Economic Mineral Deposits in Impact Structures: A Review Wolf Uwe Reimold1, Christian Koeberl2, Roger L. Gibson1, and Burkhard O. Dressler1,3 1Impact Cratering Research Group, School of Geosciences, University of the Witwatersrand, Private Bag 3, P.O. Wits 2050, Johannesburg, South Africa (
[email protected];
[email protected]) 2Department of Geological Sciences, University of Vienna, Althanstrasse. 14, A-1090 Vienna, Austria (
[email protected]) 3185 Romfield Circuit, Thornhill, Ontario, Canada, L3T 3H7 (
[email protected]) Abstract. Many large meteorite impact structures throughout the world host mineral resources that are either currently mined or have the potential to become important economic resources in the future. The giant Vredefort-Witwatersrand and Sudbury impact structures underline this statement, because of their enormous resources in gold and uranium, and nickel, copper, and PGEs, respectively. In relation to impact, three basic types of ore deposits in impact structure settings have been distinguished: (1) progenetic (i.e., pre-impact) deposits that already existed in the target regions prior to an impact event, but may have become accessible as a direct result of the impact; (2) syngenetic (syn-impact) deposits that owe their existence directly to the impact process, and (3) epigenetic (immediately post-impact) deposits that result from impact-induced thermal/hydrothermal activity. In addition to metalliferous ore deposits related to impact structures, impact structure-hosted epigenetic hydrocarbon deposits are reviewed and are shown to make a major contribution to the North American economies. Non-metallic resources, such as minerals derived from crater-lake deposits, dimension stone, and hydrological benefits, may also be derived from impact structures, and the educational and recreational value of many meteorite impact craters can be substantial.