Linear Algebra and its Applications 432 (2010) 338–346 Contents lists available at ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa Factorization of Laurent series over commutative rings ∗ Gyula Lakos Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Pf. 127, H-1364, Hungary Institute of Mathematics, Eötvös University, Pázmány Péter s. 1/C, Budapest, H-1117, Hungary ARTICLE INFO ABSTRACT Article history: We generalize the Wiener–Hopf factorization of Laurent series to Received 3 May 2009 more general commutative coefficient rings, and we give explicit Accepted 12 August 2009 formulas for the decomposition. We emphasize the algebraic nature Available online 12 September 2009 of this factorization. Submitted by H. Schneider © 2009 Elsevier Inc. All rights reserved. AMS classification: Primary: 13J99 Secondary: 46S10 Keywords: Laurent series Wiener–Hopf factorization Commutative topological rings 0. Introduction Suppose that we have a Laurent series a(z) with rapidly decreasing coefficients and it is multi- − plicatively invertible, so its multiplicative inverse a(z) 1 allows a Laurent series expansion also with rapidly decreasing coefficients; say n −1 n a(z) = anz and a(z) = bnz . n∈Z n∈Z Then it is an easy exercise in complex function theory that there exists a factorization − + a(z) = a (z)a˜(z)a (z) such that −( ) = − −n ˜( ) =˜ p +( ) = + n a z an z , a z apz , a z an z , n∈N n∈N ∗ Address: Institute of Mathematics, Eötvös University, P´azm´any P ´eter s. 1/C, Budapest, H-1117, Hungary. E-mail address:
[email protected] 0024-3795/$ - see front matter © 2009 Elsevier Inc.