13 Acquired Ocular Motility Disorders and Nystagmus JANET C

Total Page:16

File Type:pdf, Size:1020Kb

13 Acquired Ocular Motility Disorders and Nystagmus JANET C 13 Acquired Ocular Motility Disorders and Nystagmus JANET C. RUCKER Introduction Supranuclear Ocular Motility Control Clinical Approach and Diagnostic Tools Abnormal Spontaneous Eye Movements Ophthalmoparesis Nystagmus Extraocular Muscles Saccadic Intrusions The Neuromuscular Junction Cranial Nerve Palsies References Brainstem Disorders Key Points Eye movement disorders may be considered in two categories: those that cause incomplete eye movements (ophthalmoparesis) and those that cause excessive eye movements (saccadic intrusions and nystagmus). Central to an understanding and correct diagnosis of abnormal eye movements is the evaluation of ocular alignment, ocular motility, and each functional class of eye movements: optokinetic, vestibular, vergence, smooth pursuit, and saccades. Ophthalmoparesis is caused by dysfunction of extraocular muscles, the neuromuscular junction, cranial nerves, cranial nerve nuclei, and internuclear and supranuclear connections. The initial pathologic eye movement in nystagmus is a slow drift of the eye away from the desired position, whereas the initial pathologic eye movement in saccadic intrusions is an inappropriate saccade that intrudes on fixation. Identification of the characteristics of nystagmus (physiologic versus pathologic, jerk versus pendular) is necessary for diagnostic evaluation and treatment. Introduction The goal of all normal eye movements is to place and maintain an object of visual interest on each fovea simultaneously to allow visualization of a stable, single object. Any deviation from normal eye movements may degrade vision. The spectrum of ocular motility disorders ranges from absent or inadequate 312 13 Acquired Ocular Motility Disorders and Nystagmus 313 ocular motor function (ophthalmoplegia or ophthalmoparesis) to excessive ocu- lar motor function (spontaneous eye movements). This chapter is divided into three sections; the first details those aspects of the history and examination required for an accurate diagnosis of abnormal ocular motility, the second con- cerns acquired disorders of ophthalmoparesis, and the third concerns acquired abnormal spontaneous eye movements. Clinical Approach and Diagnostic Tools Ophthalmoparesis results in ocular misalignment; hence an object of visual interest falls on the fovea in one eye and on an extrafoveal location in the other eye, leading to the subjective appreciation of binocular diplopia (Fig. 13–1). When there are abnormal spontaneous eye movements, illusory motion of the visual world (oscillopsia) occurs if the subjective experience of retinal motion is in excess of that normally tolerated by the visual system (up to about 5 degrees per second for Snellen optotypes).1 An understanding of the nature and pathophysiology of these symptoms allows the correct identification and localization of an ocular motility disorder. Binocular diplopia may result from dysfunction of extraocular muscles, the neuromuscular junction, cranial nerves, cranial nerve nuclei, and internuclear and supranuclear connections. Oscillopsia may result from nystagmus and saccadic intrusions. When diplopia is present, it is essential to determine if the diplopia resolves with covering each eye in turn (binocular diplopia). If it persists with monocular covering (monocular diplopia), it is not attributable to ocular misalignment but rather to refractive error or other ocular causes.2–4 It should be determined if binocular diplopia is horizontal, vertical, or oblique; worse in a particular direc- tion of gaze; and worse at distance or near. Horizontal diplopia is caused by impaired abduction or adduction and vertical diplopia by impaired elevation Figure 13–1 Fixation with normal ocular alignment is represented by solid black lines. An image of the feather falls on each fovea simulta- neously and a single object is seen. Binocular diplopia, which develops with an ocular mis- alignment (lateral deviation of the right eye as depicted by the dashed arrow), occurs because the image of the feather falls on an extrafoveal location in the deviated right eye (dashed lines). (Adapted from Leigh RJ, Zee DS: The Neurology of Eye Movements, 3rd ed. Oxford, Oxford University Press, 1999, p 337.) 