Country Update Report for Kenya 2010–2015
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Overview of Gases Discharged from Menengai and Olkaria High Temperature Geothermal Fields, Kenya
Proceedings 5th African Rift geothermal Conference Arusha, Tanzania, 29-31 October 2014 Comparative Overview of Gases Discharged from Menengai and Olkaria High Temperature Geothermal Fields, Kenya 1Jeremiah K., Ochieng L., Mibei G., Kanda K. and Suwai J. Geothermal Development Company P.O.Box 17700 – 20100, Nakuru Kenya [email protected] Key words: Menengai, reservoir characteristics, Olkaria, discharge vapors, triangular diagrams ABSTRACT An analogy of representative gas compositions from wells drilled into the Menengai and Olkaria volcanic geothermal systems is presented in this paper with a view of drawing parallels as well as identifying variances in the characteristics of the reservoirs tapped by the wells. This contribution seeks to provide an insight into the possible processes that govern the composition of well discharge vapors as well as characterize the Menengai and Olkaria geothermal reservoirs. To achieve this, triangular diagrams comprising two major chemical constituents, H2O and CO2, together with other gas species H2S, H2, CH4 and N2 were employed to compare the chemical characteristics of vapors discharged from these two systems. It is found that the Olkaria reservoir fluids generally exhibit high H2O/CO2 ratios relative to the Menengai fluids. This is attributed to variations in CO2 gas content. High H2S content seems to characterize Menengai wells, particularly those that discharge from the vapor dominated zones. This inference is indicative of either a higher flux of magmatic gas or enhanced boiling in the reservoir as a consequence of a higher heat flux. The latter is found to be common in the wells as this inference is also complemented by the significantly high H2 content reported. -
The Central Kenya Peralkaline Province: Insights Into the Evolution of Peralkaline Salic Magmas
The central Kenya peralkaline province: Insights into the evolution of peralkaline salic magmas. Ray Macdonald, Bruno Scaillet To cite this version: Ray Macdonald, Bruno Scaillet. The central Kenya peralkaline province: Insights into the evolution of peralkaline salic magmas.. Lithos, Elsevier, 2006, 91, pp.1-4, 59-73. 10.1016/j.lithos.2006.03.009. hal-00077416 HAL Id: hal-00077416 https://hal-insu.archives-ouvertes.fr/hal-00077416 Submitted on 10 Jul 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The central Kenya peralkaline province: Insights into the evolution of peralkaline salic magmas R. Macdonalda, and B. Scailletb aEnvironment Centre, Lancaster University, Lancaster LA1 4YQ, UK bISTO-CNRS, 1a rue de la Férollerie, 45071 Orléans cedex 2, France Abstract The central Kenya peralkaline province comprises five young (< 1 Ma) volcanic complexes dominated by peralkaline trachytes and rhyolites. The geological and geochemical evolution of each complex is described and issues related to the development of peralkalinity in salic magmas are highlighted. The peralkaline trachytes may have formed by fractionation of basaltic magma via metaluminous trachyte and in turn generated pantellerite by the same mechanism. Comenditic rhyolites are thought to have formed by volatile-induced crustal anatexis and may themselves have been parental to pantelleritic melts by crystal fractionation. -
Download Publication
BRIEFING NOTE November 2013 UP IN SMOKE? MAASAI RIGHTS IN THE OLKARIA GEOTHERMAL AREA, KENYA he Olkaria geothermal power generation project is Ttouted as the largest such project in the world. Lo- cated approximately 120 km west of Nairobi, in Nakuru County, Kenya, the Olkaria geothermal field covers ap- proximately 75 sq. km and was gazetted as a Geothermal Resource Area in 1971. Three power stations are cur- rently adding 158 MW1 to the national grid while a fourth is under construction. The Kenya Electricity Generating Company (KENGEN), a wholly-owned state corporation, operates three of the four power stations while Orpower4 Inc, a wholly-owned subsidiary of US-based Ormat Tech- nologies, will operate the fourth. The Olkaria geothermal power projects generate in- come by selling electricity to the Kenya Power and Light- ing Company, a government-owned power distribution monopoly. Olkaria is also registered as a Clean Develop- ment Mechanism (CDM) project under the Kyoto Protocol to the United Nations Framework Convention on Climate Change. 