Spinal Cerebrospinal Fluid Leak
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Non-Traumatic Cerebrospinal Fluid Rhinorrhoea
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.31.3.214 on 1 June 1968. Downloaded from J. Neurol. Neurosurg. Psychiat., 1968, 31, 214-225 Non-traumatic cerebrospinal fluid rhinorrhoea AYUB K. OMMAYA, GIOVANNI DI CHIRO, MAITLAND BALDWIN, AND J. B. PENNYBACKERI From the Branches ofMedical Neurology and ofSurgical Neurology, National Institute ofNeurological Diseases and Blindness, National Institutes ofHealth, Public Health Service, United States Department of Health, Education and Welfare, Bethesda, Maryland, U.S.A. There is a certain degree of confusion in the litera- ally impossible phrase 'secondary spontaneous ture concerning nasal leakage of cerebrospinal fluid rhinorrhcea'. when trauma is not the cause. The term 'spontaneous In an earlier report by one of us (A.K.O.), an cerebrospinal fluid rhinorrhoea' has been usedmore or attempt was made to provide such a classification of less consistently to describe such cases since 1899. cerebrospinal fluid rhinorrhoea on the basis of an Although isolated observations had been made analysis of the literature and the case histories of two earlier, it was the monograph by St. Clair Thomson patients (Ommaya, 1964). Since then we have been (1899) that first clearly described and atttempted to able to collect 18 patients with non-traumatic define spontaneous cerebrospinal fluid rhinorrhcea as cerebrospinal fluid rhinorrhoea. Thirteen of these a clinical entity. Other authors have since essayed to were seen at the Radcliffe Infirmary, Oxford, andProtected by copyright. subdivide this condition into 'primary spontaneous' five at the National Institute ofNeurological Diseases or 'idiopathic' rhinorrhoea when a precipitating cause and Blindness, National Institutes of Health, could not be found and 'secondary spontaneous' Bethesda, Maryland. -
ICD-10 Coordination and Maintenance Committee Meeting Diagnosis Agenda March 5-6, 2019 Part 2
ICD-10 Coordination and Maintenance Committee Meeting Diagnosis Agenda March 5-6, 2019 Part 2 Welcome and announcements Donna Pickett, MPH, RHIA Co-Chair, ICD-10 Coordination and Maintenance Committee Diagnosis Topics: Contents Babesiosis ........................................................................................................................................... 10 David, Berglund, MD Mikhail Menis, PharmD, MS Epi, MS PHSR Epidemiologist Office of Biostatistics and Epidemiology CBER/FDA C3 Glomerulopathy .......................................................................................................................... 13 David Berglund, MD Richard J. Hamburger, M.D. Professor Emeritus of Medicine, Indiana University Renal Physicians Association Eosinophilic Gastrointestinal Diseases ............................................................................................ 18 David Berglund, MD Bruce Bochner, MD Samuel M. Feinberg Professor of Medicine Northwestern University Feinberg School of Medicine and President, International Eosinophil Society ICD-10 Coordination and Maintenance Committee Meeting March 5-6, 2019 Food Insecurity.................................................................................................................................. 20 Donna Pickett Glut1 Deficiency ................................................................................................................................ 23 David Berglund, MD Hepatic Fibrosis ............................................................................................................................... -
DIAGNOSTICS and THERAPY of INCREASED INTRACRANIAL PRESSURE in ISCHEMIC STROKE