314 Neuro-Ophthalmology: Blue Books of Neurology or depression. Worsening diplopia in a particular gaze direction suggests that motility in that direction is impaired. The temporal course of the diplopia and any associated neurologic symptoms should be assessed; proximal muscle weak- ness, difficulty swallowing, and shortness of breath, for example, suggest neuro- muscular dysfunction, and a deterioration of monocular vision and proptosis suggest an orbital process. These historical features are also important in the evaluation of patients with oscillopsia and spontaneous eye movements. The neurologic and visual systems should be carefully examined in all patients with diplopia, ophthalmoparesis, oscillopsia, or abnormal spontaneous eye movements.5 The eye movement examination should include an assessment of ocular alignment and motility, as described in Chapter 1 (Fig. 13–2). In addition, stability of gaze fixation should be assessed with the eyes close to central position, viewing near and far targets, and at eccentric gaze angles. Prolonged observation for up to 2 minutes is necessary, as some types of nystagmus periodically change direction. Observation of the effect of removal of fixation on eye stability is also important, as nystagmus caused by peripheral vestibular dysfunction may only be visible under this circumstance. This can be achieved by transient coverage of the fixating eye during ophthalmoscopy in a dark room. Each functional class of eye movements should be examined in both horizon- tal and vertical directions. Optokinetic nystagmus occurs reflexively during self- rotation and can be elicited at the bedside with visual tracking of an optokinetic drum or tape with alternating black-and-white vertical stripes. It consists of slow tracking, smooth pursuit movements alternating with quick resetting saccadic movements.6 Vestibular eye movements hold an image steady on the fovea by means of compensatory eye movements during brief, nonsustained head move- ments, such as during walking. These eye movements may be evaluated clini- cally with passive head thrusts during which the examiner applies a low- amplitude, high-acceleration head rotation while the patient fixates a target.7,8 If vestibular function is normal, the patient will maintain fixation of the target during and after the head movement. If vestibular function is impaired, the patient will not be able to maintain fixation and a corrective saccade back to the target is seen following the head rotation. Examiner-applied passive head thrusts are more sensitive than patient-initiated active head thrusts for identify- ing vestibular dysfunction.9 Vergence eye movements consist of disconjugate convergent and divergent eye movements that maintain stability of a visual image during near and far gaze shifts. Smooth pursuit is a slow eye movement A Figure 13–2 Corneal light reflection test. A, Normal ocular alignment—a light shined in the center of one pupil B falls in the center of the other pupil. B, Exotropia—a light shined in the center of one pupil falls medial to the pupil C, center in the other eye. Esotropia—a light shined in C the center of one pupil falls lateral to the pupil center in the other eye. D, Right hypertropia—a light shined in the center of the pupil in the left eye falls below the pupil center in the right eye. D 13 Acquired Ocular Motility Disorders and Nystagmus 315 (velocity 20 to 50 degrees/second), which functions to hold the image of a moving target steady on the fovea and which can be assessed by having the patient follow a slowly moving target. Saccades are fast eye movements (velocity 300 to 500 degrees/second) that rapidly shift gaze to place an object of visual interest on the fovea.10 Saccades present a challenging task to the brain, as their execution requires a sudden, intense neural discharge to effect a high-velocity eye movement and to overcome the elastic, damping orbital pull of extraocular muscles and suspensory ligaments.10 This intense neural discharge is provided by brainstem neurons called burst neurons. Ophthalmoparesis EXTRAOCULAR MUSCLES Thyroid ophthalmopathy is typically painless and bilateral, although it may be asymmetric. It tends to affect the inferior and medial rectus muscles first, leading to restrictions of elevation and abduction. Although it is useful to obtain thyroid function studies (thyroid-stimulating hormone, triiodothyronine, and thyroxine), it may be associated with hyperthyroid, hypothyroid, or euthyroid states. Thyroid-stimulating antibodies correlate with the presence of thyroid eye disease and can be an important disease marker in the setting of a