Diels-Alder Reaction of N-Phenylmaleimide with in Situ Generated Buta-1,3

Total Page:16

File Type:pdf, Size:1020Kb

Diels-Alder Reaction of N-Phenylmaleimide with in Situ Generated Buta-1,3 Supplementary information for Comprehensive Organic Chemistry Experiments for the Laboratory Classroom © The Royal Society of Chemistry 2017 Diels-Alder reaction of N-phenylmaleimide with in situ generated buta-1,3- diene Supplementary Material Notes: This work is planned for two sessions of 3 h each in a laboratory equipped with two rotary evaporators. It has been offered as a laboratory classroom work, for more than four years, to second year undergraduate chemistry students (about 30 students a year, in classes of 16 students, working in groups of two). Students are challenged to synthesize a Diels-Alder cycloadduct. The experimental work illustrates a cycloaddition reaction between a conjugated diene (buta-1,3-diene), generated in situ by thermal extrusion of SO2 from 3-sulfolene, and N-phenylmaleimide. The reaction is performed in refluxing toluene (the oil bath must be kept at a temperature above 120 °C) in order to generate the buta-1,3-diene. Both 3-sulfolene and N-phenylmaleimide are commercial compounds but the N-phenylmaleimide can be prepared previously by the students following the procedure in the experiment entitled “Synthesis of N-arylmaleimides”. The condenser must be refrigerated to avoid the evaporation of the toluene (Figure SM 10.1.2). The reaction may be monitored by TLC. In this case it is necessary to cool down the reactional flask before the removal of the sample to be analysed. Silica gel F254 should be used both in the analytical and preparative TLC; dichloromethane is a good eluent to develop the chromatogram. In the analysis of the crude reaction mixture by TLC, it is recommended the use of the starting N- phenylmaleimide (dissolved in dichloromethane) as reference: the reference and the reaction mixture should be spotted on the TLC plate about 1 cm apart and 1 cm from the bottom. Retention factors (Rf) can be used to confirm the presence of unreacted N-phenylmaleimide in the crude oil. To determine the retention factor, the students should mark with a pencil the solvent front immediately after the removal of the TLC plates from the TLC chamber and outline the spots visualized under the UV-lamp. The cycloadduct has a lower retention factor than N-phenylmaleimide. During the visualization of the TLC plates under the UV-lamp the students must wear safety glasses at all times. The aim of this experiment is to illustrate the formation of a six-membered ring via a cycloaddition reaction. For the characterization of the resulting product by NMR it is just required a small portion of Supplementary information for Comprehensive Organic Chemistry Experiments for the Laboratory Classroom © The Royal Society of Chemistry 2017 pure cycloadduct. So, it is not necessary to purify by preparative thin layer chromatography (TLC) all the crude product obtained. The yield of the reaction was always calculated for the crude product (55-65%), since only a small amount was purified by TLC for the NMR analysis. Figure SM 10.1.1 - Reaction setup apparatus. Figure SM 10.1.2 - Filtration apparatus. Supplementary information for Comprehensive Organic Chemistry Experiments for the Laboratory Classroom © The Royal Society of Chemistry 2017 1 Figure SM 10.1.3 - H NMR spectrum (300 MHz, CDCl3) of the Diels-Alder cycloadduct. Supplementary information for Comprehensive Organic Chemistry Experiments for the Laboratory Classroom © The Royal Society of Chemistry 2017 13 Figure SM 10.1.4 - C NMR spectrum (75 MHz, CDCl3) of the Diels-Allder cycloadduct. 1 Figure SM 10.1.5 - H NMR spectrum (300 MHz, CDCl3) of N-phenylmmaleimide. 13 Figure SM 10.1.6 - C NMR spectrum (75 MHz, CDCl3) of N-phenylmaleimide. Supplementary information for Comprehensive Organic Chemistry Experiments for the Laboratory Classroom © The Royal Society of Chemistry 2017 Synthesis of isomeric bicyclopropyls from conjugated dienes Supplementary Material Leiv K. Sydnes, Magne O. Sydnes Recommended study level This experiment is indeed easy to carry out successfully on the condition that the required equipment is available and the students have learnt the basic laboratory operations and can execute them properly. From an experimental point of view the synthesis may therefore be included in a laboratory course at an intermediate level. However, cyclopropane chemistry is oftentimes not incorporated in curricula at this level, a consequence of which is that the experiment may appear somewhat out of context if the purpose of the laboratory course is to illustrate the material covered in the course lectures and the accompanying textbook(s). On the other hand, if the idea is that the practical work should be regarded as a supplement to the theory presented, the synthesis should be considered as an attractive option. The synthesis of 2,2,2’,2’-tetrachloro-3,3,3’,3’-tetramethylbicyclopropyl as presented here has been carried out by students at intermediate and advanced levels