DIAGNOSTICS and THERAPY of INCREASED INTRACRANIAL PRESSURE in ISCHEMIC STROKE Erich Schmutzhard INNSBRUCK, AUSTRIA e - mail: erich.schmutzhard@i - med.ac.at Neuro - ICU Innsbruck Conflict of interest : Speaker‘s honoraria from ZOLL Medical and Honoraria for manuscripts from Pfizer Neuro - ICU Innsbruck OUTLINE Introduction Definition: ICP, CPP, PbtiO2, metabolic monitoring, lactate , pyruvate , brain temperature etc Epidemiology of ischemic stroke and ICP elevation in ischemic stroke ACM infarction and the role of collaterals and/ or lack of collaterals for ICP etc Hydrocephalus in posterioir fossa ( mainly cerebellar ) infarction Diagnosis of ICP etc Monitoring of ICP etc Therapeutic management : decompressive craniectomy – meta - analysis of DESTINY HAMLET und co deepening of analgosedation , ventilation , hyperventilation , osmotherapy , CPP - oriented th , MAP management , hypothermia , prophylactic normothermia , external ventricular drainage Neuro - ICU Innsbruck Introduction - Malignant cerebral edema following ischemic stroke is life threatening. - The pathophysiology of brain edema involves failure of the sodium - potassium adenosine triphosphatase pump and disruption of the blood - brain barrier, leading to cytotoxic edema and cellular death. - The Monro - Kellie doctrine clearlc states that - since the brain is encased in a finite space - increased intracranial pressure (ICP) due to cerebral edema can result in herniation through the foramen magnum and openings formed by the falx and tentorium. - Moreover, elevated ICP can cause secondary brain ischemia through decreased cerebral perfusion and blood flow, brain tissue hypoxia, and metabolic crisis. - Direct cerebrovascular compression caused by brain tissue shifting can lead to secondary infarction, especially in the territories of the anterior and posterior cerebral artery. - Tissue shifts can also stretch and tear cerebral vessels, causing intracranial hemorrhage such as Duret’s hemorrhage of the brainstem. -
Spinal Cerebrospinal Fluid Leak As the Cause of Chronic Subdural Hematomas in Nongeriatric Patients
J Neurosurg 121:1380–1387, 2014 ©AANS, 2014 Spinal cerebrospinal fluid leak as the cause of chronic subdural hematomas in nongeriatric patients Clinical article JÜRGEN BECK, M.D.,1 JAN GRALLA, M.D., M.SC.,2 CHRISTIAN FUNG, M.D.,1 CHRISTIAN T. ULRICH, M.D.,1 PHILIppE SCHUCHT, M.D.,1 JENS FICHTNER, M.D.,1 LUKAS ANDEREGGEN, M.D.,1 MARTIN GOSAU, M.D.,4 ELKE HATTINGEN, M.D.,5 KLEMENS GUTBROD, M.D.,3 WERNER J. Z’GRAGGEN, M.D.,1,3 MICHAEL REINERT, M.D.,1,6 JÜRG HÜSLER, PH.D.,7 CHRISTOPH OzdOBA, M.D.,2 AND ANDREAS RAABE, M.D.1 Departments of 1Neurosurgery, 2Neuroradiology, and 3Neurology, Bern University Hospital, Bern, Switzerland; 4Department of Cranio-Maxillo-Facial Surgery, University Medical Center, Regensburg, Germany; 5Institute of Neuroradiology, University of Frankfurt, Frankfurt/Main, Germany; 6Department of Neurosurgery, Ospedale Cantonale di Lugano, Switzerland; and 7Institute of Mathematical Statistics and Actuarial Science, University of Bern, Switzerland Object. The etiology of chronic subdural hematoma (CSDH) in nongeriatric patients (≤ 60 years old) often re- mains unclear. The primary objective of this study was to identify spinal CSF leaks in young patients, after formulat- ing the hypothesis that spinal CSF leaks are causally related to CSDH. Methods. All consecutive patients 60 years of age or younger who underwent operations for CSDH between September 2009 and April 2011 at Bern University Hospital were included in this prospective cohort study. The pa- tient workup included an extended search for a spinal CSF leak using a systematic algorithm: MRI of the spinal axis with or without intrathecal contrast application, myelography/fluoroscopy, and postmyelography CT. -