serologic euthyroid state.11–13 Orbital computed tomography (CT) or magnetic resonance imaging (MRI) scans demonstrate enlargement of involved extraocular muscle bodies with relative sparing of muscle tendon insertions at the globe (Fig. 13–3A). Coronal images are best, because muscle enlargement may be underestimated if only axial images are acquired. Treatment options include corticosteroids, radiation, and orbital decompression surgery, as discussed in Chapter 3. Discontinuation of smoking should be strongly advised, as smoking may worsen thyroid ophthal- mopathy and lessen treatment effect.14,15 Orbital pseudotumor is typically painful and unilateral. Any extraocular muscle may be involved;
Recommended publications
  • Treacher Collins Prize Essay the Significance of Nystagmus
    Eye (1989) 3, 816--832 Treacher Collins Prize Essay The Significance of Nystagmus NICHOLAS EVANS Norwich Introduction combined. The range of forms it takes, and Ophthalmology found the term v!to"[<xy!too, the circumstances in which it occurs, must be like many others, in classical Greece, where it compared and contrasted in order to under­ described the head-nodding of the wined and stand the relationships between nystagmus of somnolent. It first acquired a neuro-ophthal­ different aetiologies. An approach which is mological sense in 1822, when it was used by synthetic as well as analytic identifies those Goodl to describe 'habitual squinting'. Since features which are common to different types then its meaning has been refined, and much and those that are distinctive, and helps has been learned about the circumstances in describe the relationship between eye move­ which the eye oscillates, the components of ment and vision in nystagmus. nystagmus, and its neurophysiological, Nystagmus is not properly a disorder of eye neuroanatomic and neuropathological corre­ movement, but one of steady fixation, in lates. It occurs physiologically and pathologi­ which the relationship between eye and field cally, alone or in conjunction with visual or is unstable. The essential significance of all central nervous system pathology. It takes a types of nystagmus is the disturbance in this variety of different forms, the eyes moving relationship between the sensory and motor about one or more axis, and may be conjugate ends of the visual-oculomotor axis. Optimal or dysjugate. It can be modified to a variable visual performance requires stability of the degree by external (visual, gravitational and image on the retina, and vision is inevitably rotational) and internal (level of awareness affected by nystagmus.
    [Show full text]
  • Pupillary Disorders LAURA J
    13 Pupillary Disorders LAURA J. BALCER Pupillary disorders usually fall into one of three major cat- cortex generally do not affect pupillary size or reactivity. egories: (1) abnormally shaped pupils, (2) abnormal pupillary Efferent parasympathetic fibers, arising from the Edinger– reaction to light, or (3) unequally sized pupils (anisocoria). Westphal nucleus, exit the midbrain within the third nerve Occasionally pupillary abnormalities are isolated findings, (efferent arc). Within the subarachnoid portion of the third but in many cases they are manifestations of more serious nerve, pupillary fibers tend to run on the external surface, intracranial pathology. making them more vulnerable to compression or infiltration The pupillary examination is discussed in detail in and less susceptible to vascular insult. Within the anterior Chapter 2. Pupillary neuroanatomy and physiology are cavernous sinus, the third nerve divides into two portions. reviewed here, and then the various pupillary disorders, The pupillary fibers follow the inferior division into the orbit, grouped roughly into one of the three listed categories, are where they then synapse at the ciliary ganglion, which lies discussed. in the posterior part of the orbit between the optic nerve and lateral rectus muscle (Fig. 13.3). The ciliary ganglion issues postganglionic cholinergic short ciliary nerves, which Neuroanatomy and Physiology initially travel to the globe with the nerve to the inferior oblique muscle, then between the sclera and choroid, to The major functions of the pupil are to vary the quantity of innervate the ciliary body and iris sphincter muscle. Fibers light reaching the retina, to minimize the spherical aberra- to the ciliary body outnumber those to the iris sphincter tions of the peripheral cornea and lens, and to increase the muscle by 30 : 1.