2 The Olkaria geothermal power generation project is being funded by the Government of Kenya, and through loans from the World Bank, European Investment Bank, Deutsche Investitions- und Entwicklungsgesellschaft mbH,3 KfW Entwicklungsbank (KfW Development Bank) and the Overseas Private Investment Corporation.4 While the Olkaria geothermal power project lights up the nation, however, the Maasai people living in the area have consistently raised concerns that the project is dimming their lives. Olkaria has been their only home since the 18th century. And not only are they having to 1 Olkaria I (45 MW) and Olkaria II (65 MW), with a third private plant Olkaria III (48 MW) 2 An international agreement linked to the United Nations Framework Con- vention on Climate Change, which commits its Parties by setting interna- tionally binding emission reduction targets: http://cdm.unfccc.int/Projects/ DB/DNV-CUK1276170328.71/view. -
An Electrical Resistivity Study of the Area Between Mt. Suswa and The
AN ELECTRICAL RESISTIVITY STUDY OF THE AREA BETWEEN MT. SUSWA AND * M THE OLKARIA GEOTHERMAL FIELD, KENYA STEPHEN ALUMASA ONACONACHA IIS TUF.sis n\sS rREEN e e n ACCEPTED m ^ e i t e d ^ fFOE HE DECREE of nd A COt'V M&vA7 BE PLACED IN 'TH& njivk.RSITY LIBRARY. A thesis submitted in accordance with the requirement for partial fulfillment of the V Degree of Master of Science DEPT. OF GEOLOGY UNIVERSITY OF NAIROBI 1989 DECLARATION jhis is my original work and has not b e e n submitted for a degree in any other university S . A . ONACHA The thesis has been submitted for examination with our Knowledge as University Supervisors: /] Mr. E. DINDI ACKNOWLEDGEMENTS I wish to thank my supervisors Dr. M.P. Tole and Mr. E. Dindi for their invaluable help and advice during the course of ray studies. I am grateful to the staff of the Ministry of Energy especially Mr. Kinyariro and Mr. Kilele for their tremendous help during the data acquisition. I also wish to express my appreciation of the University of Nairobi for their MSc Scholarship during my study. I am grateful to the British Council for their fellowship that enabled me to carry out data analysis at the University of Edinburgh. A ^ Finally, I wish to thank the members of my family for their love and understanding during my studies. ABSTRACT The D. C. electrical resistivity study of Suswa-Olkaria region was carried out from July 1987 to November, 1988. The main objective was to evaluate the sub-surface geoelectric structure with a view to determining layers that might be associated with geothermal fluid migrations. -
Project: Menengai Geothermal Development Project Country: Kenya
Language: English Original: English PROJECT: MENENGAI GEOTHERMAL DEVELOPMENT PROJECT COUNTRY: KENYA PROJECT APPRAISAL REPORT November, 2011 Team Leader T. BAH, Senior Power Engineer ONEC.2 3184 Team Members Y. ARFAOUI, Chief Renewable Energy Specialist ONEC.3 2308 K. NTOAMPE, Principal Environmentalist ONEC.3 2707 M. HASSANE, Principal Procurement Specialist KEFO 6243 D. MCIVER, Principal Legal Counsel GECL.1 2678 Project F. KANONDA, Senior Financial Analyst ONEC.2 2723 Appraisal R. ARON, Senior Social Development Specialist ONEC.3 2792 Team E. NGODE, Finance Management Specialist KEFO 6230 A. KLEVCHUK, Financial Modelling Specialist OPSM 1975 Sector Manager E. NEGASH, Officer In Charge ONEC.2 3081 Sector Director H. CHEIKHROUHOU ONEC 2140 Regional Director G. NEGATU OREA 2040 N. KULEMEKA, Chief Socio‐Economist ONEC.3 2336 M. CISSE, Chief Investment Officer OPSM.3 1906 Peer R. CLAUDET, Chief Investment Officer OPSM.3 2666 Reviewers G. MAKAJUMA , Infrastructure Specialist KEFO 6073 Martin Njoroge Mwangi, External Peer Reviewer n/a n/a TABLE OF CONTENTS 1 STRATEGIC THRUST AND RATIONALE .................................................................... 1 1.1 Project Linkages with Country Strategy and Objectives ............................................ 1 1.2 Rationale for Bank Involvement ................................................................................. 1 1.3 Aid Coordination ......................................................................................................... 3 2 PROJECT DESCRIPTION ............................................................................................... -