Stroke Intracranial Hypertension Cerebral Edema Roman Gardlík, MD, Phd
Stroke Intracranial hypertension Cerebral edema Roman Gardlík, MD, PhD. Institute of Pathological Physiology Institute of Molecular Biomedicine [email protected] Books • Silbernagl 356 • Other book 667 Brain • The most complex structure in the body • Anatomically • Functionally • Signals to and from various part of the body are controlled by very specific areas within the brain • Brain is more vulnerable to focal lesions than other organs • Renal infarct does not have a significant effect on kidney function • Brain infarct of the same size can produce complete paralysis on one side of the body Brain • 2% of body weight • Receives 1/6 of resting cardiac output • 20% of oxygen consumption Blood-brain barrier Mechanisms of brain injury • Various causes: • trauma • tumors • stroke • metabolic dysbalance • Common pathways of injury: • Hypoxia • Ischemia • Cerebral edema • Increased intracranial pressure Hypoxia • Deprivation of oxygen with maintained blood flow • Causes: • Exposure to reduced atmospheric pressure • Carbon monoxide poisoning • Severe anemia • Failure to ogygenate blood • Well tolerated, particularly if chronic • Neurons capable of anaerobic metabolism • Euphoria, listlessness, drowsiness, impaired problem solving • Acute and severe hypoxia – unconsciousness and convulsions • Brain anoxia can result to cardiac arrest Ischemia • Reduced blood flow • Focal / global ischemia • Energy sources (glucose and glycogen) are exhausted in 2 to 4 minutes • Cellular ATP stores are depleted in 4 to 5 minutes • 50% - 75% of energy is -
Surgical Outcome of Transcranial Intradural Repair in Post Traumatic Cerebrospinal Fluid Leak
Surgical Outcome of Transcranial Intradural Repair in Post Traumatic Cerebrospinal … Samina Khaleeq et al. Original Article Samina Khaleeq* Surgical Outcome of Transcranial Muhammad Khalid** Khaleeq UZ Zaman*** Intradural Repair in Post Traumatic Cerebrospinal Fluid Leak *Associate Professor **Postgraduate Resident ABSTRACT ***Professor and Head of Dept. Department of neurosurgery, Objective: To study the outcome of Transcranial repair in post traumatic CSF leak in Pakistan Institute of Medical head injury patients Sciences, Shaheed Zulfiqar Ali Bhutto Medical University, Study Design: Prospectively Study Islamabad, Pakistan. Place and Duration: From May 2013 to May 2015 at Pakistan Institute of Medical Sciences, Islamabad. Materials and Methods: All patients who have CSF leak after head injury were included in this study. All cases were studied prospectively at our center during period of 2 years. Patient’s demographic profiles, symptoms and signs, imaging studies, complications and outcome were assessed prospectively. The mean age of patients was 26.20 years, male /female ratio was 72:20, 76 out of 92 were adult and 16 were children. MRI images were used to identify the accurate site of dural rent which is very essential for successful result. Transcranial intradural repair was done in all patients whom dural rent was confirmed on MR images. Results: A total of 92 cases were studied prospectively, all patients were started on prophylactic antibiotics and observed for 72 hours. Patients mostly presented with loss of consciousness, vomiting, nasal or ear bleed, fits and severe headache. In 44 patients CSF leak stopped spontaneously. In 48 patients MRI brain especially T2 Address for Correspondence Dr. Muhammad Khalid images coronal cuts in prone position was done to define the accurate site of CSF leak. -
Idiopathic Intracranial Hypertension