a number of times. No serious problems have been observed. Preparations have been carried out on a 15 mmol to 0.10 mol scale, and the isolated yield after recrystallization has ranged from as low as 10% to as high as 93%. (The lowest yields were obtained by students with inferior recrystallization skills, the consequence of which was a significant loss of product.) The colour of the product was not consistent even in successful experiments; in one case it was white, but in most cases it appeared to be yellowish to light brown or somewhat grey (see the picture in the Photo section). The isomeric composition was not always determined accurately, only the melting point was measured consistently, but when analyses were carried out, the ratio was in the 7:3 to 3:1 range in favour of the meso isomer after recrystallization. Supplementary information for Comprehensive Organic Chemistry Experiments for the Laboratory Classroom © The Royal Society of Chemistry 2017 The isomeric composition can be determined by both 1H-NMR spectroscopy and GLC analysis (see the section Product data). The compound is too volatile to be analysed by TLC.1 Theory contextualization Cyclopropanes have become quite prominent compounds in organic chemistry the last few decades, both as a structural moiety incorporated to introduce strain in a carbon skeleton, and as intermediates in organic synthesis. In spite of this many chemistry students regard three-membered carbocycles as quite unstable due to strain (about 28 kcal/mol) caused by the ring’s significant deviation from the ideal tetragonal angle. Synthesis of a stable cyclopropane can therefore serve the students beyond giving them practical experience with phase-transfer catalysis which is applied here. The cyclopropane synthesized here is a so-called gem-dichlorocyclopropane. As pointed out in the introduction to the experimental section, a large number of methods are available for the preparation of such compounds.2 The method of choice in a given case depends on several factors, but when the substrate is an alkene without other reactive moieties the Makosza method3,4 appears very attractive. This is the method applied here because it has a number of advantages over most of the alternatives: a) The reaction is carried out under aqueous conditions; b) Only moderate cooling is required (ice/water); c) No heating is necessary; d) The dichlorocarbene precursor, chloroform, is stable, commercially available, and inexpensive; f) No problematic waste is generated. An attractive and educational feature with Makosza’s method is the phase-transfer mechanism by which the dichlorocarbene is formed. As illustrated in Figure SM 10.2.1 (Cl = X) the first reaction (Eq.1) is the equilibrium which was studied by Hine,5 but which under aqueous conditions, in the absence of an organic phase and an ammonium ion, furnishes dichlorocarbene that reacts rapidly with water and/or hydroxide and forms formate and carbon monoxide. In the presence the triethylbenzylammonium ion, however, the ammonium ion replaces the sodium ion and forms a salt (Eq. 2) which dissolves in the organic phase (Eq. 3). Here the salt decomposes and affords Supplementary information for Comprehensive Organic Chemistry Experiments for the Laboratory Classroom © The Royal Society of Chemistry 2017 dichlorocarbene (Eq. 4) which reacts with a C=C moiety before any moisture dissolved in the organic phase intervenes; this gives the desired product, the corresponding 1,1-dichlorocyclopropane (Eq. 5). Interphase Eq. 1 CHX3 + NaOH CX3 Na + H2O Eq. 2 CX3 Na + ClNEt3Bz CX3 NEt3Bz + NaCl NaCl (H2O) Eq. 3 CX3 NEt3Bz + NaCl CX3 NEt3Bz (org) Organic phase Eq. 4 CX3 NEt3Bz :CX2 + X NEt3Bz R R Eq. 5 :CX2 + X X Figure SM 10.2.1. The reactions taking place at the interface under phase-transfer cyclopropanation. The cyclopropane formation involves a cheletropic reaction which is one of the fundamental reactions exhibited by singlet carbenes. The reaction can be analyzed by the tools developed by Woodward and Hoffmann,6 but the thorough studies published by Moss and co-workers give deep insight into the nature of the process.7,8 What is important is the interaction between the HOMO and the LUMO orbitals of the reacting species. As depicted in Figure SM 10.2.2 the HOMO-LUMO interactions bring 9,10 the carbene and the alkene together and lead to cyclopropane formation. Cl Carbene LUMO Cl Alkene HOMO Figure SM 10.2.2. One possible HOMO-LUMO interaction between the carbene and the alkene. Supplementary information for Comprehensive Organic Chemistry Experiments for the Laboratory Classroom © The Royal Society of Chemistry 2017 There has been no indication whatsoever of formation of 2,2-dichloro-3,3-dimethy-1-(2-methylprop-1- enyl)cyclopropane, the expected mono-adduct from 2,5-dimethyl-2,4-hexadiene, in the preparation of 2,2,2’,2’-tetrachloro-3,3,3’,3’-tetramethylbicyclopropyl. In the synthesis described here that is perhaps that surprising since a significant excess of carbene is applied, but even when an excess of the diene is used only the bis-adduct is obtained.