Geology, Hydrothermal Alteration and Fluid Inclusion Studies of Olkaria Domes Geothermal Field, Kenya
Proceedings World Geothermal Congress 2005 Antalya, Turkey, 24-29 April 2005 Geology, Hydrothermal Alteration and Fluid Inclusion Studies of Olkaria Domes Geothermal Field, Kenya John Lagat1, Stefan Arnorsson2 and Hjalti Franzson3 Kenya Electricity Generating Company Ltd, Olkaria Geothermal Project, P. O. Box 785, Naivasha 20117, Kenya1 University of Iceland, Science Institute, Dunhagi IS 101 Reykjavik, Iceland2 Icelandic Geosurvey, Grensasvegur 9, IS 108 Reykjavik, Iceland3 [email protected], [email protected], [email protected] Keywords: Kenya Rift, Olkaria Domes, Geothermal, The Greater Olkaria geothermal area is within the Greater Geology, Hydrothermal Alteration, Fluid Inclusion Olkaria volcanic complex. It is subdivided into seven fields for geothermal development purposes namely Olkaria East, ABSTRACT Olkaria Northeast, Olkaria Central, Olkaria Northwest, Olkaria Southwest, Olkaria Southeast and Olkaria Domes Three geothermal exploration wells OW-901, OW-902 and (Figure 2). OW-903 were drilled in Olkaria Domes field to evaluate its geothermal potential. The three wells were drilled to a o depth of 2200 m and all encountered a high temperature 38 E North Island system and discharged on test. Rocks encountered in the 4oN wells include pyroclastics, rhyolite, tuff, trachyte, basalt L. Turkana ETHIOPIA and minor dolerite and microsyenite intrusives. Little or no Central Island hydrothermal alteration is observed in the upper parts of the wells but in the deeper parts, hydrothermal alteration ranged from high to extensive. The most important hydrothermal alteration controls in the field are South Island temperature, rock types and permeability. Four Cenozoic Barrier Volcano volcanics hydrothermal alteration zonations can be recognized in the UGANDA Namarunu field based on the distribution of the hydrothermal alteration minerals. -
World Bank Document
The World Bank Report No: ISR4369 Implementation Status & Results Kenya Energy Sector Recovery Project (P083131) Operation Name: Energy Sector Recovery Project (P083131) Project Stage: Implementation Seq.No: 15 Status: ARCHIVED Archive Date: Country: Kenya Approval FY: 2005 Public Disclosure Authorized Product Line:IBRD/IDA Region: AFRICA Lending Instrument: Specific Investment Loan Implementing Agency(ies): Ministry of Energy, Kenya Power and Lighting Co. Ltd., KenGen Key Dates Board Approval Date 13-Jul-2004 Original Closing Date 31-Mar-2010 Planned Mid Term Review Date 30-Nov-2011 Last Archived ISR Date 29-Mar-2011 Public Disclosure Copy Effectiveness Date 04-Nov-2004 Revised Closing Date 30-Sep-2013 Actual Mid Term Review Date Project Development Objectives Energy Sector Recovery Project (P083131) Project Development Objective (from Project Appraisal Document) (a) enhance the policy, institutional and regulatory environment for sector development, including private sector participation;and(b) increase access to electricity in urban and peri-urban areas while improving the efficiency, reliability and quality ofservice to customers. Has the Project Development Objective been changed since Board Approval of the Program? Public Disclosure Authorized ● Yes No Component(s) Component Name Component Cost INSTITUTIONAL AND CAPACITY BUILDING 7.50 STUDIES AND ENGINEERING SERVICES 18.70 GENERATION, OLKARIA II PLANT EXTENSION 119.10 DISTRIBUTION UPGRADING 229.60 Overall Ratings Previous Rating Current Rating Public Disclosure Authorized Progress towards achievement of PDO Satisfactory Satisfactory Overall Implementation Progress (IP) Satisfactory Satisfactory Overall Risk Rating Implementation Status Overview Public Disclosure Copy The Generation component is completed. The 3rd geothermal generating unit of 35 megawatts at Olkaria II is operational since May 2010. -
Kenyan Stone Age: the Louis Leakey Collection