IDIOPATHIC INTRACRANIAL HYPERTENSION William L Hills, MD Neuro-ophthalmology Oregon Neurology Associates Affiliated Assistant Professor Ophthalmology and Neurology Casey Eye Institute, OHSU No disclosures CASE - 19 YO WOMAN WITH HEADACHES X 3 MONTHS Headaches frontal PMHx: obesity Worse lying down Meds: takes ibuprofen for headaches Wake from sleep Pulsatile tinnitus x 1 month. Vision blacks out transiently when she bends over or sits down EXAMINATION Vision: 20/20 R eye, 20/25 L eye. Neuro: PERRL, no APD, EOMI, VF full to confrontation. Dilated fundoscopic exam: 360 degree blurring of disc margins in both eyes, absent SVP. Formal visual field testing: Enlargement of the blind spot, generalized constriction both eyes. MRI brain: Lumbar puncture: Posterior flattening of Opening pressure 39 the globes cm H20 Empty sella Normal CSF studies otherwise normal Headache improved after LP IDIOPATHIC INTRACRANIAL HYPERTENSION SYNDROME: Increased intracranial pressure without ventriculomegaly or mass lesion Normal CSF composition NOMENCLATURE Idiopathic intracranial hypertension (IIH) Benign intracranial hypertension Pseudotumor cerebri Intracranial hypertension secondary to… DIAGNOSTIC CRITERIA Original criteria have been updated to reflect new imaging modalities: 1492 Friedman and Jacobsen. Neurology 2002; 59: Symptoms and signs reflect only those of - increased ICP or papilledema 1495 Documented increased ICP during LP in lateral decubitus position Normal CSF composition No evidence of mass, hydrocephalus, structural -
Endoscopic Repair of Cerebrospinal Fluid Rhinorrhea
Braz J Otorhinolaryngol. 2017;83(4):388---393 Brazilian Journal of OTORHINOLARYNGOLOGY www.bjorl.org ORIGINAL ARTICLE ଝ Endoscopic repair of cerebrospinal fluid rhinorrhea a,b a,c a,b a,b Vladimir Kljaji´c , Petar Vulekovi´c , Ljiljana Vlaˇski , Slobodan Savovi´c , a,b,∗ a,c Danijela Dragiˇcevi´c , Vladimir Papi´c a University of Novi Sad, Faculty of Medicine, Hajduk Veljkova, Novi Sad, Serbia b Clinical Center of Vojvodina, ENT Clinic, Hajduk Veljkova, Novi Sad, Serbia c Clinical Center of Vojvodina, Clinic of Neurosurgery, Hajduk Veljkova, Novi Sad, Serbia Received 29 February 2016; accepted 14 April 2016 Available online 4 June 2016 KEYWORDS Abstract Introduction: Nasal liquorrhea indicates a cerebrospinal fluid fistula, an open communication Cerebrospinal fluid rhinorrhea; between the intracranial cerebrospinal fluid and the nasal cavity. It can be traumatic and spontaneous. Nasal surgical procedures; Objective: The aim of this study was to assess the outcome of endoscopic repair of cerebrospinal Endoscopy; fluid fistula using fluorescein. Fistula; Methods: This retrospective study included 30 patients of both sexes, with a mean age of 48.7 Fluorescein; years, treated in the period from 2007 to 2015. All patients underwent lumbar administration of 5% sodium fluorescein solution preoperatively. Fistula was closed using three-layer graft and Treatment outcome fibrin glue. Results: Cerebrospinal fluid fistulas were commonly located in the ethmoid (37%) and sphenoid sinus (33%). Most patients presented with traumatic cerebrospinal fluid fistulas (2/3 of patients). The reported success rate for the first repair attempt was 97%. Complications occurred in three patients: one patient presented with acute hydrocephalus, one with reversible encephalopathy syndrome on the fifth postoperative day with bilateral loss of vision, and one patient was diagnosed with hydrocephalus two years after the repair of cerebrospinal fluid fistula. -
Ian Carroll, MD, MS Associate Professor of Anesthesiology, Perioperative and Pain Medicine (Adult Pain) Curriculum Vitae Available Online