Recommended publications
  • Basics of Kraft Pulping
    Lignin Wood is composed of many chemical components, primarily extractives, carbohydrates, and lignin, which are distributed nonuniformly as the result of anatomical structure. Lignin is derived from the Latin term lignum, which means wood.1 Anselme Payen (1838) was the first to recognize the composite nature of wood and referred to a carbon- rich substance as the “encrusting material” which embedded cellulose in the wood. Schulze (1865) later defined this encrusting material as lignin. Lignin has been described as a random, three-dimensional network polymer comprised of variously linked phenylpropane units.2 Lignin is the second most abundant biological material on the planet, exceeded only by cellulose and hemicellulose, and comprises 15-25% of the dry weight of woody plants. This macromolecule plays a vital role in providing mechanical support to bind plant fibers together. Lignin also decreases the permeation of water through the cell walls of the xylem, thereby playing an intricate role in the transport of water and nutrients. Finally, lignin plays an important function in a plant’s natural defense against degradation by impeding penetration of destructive enzymes through the cell wall. Although lignin is necessary to trees, it is undesirable in most chemical papermaking fibers and is removed by pulping and bleaching processes. 1.1.1 Biosynthesis Plant lignins can be broadly divided into three classes: softwood (gymnosperm), hardwood (angiosperm) and grass or annual plant (graminaceous) lignin.3 Three different phenylpropane units, or monolignols, are responsible for lignin biosynthesis.4 Guaiacyl lignin is composed principally of coniferyl alcohol units, while guaiacyl-syringyl lignin contains monomeric units from coniferyl and sinapyl alcohol.
    [Show full text]
  • Polyols Have a Variety of Functional Properties That Make Them Useful Alternatives to Sugars in Applications Including Baked Goods
    Polyols have a variety of functional properties that make them useful alternatives to sugars in applications including baked goods. Photo © iStockphoto.com/Synergee pg 22 09.12 • www.ift.org BY LYN NABORS and THERESA HEDRICK SUGAR REDUCTION WITH Polyols Polyols are in a unique position to assist with reduced-sugar or sugar-free reformulations since they can reduce calories and complement sugar’s functionality. ugar reduction will be an important goal over the of the product’s original characteristics may still be main- next few years as consumers, government, and in- tained with the replacement of those sugars by polyols. Sdustry alike have expressed interest in lower-calorie In addition, excellent, good-tasting sugar-free products and lower-sugar foods. The 2010 Dietary Guidelines for can be developed by using polyols. Polyols are in a unique Americans put a strong emphasis on consuming fewer position to assist with reduced-sugar or sugar-free refor- calories and reducing intake of added sugars. The In- mulations; since they are only partially digested and ab- stitute of Medicine (IOM) held a public workshop in sorbed, they can reduce calories and complement sugar’s November 2010 to discuss ways the food industry can functionality. Polyols provide the same bulk as sugars and use contemporary and innovative food processing tech- other carbohydrates. Additionally, polyols have a clean, nologies to reduce calorie intake in an effort to reduce sweet taste, which is important since consumers are not and prevent obesity, and in October 2011 recommended likely to sacrifice taste for perceived health benefits. Poly- front-of-package labeling that includes rating the product ols have a host of other functional properties that make based on added sugars content.