World Archaeology at the Pitt Rivers Museum: A Characterization edited by Dan Hicks and Alice Stevenson, Archaeopress 2013, pages 35-21 3 Kenyan Stone Age: the Louis Leakey Collection Ceri Shipton Access 3.1 Introduction Louis Seymour Bazett Leakey is considered to be the founding father of palaeoanthropology, and his donation of some 6,747 artefacts from several Kenyan sites to the Pitt Rivers Museum (PRM) make his one of the largest collections in the Museum. Leakey was passionate aboutopen human evolution and Africa, and was able to prove that the deep roots of human ancestry lay in his native east Africa. At Olduvai Gorge, Tanzania he excavated an extraordinary sequence of Pleistocene human evolution, discovering several hominin species and naming the earliest known human culture: the Oldowan. At Olorgesailie, Kenya, he excavated an Acheulean site that is still influential in our understanding of Lower Pleistocene human behaviour. On Rusinga Island in Lake Victoria, Kenya he found the Miocene ape ancestor Proconsul. He obtained funding to establish three of the most influential primatologists in their field, dubbed Leakey’s ‘ape women’; Jane Goodall, Dian Fossey and Birute Galdikas, who pioneered the study of chimpanzee, gorilla and orangutan behaviour respectively. His second wife Mary Leakey, whom he first hired as an artefact illustrator, went on to be a great researcher in her own right, surpassing Louis’ work with her own excavations at Olduvai Gorge. Mary and Louis’ son Richard followed his parents’ career path initially, discovering many of the most important hominin fossils including KNM WT 15000 (the Nariokotome boy, a near complete Homo ergaster skeleton), KNM WT 17000 (the type specimen for Paranthropus aethiopicus), and KNM ER 1470 (the type specimen for Homo rudolfensis with an extremely well preserved Archaeopressendocranium). -
Working Paper Or Information Paper
APIRG/19 WP/14 Appendix 3.2J INTERNATIONAL CIVIL AVIATION ORGANIZATION VOLCANIC ASH CONTINGENCY PLAN AFI REGION First Edition - October 2012 THIS DOCUMENT IS ISSUED BY THE DAKAR AND NAIROBI ICAO REGIONAL OFFICES UNDER THE AUTHORITY OF THE APIRG 1 Page 2 of 32 Volcanic Ash Contingency Plan – AFI Region FOREWARD Within and adjacent to the Africa and Indian Ocean (AFI) Region there are areas of volcanic activities which are likely to affect flight in the AFI Region. The major volcanoes in the region are located in the following States: Algeria, Cameroon, Cape Verde Islands, Chad, Comoros Island, Democratic Republic of Congo, Djibouti, Eritrea, Ethiopia, France (Reunion Island), Kenya, Madagascar, Mali, Niger, Nigeria, Rwanda, Sao Tome and Principe, Spain (Canary Islands, Madeira), Sudan, Tanzania and Uganda. The names of the concerned volcano are listed in APPENDIX K (source: Smithsonian Institution). This document is the AFI Air Traffic Management (ATM) Volcanic Ash Contingency Plan which sets out standardised guidelines and procedures for the provision of information to airlines and en-route aircraft before and during a volcanic eruption. Volcanic contamination, of which volcanic ash is the most serious, is a hazard for safe flight operations. Mitigating the hazards posed by volcanic ash in the atmosphere and/or at the aerodrome cannot be resolved in isolation but through collaborative decision-making (CDM) involving all stakeholders concerned. During an eruption volcanic contamination can reach and exceed the cruising altitudes of turbine-powered -
Ol'orien Farm
Ol’orien Farm South Kinangop, Maraigushu, Naivasha Main Farmhouse Outbuildings Outstanding farm Sitting room, dining room, kitchen, veranda, Staff accommodation, garages and stores 4 bedrooms, 2 bathrooms, ancillary with Unbelievable accommodation Farm Buildings & Ancillary 2 supervisor’s houses, 2 calf houses, 2 barns, hay views on the edge of Secondary Farmhouse barn, spray race, machinery shed, engine room, 2 Sitting room, dining room, kitchen, veranda, milking sheds, stables, 2 irrigation dams and borehole the Great Rift ValleY 5 bedrooms, 2 bathrooms, ancillary accommodation In all about 754 acres (305 hectares) Naivasha 9.5 kms, Nakuru 80 kms, Nairobi 90 kms Situation Maraigushu Ol’Orien is situated in close proximity to Maraigushu on the main Nairobi to Naivasha highway. The farm is approximately 9.5 kilometres south of Naivasha and 90 kilometres to the north west of Nairobi. Naivasha is in Nakuru County within