Ian Carroll, MD, MS Associate Professor of Anesthesiology, Perioperative and Pain Medicine (Adult Pain) Curriculum Vitae available Online CLINICAL OFFICES • Stanford Headache Clinic at Hoover Pavilion 211 Quarry Rd MC 5992 2nd Fl Stanford, CA 94305 Tel (650) 723-6469 Fax (650) 725-0390 • Division of Pain Medicine 430 Broadway St Pavilion C 3rd Fl MC 6343 Redwood City, CA 94063 Tel (650) 721-7278 Fax (650) 721-3471 Bio BIO In 2015 Dr. Carroll collaborated With Stanford's Neuroradiology and Neurology Headache divisions to create the Stanford CSF Leak Headache Program after his daughter suffered through an initially-undiagnosed CSF leak. This experience left him with a passion for helping patients experiencing CSF leaks around the world. He is board-certified in four different specialties: Headache Medicine by the United Council for Neurologic Subspecialties; Addiction Medicine by the American Board of Addiction Medicine; Pain Medicine by the American Board of Anesthesiology; and Anesthesiology by the American Board of Anesthesiology. His primary focus is on spinal cerebrospinal fluid (CSF) leaks. He has spoken at numerous national meetings on CSF leaks, management of the pain from nerve injuries, and factors influencing opioid cessation. He has conducted visiting professorships at Johns Hopkins University, Vanderbilt University, Yale University, University of California at Davis Medical Center, and others. Dr. Carroll graduated summa cum laude and Phi Beta Kappa from Columbia University, and then graduated with an M.D. from Columbia University. He was a Research Fellow at the Experimental Immunology Branch at the National Cancer Institute at the National Institutes of Health in Bethesda Maryland. -
Spontaneous CSF Leaks Low CSF Volume Syndromes
Spontaneous CSF Leaks Low CSF Volume Syndromes Bahram Mokri, MD KEYWORDS Spontaneous CSF leak Spontaneous intracranial hypotension (SIH) CSF hypovolemia Orthostatic headaches Diffuse patchy meningeal enhancement Acquired Chiari malformation Epidural blood patch Radioisotope cisternography KEY POINTS Spontaneous intracranial hypotension nearly always results from spontaneous cerebro- spinal fluid (CSF) leaks, typically at the spine level and only rarely from the skull base. The triad of orthostatic headaches, diffuse patchy meningeal enhancement, and low CSF pressure, although a diagnostic hallmark, may or may not be encountered because the variability in clinical presentations, imaging observations, and CSF findings is indeed substantial. The core pathogenetic factor is a decreased volume of CSF rather than its pressure. The anatomy of the leak may be complex. A preexisting dural weakness, usually in connection with an abnormality of the connective tissue matrix sometimes along with triv- ial traumas, may play an etiologic role. Slow-flow and fast-flow CSF leaks each present challenges on locating the actual site of the leak. Epidural blood patch (EBP) has emerged as the treatment of choice when conservative measures have failed. However, expect considerable variability in response to this treat- ment, and recall that the efficacy of EBP in spontaneous CSF leaks is substantially less than its efficacy in postlumbar puncture leaks. Surgery may be helpful in well-selected cases, when less invasive measures have failed and when the site of the leak has been definitely identified. INTRODUCTION About 2 decades ago, the first report on pachymeningeal gadolinium enhancement in spontaneous intracranial hypotension (SIH) appeared in the literature.1 This relatively short interval has witnessed enormous progress while a much larger number of pa- tients are now identified and a far broader clinical spectrum is recognized.2 Funding Source: None. -
Undetected Dural Leaks Complicated by Accidental Drainage of Cerebrospinal Fluid (CSF) Can Lead to Severe Neurological Deficits
