de Wit, hoogleraar in de Fytopathologie Co-promotor: Dr. ir. M.H.A.J. Joosten, universitair docent, Laboratorium voor Fytopathologie Promotiecommissie: Dr. D.A. Jones, Australian National University, Canberra, Australië Prof. dr. ir. C.M.J. Pieterse, Universiteit Utrecht Dr. ir. M.B. Sela-Buurlage, De Ruiter Seeds CV, Bergschenhoek Prof. dr. A.H.J. Bisseling, Wageningen Universiteit Dit onderzoek is uitgevoerd binnen de onderzoekschool Experimental Plant Sciences. Functional analysis of tomato genes expressed during the Cf-4/Avr4-induced hypersensitive response Suzan Gabriëls Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M.J. Kropff in het openbaar te verdedigen op maandag 15 mei 2006 des namiddags te half twee in de Aula Functional analysis of tomato genes expressed during the Cf-4/Avr4-induced hypersensitive response Suzan Gabriëls Thesis Wageningen University, The Netherlands, 2006 With references – with summaries in English and Dutch ISBN 90-8504-405-7 CONTENTS Chapter 1 General introduction and outline 7 Chapter 2 cDNA-AFLP£, combined with functional analysis, reveals novel genes involved in the hypersensitive response 19 Chapter 3 Functional analysis of Avr-responsive tomato genes reveals their role in resistance to Cladosporium fulvum 63 Chapter 4 An NB-LRR protein required for HR signaling mediated by both extra- and intracellular resistance proteins 87 Chapter 5 General discussion 117 Summary 131 Samenvatting 133 Dankwoord 137 Curriculum Vitae 141 CHAPTER 1 General Introduction and Outline Chapter 1 GENERAL INTRODUCTION Plant diseases can cause severe losses to field and glasshouse crops and have threatened global food and feed security several times in the history of mankind.
    [Show full text]
  • Analysis and Application of the En Transposable Element and Genetic Study of Resistance to Bipolaris Maydis in Maize Ru-Ying Chang Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1995 Analysis and application of the En transposable element and genetic study of resistance to Bipolaris maydis in maize Ru-Ying Chang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Genetics Commons, and the Plant Pathology Commons Recommended Citation Chang, Ru-Ying, "Analysis and application of the En transposable element and genetic study of resistance to Bipolaris maydis in maize " (1995). Retrospective Theses and Dissertations. 10767. https://lib.dr.iastate.edu/rtd/10767 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI films the text directfy from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from aiQr type of conq)uter printer. The qnali^ of this reprodnction is dependent npon the qnali^ of the copy snbmitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard marging, and inqiroper alignment can adversefy affect reproduction. In the tmlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Review Transposons As Tools for Functional Genomics
    Plant Physiol. Biochem. 39 (2001) 243−252 © 2001 Éditions scientifiques et médicales Elsevier SAS. All rights reserved S0981942801012438/REV Review Transposons as tools for functional genomics Srinivasan Ramachandran, Venkatesan Sundaresan* Institute of Molecular Agrobiology, National University of Singapore, 1, Research Link, Singapore 117 604, Singapore Received 19 December 2000; accepted 25 January 2001 Abstract – Transposons have been used extensively for insertional mutagenesis in several plant species. These include species where highly active endogenous systems are available such as maize and Antirrhinum majus, as well as species where heterologous transposons have been introduced through transformation, such as Arabidopsis thaliana and tomato. Much of the past use of transposons has been in traditional ‘forward genetics’ approaches, to isolate and molecularly characterize genes identified by mutant phenotypes. With the rapid progress in the genome projects of different plants, large-scale transposon mutagenesis has become an important component of functional genomics, permitting assignment of functions to sequenced genes through reverse genetics. Different strategies can be pursued, depending upon the properties of the transposon such as the mechanism and control of transposition, and those of the host plant such as transformation efficiency. The successful use of these strategies in A. thaliana has made it possible to develop databases for reverse genetics, where screening for the knockout of a gene of interest can be performed by computer searches. The extension of these technologies to other plants, particularly agronomically important crops such as rice, is now feasible. © 2001 Éditions scientifiques et médicales Elsevier SAS gene tagging / reverse genetics / transposons Ac, Activator element / Ds, Dissociation element / dSpm, defective Suppressor-mutator element / En, Enhancer / FST, flanking sequence tag / I, Inhibitor /Mu,Mutator / Spm, Suppressor-mutator 1.
    [Show full text]