    [Show full text]
  • COVID-19 Presenting with Ophthalmoparesis from Cranial Nerve Palsy
    CLINICAL/SCIENTIFIC NOTES COVID-19 presenting with ophthalmoparesis from cranial nerve palsy Marc Dinkin, MD, Virginia Gao, MD, PhD, Joshua Kahan, MBBS, PhD, Sarah Bobker, MD, Correspondence Marialaura Simonetto, MD, Paul Wechsler, MD, Jasmin Harpe, MD, Christine Greer, MD, Gregory Mints, MD, Dr. Dinkin Gayle Salama, MD, Apostolos John Tsiouris, MD, and Dana Leifer, MD [email protected] Neurology® 2020;95:221-223. doi:10.1212/WNL.0000000000009700 Neurologic complications of COVID-19 are not well described. We report 2 patients who were RELATED ARTICLE diagnosed with COVID-19 after presenting with diplopia and ophthalmoparesis. Editorial Cranial neuropathies and COVID-19: Neurotropism Case 1 and autoimmunity A 36-year-old man with a history of infantile strabismus presented with left ptosis, diplopia, and Page 195 bilateral distal leg paresthesias. He reported subjective fever, cough, and myalgias which had developed 4 days earlier and resolved before presentation. Examination was notable for left MORE ONLINE mydriasis, mild ptosis, and limited depression and adduction, consistent with a partial left oculomotor palsy. Abduction was limited bilaterally consistent with bilateral abducens palsies COVID-19 Resources (figure, A). Lower extremity hyporeflexia and hypesthesia, and gait ataxia were noted. WBC was For the latest articles, 2.9 × 103/μL with an absolute lymphocyte count of 0.9 × 103/μL. Nasal swab for SARS-CoV-2 invited commentaries, and PCR was positive. MRI revealed enhancement, T2-hyperintensity, and enlargement of the left blogs from physicians oculomotor nerve (figure, B–D). Chest radiograph was unremarkable. The next day, there was around the world worsening left ptosis, complete loss of depression and horizontal eye movements on the left and NPub.org/COVID19 loss of abduction on the right.
    [Show full text]
  • "Nystagmus Testing in Intoxicated Individuals," Citek
    ISSUE HIGHLIGHT Nystagmus testing in intoxicated individuals Karl Citek, O.D., Ph.D.,a Bret Ball, O.D.,a and Dale A. Rutledge, Lieutenantb aCollege of Optometry, Pacific University, Forest Grove, Oregon and bthe Oregon State Police, Wilsonville, Oregon Background: Law enforcement officers routinely conduct psy- n the United States, drivers impaired* by alcohol and/or chophysical tests to determine if an impaired driver may be drugs are responsible for more than 16,000 deaths, one intoxicated or in need of medical assistance. Testing includes million injuries, and $45 billion in costs annually.1 As assessment of eye movements, using the Horizontal Gaze Nys- I tagmus (HGN) and Vertical Gaze Nystagmus (VGN) tests, which part of the attempt to reduce these human and economic are conducted at roadside by patrol officers. These tests pre- tolls, law enforcement officers routinely conduct tests of eye viously have been validated when the subject is placed in a movements to determine if a driver is under the influence standing posture with head upright. However, certain condi- of alcohol or other drugs. Alcohol, other central nervous sys- tions require that the subject be tested while seated or supine. Under these conditions, Positional Alcohol Nystagmus (PAN) tem (CNS)-depressant drugs, inhalants, and phencyclidine could be induced and mistaken for HGN or VGN. (PCP) and its analogs will affect the neural centers in the Methods: The study was conducted at law enforcement train- brainstem and cerebellum, which control eye movements, ing academy alcohol workshops in the Pacific Northwest. as well as other motor, sensory, and cognitive integration Ninety-six volunteer drinkers were tested when sober and areas of the brain.
    [Show full text]
  • Complex Strabismus and Syndromes
    Complex Strabismus & Syndromes Some patients exhibit complex combinations of vertical, horizontal, and torsional strabismus. Dr. Shin treats patients with complex strabismus arising from, but not limited to, thyroid-related eye disease, stroke, or brain tumors as well as strabismic disorders following severe orbital and head trauma. The following paragraphs describe specific ocular conditions marked by complex strabismus. Duane Syndrome Duane syndrome represents a constellation of eye findings present at birth that results from an absent 6th cranial nerve nucleus and an aberrant branch of the 3rd cranial nerve that innervates the lateral rectus muscle. Duane syndrome most commonly affects the left eye of otherwise healthy females. Duane syndrome includes several variants of eye movement abnormalities. In the most common variant, Type I, the eye is unable to turn outward to varying degrees from the normal straight ahead position. In addition, when the patient tries to look straight ahead, the eyes may cross. This may lead a person with Duane syndrome to turn his/her head toward one side while viewing objects in front of them in order to better align the eyes. When the involved eye moves toward the nose, the eye retracts slightly back into the eye socket causing a narrowing of the opening between the eyelids. In Type II, the affected eye possesses limited ability to turn inward and is generally outwardly turning. In Type III, the eye has limited inward and outward movement. All three types are characterized by anomalous co-contraction of the medial and lateral rectus muscles, so when the involved eye moves towards the nose, the globe pulls back into the orbit and the vertical space between the eyelids narrows.