    [Show full text]
  • Biovalorisation of Crude Glycerol and Xylose Into Xylitol by Oleaginous Yeast Yarrowia Lipolytica
    Biovalorisation of crude glycerol and xylose into xylitol by oleaginous yeast Yarrowia lipolytica Ashish Prabhu Craneld University Dominic J Thomas Craneld University Rodrigo Ledesma- Amaro Imperial College London Gary A Leeke University of Birmingham Angel Medina Vaya Craneld University Carol Verheecke-Vaessen Craneld University Frederic Coulon Craneld University Vinod Kumar ( [email protected] ) Craneld University https://orcid.org/0000-0001-8967-6119 Research Keywords: Glycerol, Xylose, Yarrowia lipolytica, Biotransformation, Xylitol Posted Date: March 26th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-19009/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Microbial Cell Factories on June 3rd, 2020. See the published version at https://doi.org/10.1186/s12934-020-01378-1. Page 1/28 Abstract Background: Xylitol is a commercially important chemical with multiple applications in food and pharmaceutical industries. According to the US Department of Energy, xylitol is among the twelve platform chemicals that can be produced from biomass. The chemical method for xylitol synthesis is however expensive and energy intensive. In contrast, the biological route involving microbial cell factories offers a potential cost-effective alternative process. The bioprocess occurs under ambient conditions and makes use of biocatalysts which can be sourced from renewable carbon coming from a variety of cheap feedstocks classied as wastes. Result: In this study, biotransformation of xylose to xylitol was investigated using Yarrowia lipolytica an oleaginous yeast grown on glycerol/glucose screening of primary carbon source, media optimisation in shake ask, scale up in bioreactor and downstream processing of xylitol were carried out.
    [Show full text]
  • Xylitol Production Process Partnering Opportunity
    2225 W. Harrison St., Suite F Chicago, IL 60612 312-997-2150 telephone 312-997-2160 fax Xylitol Production Process Partnering Opportunity About zuChem zuChem is a biotechnology company specializing in the development of proprietary bioprocesses for the production of unique carbohydrates and glycochemicals for the food and pharmaceutical markets. The Company has offices in Chicago, Illinois as well as research facilities in Peoria, Illinois. Xylitol Xylitol is a naturally occurring sugar polyol that has a sweetening property matching that of sucrose, but contributes one- third less calories. It is used extensively in a variety of confectionary products such as candies and gums. Xylitol has been implicated in the prevention of dental caries, and is thought by many to be anti-cariogenic thus making it the best nutritive sugar substitute with respect to the prevention of dental cavities. Xylitol growth has been severely limited because of price and, more importantly, supply constraints. Current processes for the manufacture of xylitol require pure xylose, which is expensive and in limited supply. This in turn has made xylitol end users reluctant to launch new products containing xylitol. If price and supply limitations were to be removed, it has been estimated that the market for xylitol could grow significantly, particularly in the U.S. zuChem’s proprietary process has been designed to overcome the supply constraint by removing the requirement for pure xylose, while also providing a significant cost of goods advantage. The zuChem Process zuChem has developed a fermentation process for the production of xylitol using a hemicellulose (i.e. a C5/C6 sugar mixture) feedstock instead of the purified xylose required by traditional chemical manufacturing methods.
    [Show full text]
  • Enhancing Prehydrolysates Fermentability by Adding
    pubs.acs.org/journal/ascecg Research Article Enhancing Prehydrolysates Fermentability by Adding Nucleophilic Amino Acids and Proteins in Biomass Pretreatment # # Yequan Sheng, Yu Zhang, Hongzhi Ma, Yong Xu,* and Maobing Tu* Cite This: ACS Sustainable Chem. Eng. 2020, 8, 7892−7900 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Dilute acid pretreatment produced a considerable amount of carbonyl compounds in the biomass prehydrolysates, which significantly inhibited the sequential microbial fermentation. To reduce the release of carbonyl inhibitors, a novel approach of pretreatment with amino acids and proteins has been developed to improve the fermentability of prehydrolysates. Four percent (w/w) of cysteine (Cys), histidine (His), soy protein isolate (SPI), and bovine serum albumin (BSA) was added into dilute acid pretreatment of aspen (DAPA). The resulted prehydrolysates were fermented by Saccharomyces cerevisiae, and the glucose consumption rate in the prehydrolysates was increased from 0.32 to 1.35, 3.22, 1.02, and 1.61 g/L/h, respectively. The pretreated substrates were applied to enzymatic hydrolysis. Unexpectedly, it was observed that 72 h hydrolysis yields of DAPA-Cys and DAPA-His decreased from 71.35% (DAPA) to 63.93% and 28.11%, respectively, while the 72 h hydrolysis yield of DAPA-SPI increased to 75.04%, and the 72 hydrolysis yield of DAPA-BSA did not change. The results showed that BSA was the most effective additive to enhance the prehydrolysate fermentability. It increased the ethanol productivity of prehydrolysates from 0.15 (without addition) to 0.77 g/L/h. The final yield was promoted from 0.05 to 0.44 g/g glucose.