the Great Rift Valley. The main industry in the area is agriculture and is internationally renowned for its horticulture and floriculture. In addition to agriculture the area around Naivasha is becoming increasingly popular for people looking for second/weekend homes in order to escape the congestion of Nairobi. The area is also a well known tourist destination with attractions such as Lake Naivasha itself and its beautiful surrounds which contrast to the nearby Mount Longonot and Hells Gate National Park. The latter is popular for its wildlife and interesting geographical formations. Activities at the park include bird watching, viewings and visits to the geo-thermal springs of Olkaria. The area is also becoming increasingly populer for golf resort development. -
Kariandusi an Online Guide to the Museum Kariandusi – a Site in Kenya’S Rift Valley
Kariandusi an online guide to the Museum Kariandusi – a site in Kenya’s Rift Valley Kariandusi was one of the first early archaeological sites to be discovered in East Africa, which is now famed as a cradle of human origins. The sites lie on the eastern side of the Gregory Rift Valley, about 120 km NNW of Nairobi, and about 2 km to the east side of Lake Elmenteita. From Kariandusi you can look across the width of the Rift Valley. The Nakuru- Elmenteita basin is flanked by Menengai volcano on the north, and by the volcanic pile of Mount Eburru on the south – visible from Kariandusi. Much geological evidence shows that at times in the past this basin has been occupied by large lakes, sometimes reaching levels hundreds of metres higher than the present Lakes Nakuru and Elmenteita. Lying at a height of about 1880 m (nearly 6200 ft, the Kariandusi sites would have been near the side of one of these former lakes. Impressive scarps of the Rift wall rise less than one kilometre behind the sites, continuing as the Bahati Escarpment to the north, and the Gilgil Escarpment further south. The scarps behind rise to 2250 m (7400 ft) less than 3 km from the sites. The site area from the North with the Rift Valley scarp In the background Close to the sites the scarps of the Rift Valley wall are dissected by the valley of the Kariandusi River, which has a relatively short course, fed partly by waters from Coles' Hot Springs, only 2 km from the sites. -
Geothermal Potential of the Kenya Rift
Presented at Short Course III on Exploration for Geothermal Resources, organized by UNU-GTP and KenGen, at Lake Naivasha, Kenya, October 24 - November 17, 2008. GEOTHERMAL TRAINING PROGRAMME Kenya Electricity Generating Co., Ltd. STATUS OF GEOTHERMAL EXPLORATION IN KENYA AND FUTURE PLANS FOR ITS DEVELOPMENT Peter A. Omenda Kenya Electricity Generating Company Ltd. (KenGen) P.O. Box 785, Naivasha KENYA [email protected] ABSTRACT The high temperature geothermal prospects in Kenya are located within and are associated with the development of the Kenya Rift. Kenya Rift is a continental scale volcano-tectonic feature that stretches from northern to southern Africa. Development of the Rift started during the Oligocene (30million years ago) and activity has continued to recent times. The last 2 million years saw the development of large shield volcanoes within the axis of the rift. These centres are the most important geothermal prospects within the rift. Association between rifting and most of the occurrences of geothermal energy is mainly due to shallow magma chambers underneath the young volcanoes within the rift axis. KenGen in collaboration with the Ministry of Energy of the Government of Kenya has undertaken detailed surface studies of most of the prospects in the central sector of the rift which comprises Suswa, Longonot, Olkaria, Eburru, Menengai, Lakes Bogoria and Baringo, Korosi and Paka volcanic fields. Electric power is currently being generated at Olkaria with 130MWe installed while exploration drilling has been undertaken at Eburru and a 2.5MWe pilot plant is planned for development by KenGen and commissioning by 2009. Common methods that have been used by KenGen during exploration expeditions include geology (lithology, geochronology, structures); geophysics (seismic, gravity, magnetic, and resistivity); geochemistry (fluid and thermometry), heat flow and environmental baseline assessments.