    [Show full text]
  • May Clinical-Sharma (Pdf 143KB)
    CLINICAL New-onset ptosis initially diagnosed as conjunctivitis Neil Sharma, Ju-Lee Ooi, Rebecca Davie, Palvi Bhardwaj Case Question 2 divides into superior and inferior branches, Joe, 66 years of age, was referred with What are the causes of an isolated which enter the orbit through the superior a 2-week history of a right upper eyelid oculomotor nerve palsy? orbital fissure. abnormality. He complained of associated The superior division innervates diplopia initially, but this subjectively Question 3 the levator palpebrae superioris and improved after a few days as the eye What clinical features raise the index of superior rectus, while the inferior division became more difficult to open. He had a suspicion of a compressive lesion? mild, intermittent headache for 4 weeks, relieved with oral paracetamol. There Question 4 were no other neurological symptoms. What investigation does this patient He had no other symptoms of giant cell urgently require? arteritis. His past medical history included hypercholesterolaemia for which he was Case continued taking regular statin therapy. He was an Joe was referred for an urgent CT ex-smoker with a 40 pack-year history. angiogram. This showed a large Initially, Joe’s general practitioner (GP) unruptured posterior communicating diagnosed conjunctivitis and prescribed artery aneurysm (Figure 1). He was chloramphenicol drops four times daily. admitted under the neurosurgical team. One week later the symptoms had not improved and Joe was referred to the eye Question 5 Figure 1. 3-dimensional reconstruction image clinic complaining of increasing right What are the surgical options for dealing of the CT-angiogram showing an unruptured periocular pain.
    [Show full text]
  • Sixth Nerve Palsy
    COMPREHENSIVE OPHTHALMOLOGY UPDATE VOLUME 7, NUMBER 5 SEPTEMBER-OCTOBER 2006 CLINICAL PRACTICE Sixth Nerve Palsy THOMAS J. O’DONNELL, MD, AND EDWARD G. BUCKLEY, MD Abstract. The diagnosis and etiologies of sixth cranial nerve palsies are reviewed along with non- surgical and surgical treatment approaches. Surgical options depend on the function of the paretic muscle, the field of greatest symptoms, and the likelihood of inducing diplopia in additional fields by a given procedure. (Comp Ophthalmol Update 7: xx-xx, 2006) Key words. botulinum toxin (Botox®) • etiology • sixth nerve palsy (paresis) Introduction of the cases, the patients had hypertension and/or, less frequently, Sixth cranial nerve (abducens) palsy diabetes; 26% were undetermined, is a common cause of acquired 5% had a neoplasm, and 2% had an horizontal diplopia. Signs pointing aneurysm. It was noted that patients toward the diagnosis are an who had an aneurysm or neoplasm abduction deficit and an esotropia had additional neurologic signs or increasing with gaze toward the side symptoms or were known to have a of the deficit (Figure 1). The diplopia cancer.2 is typically worse at distance. Measurements are made with the Anatomical Considerations uninvolved eye fixing (primary deviation), and will be larger with the The sixth cranial nerve nuclei are involved eye fixing (secondary located in the lower pons beneath the deviation). A small vertical deficit may fourth ventricle. The nerve on each accompany a sixth nerve palsy, but a side exits from the ventral surface of deviation over 4 prism diopters the pons. It passes from the posterior Dr. O’Donnell is affiliated with the should raise the question of cranial fossa to the middle cranial University of Tennessee Health Sci- additional pathology, such as a fourth fossa, ascends the clivus, and passes ence Center, Memphis, TN.