    [Show full text]
  • OX Solid Base Catalysts for the Upgrading of Xylitol to Glycols in Water
    catalysts Article Ru-(Mn-M)OX Solid Base Catalysts for the Upgrading of Xylitol to Glycols in Water Maxime Rivière 1, Noémie Perret 1, Damien Delcroix 2, Amandine Cabiac 2, Catherine Pinel 1 and Michèle Besson 1,* 1 Institut de recherches sur la catalyse et l’environnement de Lyon, University of Lyon, Univ. Claude Bernard Lyon 1, CNRS, IRCELYON, UMR5256, 2 Avenue Albert Einstein, 69626 Villeurbanne, France; [email protected] (M.R.); [email protected] (N.P.); [email protected] (C.P.) 2 IFP Energies Nouvelles, Rond-Point de l’Echangeur de Solaize, BP 3, 69360 Solaize, France; [email protected] (D.D.); [email protected] (A.C.) * Correspondence: [email protected]; Tel.: +33-(0)472-445-358 Received: 26 July 2018; Accepted: 11 August 2018; Published: 14 August 2018 Abstract: A series of Ru-(Mn-M)OX catalysts (M: Al, Ti, Zr, Zn) prepared by co-precipitation were investigated in the hydrogenolysis of xylitol in water to ethylene glycol, propylene glycol and glycerol ◦ at 200 C and 60 bar of H2. The catalyst promoted with Al, Ru-(Mn-Al)OX, showed superior activity (57 h−1) and a high global selectivity to glycols and glycerol of 58% at 80% xylitol conversion. In comparison, the catalyst prepared by loading Ru on (Mn-Al)OX, Ru/(Mn-Al)OX was more −1 active (111 h ) but less selective (37%) than Ru-(Mn-Al)OX. Characterization of these catalysts by XRD, BET, CO2-TPD, NH3-TPD and TEM showed that Ru/(Mn-Al)OX contained highly dispersed and uniformly distributed Ru particles and fewer basic sites, which favored decarbonylation, epimerization and cascade decarbonylation reactions instead of retro-aldol reactions producing glycols.
    [Show full text]
  • Sugar Alcohols Fact Sheet
    International Food Information Council Sugar Alcohols Fact Sheet September 2004 BACKGROUND Sugar alcohols or polyols, as they are also called, have a long history of use in a wide variety of foods. Recent technical advances have added to the range of sugar alcohols available for food use and expanded the applications of these sugar replacers in diet and health-oriented foods. They have been found useful in sugar-free and reduced-sugar products, in foods intended for individuals with diabetes, and most recently in new products developed for carbohydrate controlled eating plans. Sugar alcohols are neither sugars nor alcohols. They are carbohydrates with a chemical structure that partially resembles sugar and partially resembles alcohol, but they don’t contain ethanol as alcoholic beverages do. They are incompletely absorbed and metabolized by the body, and consequently contribute fewer calories. The polyols commonly used include sorbitol, mannitol, xylitol, maltitol, maltitol syrup, lactitol, erythritol, isomalt and hydrogenated starch hydrolysates. Their calorie content ranges from 1.5 to 3 calories per gram compared to 4 calories per gram for sucrose or other sugars. Most are approximately half as sweet as sucrose; maltitol and xylitol are about as sweet as sucrose. Sugar alcohols occur naturally in a wide variety of fruits and vegetables, but are commercially produced from other carbohydrates such as sucrose, glucose, and starch. Along with adding a sweet taste, polyols perform a variety of functions such as adding bulk and texture, providing a cooling effect or taste, inhibiting the browning that occurs during heating and retaining moisture in foods. While polyols do not actually prevent browning, they do not cause browning either.