Review 451 Undetected Dural Leaks Complicated by Accidental Drainage of Cerebrospinal Fluid (CSF) can Lead to Severe Neurological Deficits Intrakranielle Hypotension und schwere neurologische Defizite nach akzidenteller Drainage von Liquor bei zuvor undetektierten Duraver- letzungen Authors P. B. Sporns, W. Schwindt, C. D. Cnyrim, W. Heindel, T. Zoubi, S. Zimmer, U. Hanning, T. U. Niederstadt Affiliation Department of Clinical Radiology, University Hospital Münster, Germany Key words Zusammenfassung Abstract ●▶ dural tear ! ! ●▶ accidental drainage Ziel: Ausgeprägte intrakranielle Hypotension Purpose: Intracranial hypotension has been re- ●▶ negative pressure suction wurde bereits mehrfach als Komplikation akziden- ported as a complication of accidental drainage ●▶ overdrainage teller Liquordrainage nach chirurgischen Eingriffen after surgical treatment in several cases. Applica- ●▶ cranial hypotension beschrieben. Der Einsatz von Vakuum-basierten tion of negative pressure systems (wound drains, Drainagesystemen (Wunddrainagen, VAC®-Wund- VAC®-therapy, chest tube drainage) had typically systemen, Thoraxdrainagen) führte in diesen Fällen led to severe intracranial hypotension including zu lebensbedrohlichen Komplikationen wie intra- intracranial hemorrhage and tonsillar hernia- kraniellen Blutungen und zerebraler Herniation. tion. In the last year the authors observed 2 cases Im vergangenen Jahr konnten die Autoren 2 Fälle of accidental spinal drainage of CSF in patients mit akzidenteller spinaler Drainage von Liquor with neurological deficits, regressing after re- diagnostizieren. Beide Patienten zeigten schwere duction of the device suction. neurologische Defizite, welche nach Entfernung Material and Methods: We conducted a systema- des Sogs der Drainage komplett rückläufig waren. tic PubMed-based research of the literature to Material und Methoden: Systematische Recherche study the variety and frequency of the reported in der Datenbank PubMed im Zeitraum 1. Januar symptoms from 1st of January 1980 until 1st of 1980 – 1. -
Cerebral Hemodynamics and Intracranial Compliance Impairment in Critically Ill COVID-19 Patients: a Pilot Study
brain sciences Article Cerebral Hemodynamics and Intracranial Compliance Impairment in Critically Ill COVID-19 Patients: A Pilot Study Sérgio Brasil 1,*, Fabio Silvio Taccone 2,Sâmia Yasin Wayhs 1, Bruno Martins Tomazini 3, Filippo Annoni 2, Sérgio Fonseca 3, Estevão Bassi 3, Bruno Lucena 3, Ricardo De Carvalho Nogueira 1, Marcelo De-Lima-Oliveira 1, Edson Bor-Seng-Shu 1, Wellingson Paiva 1 , Alexis Fournier Turgeon 4 , Manoel Jacobsen Teixeira 1 and Luiz Marcelo Sá Malbouisson 3 1 Division of Neurosurgery, Department of Neurology, Universidade de São Paulo, São Paulo 05403-000, Brazil; [email protected] (S.Y.W.); [email protected] (R.D.C.N.); [email protected] (M.D.-L.-O.); [email protected] (E.B.-S.-S.); [email protected] (W.P.); [email protected] (M.J.T.) 2 Department of Intensive Care, Universitè Libre de Bruxelles, 1000 Brussels, Belgium; [email protected] (F.S.T.); fi[email protected] (F.A.) 3 Department of Intensive Care, Universidade de São Paulo, São Paulo 05403-000, Brazil; [email protected] (B.M.T.); [email protected] (S.F.); [email protected] (E.B.); [email protected] (B.L.); [email protected] (L.M.S.M.) 4 Division of Critical Care Medicine and the Department of Anesthesiology, Université Laval, Québec City, QC G1V 0A6, Canada; [email protected] * Correspondence: [email protected] Abstract: Introduction: One of the possible mechanisms by which the new coronavirus (SARS- Citation: Brasil, S.; Taccone, F.S.; Cov2) could induce brain damage is the impairment of cerebrovascular hemodynamics (CVH) and Wayhs, S.Y.; Tomazini, B.M.; Annoni, intracranial compliance (ICC) due to the elevation of intracranial pressure (ICP).