    [Show full text]
  • Albinism Terminology
    Albinism Terminology Oculocutaneous Albinism (OCA): Oculocutaneous (pronounced ock-you-low-kew- TAIN-ee-us) Albinism is an inherited genetic condition characterized by the lack of or diminished pigment in the hair, skin, and eyes. Implications of this condition include eye and skin sensitivities to light and visual impairment. Ocular Albinism (OA): Ocular Albinism is an inherited genetic condition, diagnosed predominantly in males, characterized by the lack of pigment in the eyes. Implications of this condition include eye sensitivities to light and visual impairment. Hermansky Pudlak Syndrome (HPS): Hermansky-Pudlak Syndrome is a type of albinism which includes a bleeding tendency and lung disease. HPS may also include inflammatory bowel disease or kidney disease. The severity of these problems varies much from person to person, and the condition can be difficult to diagnose with traditional blood tests Chediak Higashi Syndrome: Chediak Higashi Syndrome is a type of albinism in which the immune system is affected. Illnesses and infections are common from infancy and can be severe. Issues also arise with blood clotting and severe bleeding. Melanin: Melanin is pigment found in a group of cells called melanocytes in most organisms. In albinism, the production of melanin is impaired or completely lacking. Nystagmus: Nystagmus is an involuntary movement of the eyes in either a vertical, horizontal, pendular, or circular pattern caused by a problem with the visual pathway from the eye to the brain. As a result, both eyes are unable to hold steady on objects being viewed. Nystagmus may be accompanied by unusual head positions and head nodding in an attempt to compensate for the condition.
    [Show full text]
  • Central Retinal Artery Occlusion with Ophthalmoparesis In
    [Downloaded free from http://www.neurologyindia.com on Thursday, March 05, 2015, IP: 202.177.173.189] || Click here to download free Android application for this journal Letters to Editor 3. Antic B, Roganovic Z, Tadic R, Ilic S. Chondroma of the cervical spinal canal. Case report. J Neurosurg Sci 1992;36:239-41. Central retinal artery occlusion 4. Baber WW, Numaguchi Y, Kenning JA, Harkin JC. Periosteal chondroma of the cervical spine: One more cause of neural foramen enlargement. with ophthalmoparesis in Surg Neurol 1988;29:149-52. 5. Calderone A, Naimark A, Schiller AL. Case report 196: Juxtacortical spontaneous carotid artery chondroma of C2. Skeletal Radiol 1982;8:160-3. 6. Lozes G, Fawaz A, Perper H, Devos P, Benoit P, Krivosic I, dissection et al. Chondroma of the cervical spine. Case report. J Neurosurg 1987;66:128-30. 7. Maiuri F, Corriero G, De Chiara A, Giamundo A, Benvenuti D, Sir, Gangemi M. Chondroma of the cervical spine: A case report. Acta Neurol Spontaneous carotid arterial dissection is a nontraumatic (Napoli) 1980;2:204-8. tear or disruption in the wall of the internal carotid artery 8. Palaoglu S, Akkas O, Sav A. Chondroma of the cervical spine. Clin Neurol Neurosurg 1988;90:253-5. (ICA) without a clear etiology. It represents a major cause 9. Shurland AT, Flynn JM, Heller GD, Golden JA. Tumor of the cervical of stroke in younger patients, comprising about 10–25% spine in an 11-year-old girl [clinical]. Clin Orthop Relat Res 1999:287- of ischemic cerebral events. Patients can present with a 90, 293-5.
    [Show full text]
  • Expanding the Phenotypic Spectrum of PAX6 Mutations: from Congenital Cataracts to Nystagmus
    G C A T T A C G G C A T genes Article Expanding the Phenotypic Spectrum of PAX6 Mutations: From Congenital Cataracts to Nystagmus Maria Nieves-Moreno 1,* , Susana Noval 1 , Jesus Peralta 1, María Palomares-Bralo 2 , Angela del Pozo 3 , Sixto Garcia-Miñaur 4, Fernando Santos-Simarro 4 and Elena Vallespin 5 1 Department of Ophthalmology, Hospital Universitario La Paz, 28046 Madrid, Spain; [email protected] (S.N.); [email protected] (J.P.) 2 Department of Molecular Developmental Disorders, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; [email protected] 3 Department of Bioinformatics, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; [email protected] 4 Department of Clinical Genetics, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; [email protected] (S.G.-M.); [email protected] (F.S.-S.) 5 Department of Molecular Ophthalmology, Medical and Molecular Genetics Institue (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; [email protected] * Correspondence: [email protected] Abstract: Background: Congenital aniridia is a complex ocular disorder, usually associated with severe visual impairment, generally caused by mutations on the PAX6 gene. The clinical phenotype of PAX6 mutations is highly variable, making the genotype–phenotype correlations difficult to establish. Methods: we describe the phenotype of eight patients from seven unrelated families Citation: Nieves-Moreno, M.; Noval, with confirmed mutations in PAX6, and very different clinical manifestations.