    [Show full text]
  • Polyols: Beyond Sweet Taste
    [Sweeteners] Vol. 17 No. 10 October 2007 Ww Polyols: Beyond Sweet Taste By: Robin Steagall and Lyn O’Brien Nabors Polyols are neither sugars nor alcohols. They are a group of low-digestible carbohydrates, similar in structure to sugar molecules, except for the substitution of a hydroxyl group in place of the aldehyde group found on sugars. This substitution is the reason polyols are commonly referred to as sugar alcohols. The substitution of a single hydroxyl group preserves enough of the chemical structure of sugar to give polyols many of the physical properties of sugars, so they can often replace sugar and corn sweeteners in many applications. The structural differences also impart special functional and health benefits to polyol-containing products. The health benefits were discussed in the April 2007 issue of Food Product Design. This provides an overview of the functional benefits of polyols. Physical properties Polyols and sugars have several physical properties that are important in food processing. Understanding the different physical and functional characteristics among polyols is key to selecting the best polyol for a food application. Sweetness. Ingredient sweetness is usually measured in relation to sucrose, which has a sweetness reference value of 1 or 100%. Polyol sweetness varies and depends in part on the application. Generally, polyols vary in sweetness from about half as sweet to equally as sweet as sucrose. Taste and flavor. Other components of flavor are the persistence of sweetness, presence or absence of aftertaste, and the sweetness profile. Polyols are nonreactive and easily combine with high-intensity sweeteners in sugar-free chewing gums, candies, frozen desserts and baked goods.
    [Show full text]
  • Mitigation Role of Erythritol and Xylitol in the Formation of 3‑Monochloropropane‑1,2‑Diol and Its Esters in Glycerol and Shortbread Model Systems
    Eur Food Res Technol DOI 10.1007/s00217-017-2916-0 ORIGINAL PAPER Mitigation role of erythritol and xylitol in the formation of 3‑monochloropropane‑1,2‑diol and its esters in glycerol and shortbread model systems Anna Sadowska‑Rociek1 · Ewa Cies´lik1 · Krzysztof Sieja1 Received: 10 March 2017 / Revised: 30 April 2017 / Accepted: 13 May 2017 © The Author(s) 2017. This article is an open access publication Abstract The effect of the addition of six sweeteners did not show any inhibitory effect, and in some cases led to (erythritol, xylitol, maltitol, sucrose, steviol sweetener, the increase in the 3-MCPD generation, so their use in the and stevia leaves) on the formation of 3-monochloropro- bakery industry should be reconsidered. pane-1,2-diol (3-MCPD) and 3-MCPD esters in glycerol and shortbread model systems subjected to heat treat- Keywords 3-monochloropropane-1,2-diol · 3-MCPD ment was investigated. The highest level of free 3-MCPD esters · Thermal processing · pH · Antioxidants · was reached for the glycerol model system with the addi- Sweeteners 1 tion of steviol sweetener (114.8 μg kg− ), in contrast to 1 the model with stevia leaves (51.9 μg kg− ). The level of free 3-MCPD in the shortbread model was roughly similar, Introduction whilst the levels of esterifed 3-MCPD were about 12 times higher. The maximum content was obtained in the model Because of their sensory qualities, pastry goods such as 1 with sucrose (1112 μg kg− ) and the lowest with erythritol shortbread are very popular all over the world and are an 1 (676.4 μg kg− ).
    [Show full text]
  • Sugar Alcohols and Dental Caries
    Federal Register / Vol. 61, No. 165 / Friday, August 23, 1996 / Rules and Regulations 43433 4. Paragraph (b) of § 210.76 is revised sugar alcohols to the nonpromotion of evaluate such claims, that the claim is to read as follows: dental caries are justified. FDA is supported by such evidence (see also announcing these actions in response to § 101.14(c)). FDA considered the § 210.76 Modification or rescission of a petition filed by the National relevant scientific studies and data exclusion orders, cease and desist orders, and consent orders. Association of Chewing Gum presented in the petition as part of its Manufacturers, Inc., and an ad hoc review of the scientific literature on * * * * * working group of sugar alcohol sugar alcohols and dental caries. The (b) Commission action upon receipt of manufacturers (hereinafter referred to as agency summarized this evidence in the petition. The Commission may the petitioners). proposed rule (60 FR 37507). thereafter institute a proceeding to DATES: Effective January 1, 1998. The The proposed rule included modify or rescind the exclusion order, qualifying and disqualifying criteria for cease and desist order, or consent order Director of the Office of the Federal Register approves the incorporation by the purpose of identifying foods eligible by issuing a notice. The Commission to bear a health claim. The proposal also may hold a public hearing and afford reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51 of a certain specified mandatory content and label interested persons the opportunity to information for health claims statements appear and be heard.