    [Show full text]
  • CN Palsy Update for the Primary Care OD 2018
    CN Palsy Update for the Primary Care OD 2018 Christopher Wolfe, OD, FAAO, Dipl. ABO Oculomotor Nerve Palsy (CN 3) Signs and Symptoms The primary symptom is diplopia caused by misalignment of the visual axes, the pattern of image separation (horizontal, vertical, oblique) is the key to diagnosing which particular ocular motor cranial nerve (and extraocular muscle) is involved. With a complete unilateral third cranial nerve palsy, the involved eye is deviated "down and out" with partial or complete ptosis. • Pupillary dilatation (involvement) can cause: • Anisocoria (greater in the light) • Symptomatic glare in bright light • Blurred vision for near objects – due to accommodation deficit A painful pupil-involved oculomotor nerve palsy may result from a life-threatening intracranial aneurysm. Prompt diagnosis of an oculomotor nerve palsy is critical to ensure appropriate evaluation and management. Pathophysiology The clinical features of a CN 3 palsy are due to the anatomical relationship of the various branches of the oculomotor nerve and the location of the problem causing the palsy. These anatomical sites can be broken down into: • Nuclear portion: The axons start on each side of the midbrain. Each of the axon origination within the midbrain that travel to a specific extraocular and intraocular muscle can be further classified into a subnucleus. • Fascicular intraparenchymal midbrain portion: This portion of the oculomotor nerve travels courses ventrally (forward) from the nucleus, through the red nucleus, and emerges medially from the cerebral peduncle. • Subarachnoid portion: The nerve then travels in the subarachnoid space anterior to the midbrain and near the posterior communicating artery. An aneurysm at the INTRAOCULAR junction between the posterior communicating artery and INNERVATION the internal carotid artery is one of the critical reasons to differentiate a pupil involved CN 3 palsy.
    [Show full text]
  • Congenital Oculomotor Palsy: Associated Neurological and Ophthalmological Findings
    CONGENITAL OCULOMOTOR PALSY: ASSOCIATED NEUROLOGICAL AND OPHTHALMOLOGICAL FINDINGS M. D. TSALOUMAS1 and H. E. WILLSHA W2 Birmingham SUMMARY In our group of patients we found a high incidence Congenital fourth and sixth nerve palsies are rarely of neurological abnormalities, in some cases asso­ associated with other evidence of neurological ahnor­ ciated with abnormal findings on CT scanning. mality, but there have been conflicting reports in the Aberrant regeneration, preferential fixation with literature on the associations of congenital third nerve the paretic eye, amblyopia of the non-involved eye palsy. In order to clarify the situation we report a series and asymmetric nystagmus have all been reported as 1 3 7 of 14 consecutive cases presenting to a paediatric associated ophthalmic findings. - , -9 However, we tertiary referral service over the last 12 years. In this describe for the first time a phenomenon of digital lid series of children, 5 had associated neurological elevation to allow fixation with the affected eye. Two abnormalities, lending support to the view that con­ children demonstrated this phenomenon and in each genital third nerve palsy is commonly a manifestation of case the accompanying neurological defect was widespread neurological damage. We also describe for profound. the first time a phenomenon of digital lid elevation to allow fixation with the affected eye. Two children demonstrated this phenomenon and in each case the PATIENTS AND METHODS accompanying neurological defect was profound. The Fourteen children (8 boys, 6 girls) with a diagnosis of frequency and severity of associated deficits is analysed, congenital oculomotor palsy presented to our paed­ and the mechanism of fixation with the affected eye is iatric tertiary referral centre over the 12 years from discussed.
    [Show full text]