    [Show full text]
  • Hydrogenolysis of Polyols to Ethylene Glycol in Nonaqueous Solvents
    Europaisch.es Patentamt European Patent Office @ Publication number: 0 086 296 Office européen des brevets B1 EUROPEAN PATENT SPECIFICATION @ Date of publication of patent spécification: 20.03.85 © int. ci.4: C 07 C 31/20, C 07 C 29/00 (Jj) Application number: 82303834.4 ® Date offiling: 21.07.82 ® Hydrogenolysis of polyols to ethylene glycol in nonaqueous solvents. (§) Priority: 01.02.82 US 344302 (§) Proprietor: E.l. DU PONT DE NEMOURS AND COMPANY 1007 Market Street (§) Date of publication of application : Wilmington Delaware 19898 (US) 24.08.83 Bulletin 83/34 (72) Inventor: Tanikella, Murty Sundara Sita Rama (45) Publication of the grant of the patent: 314 Hampton Road 20.03.85 Bulletin 85/12 Wilmington Delaware 19803 (US) (§) Designated Contracting States: @ Représentative: Jones, Alan John et al BEDEFRGBLU NLSE CARPMAELS & RANSFORD 43 Bloomsbury Square London, WC1 A 2RA (GB) (5§) Références cited: US-A-2965 679 US-A-3 396199 Références cited: INDUSTRIAL & ENGINEERING CHEMISTRY Chemical Abstracts vol. 63, no. 9 25 October Vol. 50, No. 8, Aug. 1958, Washington I.T. 1965 Columbus, USA N.A. VASYUNINA Cû Ohio, CLARK "Hydrogenolysis of Sorbitol" pages et al. "Hydrogénation of xylitol. II. Effect of 1 125 to 1126 <0 promoters" column 11637, sections b, c o Chemical Abstracts vol. 63, no. 3, 2 August CM 1965 Columbus, Ohio, USA N.A. VASYUNINA et al. "Préparation of glycerol and glycols by (O hydrogenolysis of xylitol" columns 3304h to 00 3305b O o Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Fire Hazard Posed by Sugar Alcohols
    211 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 77, 2019 The Italian Association of Chemical Engineering Online at www.cetjournal.it Guest Editors: Genserik Reniers, Bruno Fabiano Copyright © 2019, AIDIC Servizi S.r.l. ISBN 978-88-95608-74-7; ISSN 2283-9216 DOI: 10.3303/CET1977036 Fire Hazard Posed by Sugar Alcohols Maciej Celiński*, Monika Borucka Central Institute for Labour Protection – National Research Institute, Warsaw, Poland [email protected] Sucrose is the most popular disaccharide used as a sweetener in food industry. It’s annual global production ranks at 170 million metric tons. Such large quantity of produced organic compound in natural way poses a threat of the possibility of a major industrial accident. Chemical Safety Board in its report on fires and explosions of sugar dust stated that first reported combustion of sugar dust took place in 1925. Since then, despite all modern protection techniques, one can still observe accidents caused by this compound i.e. sugar dust explosion in: silo tower (Cantley, England, 2003), sugar mill (Baltimore, USA, 2007), silo tunnel (Georgia, USA, 2008). Growing popularity of artificial sweeteners commonly used as a sucrose substitute causes a rapid increase in their production which is close to 2 million metric tons annual. Sugar alcohols dust qualifies as a potentially flammable or explosive due to their chemical structure. Short carbon chains combined with several hydroxy groups significantly increases molecular oxygen balance in those compounds which makes them good fuel even in low oxygen conditions. Therefore they pose a threat of a major industrial accident and should be examined for it.
    [Show full text]