Development of Disomic Single-Locus DNA Microsatellite Markers for Persian Sturgeon (Acipenser Persicus) of the Caspian Sea

Total Page:16

File Type:pdf, Size:1020Kb

Development of Disomic Single-Locus DNA Microsatellite Markers for Persian Sturgeon (Acipenser Persicus) of the Caspian Sea Iranian Journal of Fisheries Sciences 12(2) 389-397 2013 __________________________________________________________________________________________ Development of disomic single-locus DNA microsatellite markers for Persian sturgeon (Acipenser persicus) of the Caspian Sea Moghim M.1,3∗; Pourkazemi M.2; Tan S. G.3; Siraj S. S.4; Panandam J. M.5; Kor D.1; Taghavi M. J.1 Received: December 2011 Accepted: February 2012 Abstract Understanding the scale at which wild stock of Persian sturgeon (Acipenser persicus) are genetically discrete is necessary for effective management of this commercially important species. Disomic DNA microsatellite markers are among the best tools for determining stock structure in fishes. As all sturgeon species have a polyploid ancestry of all sturgeons, most gene loci exhibit more than two alleles per individual, limiting the use of powerful analytical methods that commonly assume disomic inheritance. We scored products from 38 sets of microsatellite primers developed in lake (Acipenser fulvescens) and Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) to determine whether they would amplify disomic loci in Persian sturgeon. Samples of 45 individuals were detected.Thirty six loci (95%) were amplified successfully in Persian sturgeon. We identified; a single monomorphic locus, 12 disomic, 19 tetrasomic, three octosomic, and one locus that was ambiguous. This is the first report on development of disomic single-locus DNA microsatellite markers in Persian sturgeon. These loci could be used to characterize variation in geographically discrete populations of the Persian sturgeon in their native ecosystem including in the Caspian Sea. Downloaded from jifro.ir at 8:38 +0330 on Friday October 1st 2021 Keywords: Acipenser persicus, Caspian Sea, Single-locus DNA microsatellite markers ______________________________________ 1- Genetic Department of the Caspian Sea Ecology Research Center, P.O.Box: 961 Sari, Iran 2- International Sturgeon Research Institute, P.O. Box: 41635-3464 Rasht, Iran 3- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 4- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 5- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia * Corresponding author’s email: [email protected] 390 Moghim et al., Development of disomic single-locus DNA microsatellite markers… _________________________________________________________________________________________ Introduction seine by-catch in Iranian waters of the Persian sturgeon (Acipenser persicus Caspian Sea after 1990 ( Moghim et al., Borodin 1897) was first described from the 2005, 2006). Many experts believe the Southern Caspian Sea by Borodin (1897) increasing Persian sturgeon stock in the with its range later extended to the south Caspian Sea in 1990's result from northern Caspian Sea (Holcik, 1989). The extensive hatchery production and release Persian sturgeon is an anadromous fish programmes by the Iranian Fisheries which enters rivers for spawning, mainly Organization (Abdolhay and Baradaran the Sefid-Rud, Tajan and Gorgan-Rud Tahori., 2006; Moghim et al., 2006). rivers in Iran and Kura River in Azerbaijan Restorative propagation programs and to a lesser extent the Volga, Ural, can be harmful to wild stocks if they lead Samur, Terek, Lenkoranka and Astara to inbreeding via use of low numbers of rivers (Berg, 1948). It is one of the most parents relative to the number of fish economically important species in Iran stocked or if sites are stocked with fish (Moghim et al., 2006). Persian sturgeon is from a genetically-depauperate stock now listed as a critically endangered (Drauch and Rhodes, 2007). DNA species by the International Union for the microsatellite loci can provide powerful Conservation of Nature (IUCN, 2011). tools for monitoring genetic variation Like most sturgeons, Persian sturgeon levels and for detecting genetic variation density in the wild have declined due to among discrete sturgeon stocks (e.g. over-fishing, spawning habitat destruction Schrey and Heist, 2007). The major , and pollution (Birstein 1997; Pikitch et problem with applying microsatellite al., 2005; Moghim et al., 2006; markers to sturgeon stock management are Pourkazemi, 2006). Between years 1927 the polysomic nature of inheritance (e.g., and 1956, the total catch (expressed as tetrasomy or octosomy) and the presence Downloaded from jifro.ir at 8:38 +0330 on Friday October 1st 2021 flesh weight) declined from about 930 to of null alleles at some loci (Pyatskowit et only 217 tons. Catch rates for this species al., 2001). that currently comprises the majority of An earlier attempt to develop sturgeon landings in the Caspian Sea in disomic microsatellite markers for Persian Iran, have remained relatively stable over sturgeon trialed cross-species the past few decades but have not returned amplification using microsatellite primers to pre-1950s levels (Moghim et al., 2006). developed for Scaphirhynchus spp., that Recruitment in the wild is possess a lower ploidy level than Persian extremely low, in spite of stocking sturgeon (Ludwig et al., 2001). No millions of artificially propagated amplified loci however, exhibited disomic juveniles released from Iranian sturgeon inheritance (Moghim et al., 2009). hatcheries to adjacent rivers in the Caspian Disomic microsatellite loci have been Sea since 1972. This practice has resulted developed successfully in some other in a significant increase in catch of both sturgeon species with high ploidy levels adult and juvenile Persian sturgeon in the (e.g. white, green, and lake sturgeon) commercial catch, trawl surveys and beach although the majority of loci identified Iranian Journal of Fisheries Sciences 12 (2) 2013 391 __________________________________________________________________________________________ were polysomic. For example Welsh and (2003), Welsh and May (2006) and May et May (2006) found that only 9 of 254 al. (1997) (Table1). We amplified genomic primer pairs tested in Lake sturgeon DNA from 12 individuals in an Quanta exhibited disomic inheritance. When Biotec master cycler gradient thermocycler combined with loci from other studies, (Quanta Biotech Ltd, Surrey, United Welsh and May (2006) reported a total of Kingdom) trialing annealing temperatures 13 polymorphic disomic loci in lake ranging that ranged from 48° to 66° to sturgeon, a species with the same ploidy determine the optimal annealing level as Persian sturgeon (Ludwig et al., temperature for each primer pair. The 20- 2001). Recently we developed and tested μl PCR reactions contained approximately 68 microsatellite primer pairs from a 1-10 ng genomic DNA, 0.15 units Taq Persian sturgeon enriched microsatellite DNA polymerase, 1 µM of each primer, library (Moghim et al., 2012 ) and while 200 mM of each dNTP, 1.75 mM MgCl2, none of the markers exhibited disomic and 1× PCR buffer. inheritance in Persian or Russian (A. The amplification protocol for most gueldenstaedtii) sturgeon, several loci loci consisted of a 5 min denaturing step at showed promise in stellate sturgeon (A. 95 °C, followed by 35 cycles of 95 °C for stellatus), ship sturgeon (A.nudiventris) 30 s, 48 - 66 °C for 30 s, and 72 °C for 45 and beluga (Huso huso). s, and a final elongation at 72 °C for 5 In the present study, we tested min. Amplication of AfuGs 9 and 56 cross-species amplifications of followed Welsh and May (2006). PCR microsatellite primer pairs developed in products were suspended 1:1 in 98% lake and Atlantic sturgeon to identify formamide/loading dye, denatured at 95°C disomic microsatellite loci for Persian for 5 min, and separated in a 6% sturgeon. denaturing polyacrylamide gels on a Bio- Downloaded from jifro.ir at 8:38 +0330 on Friday October 1st 2021 Rad SequiGen Sequencing Cell-system Materials and methods with gel size 38 × 30 cm and run at 70 W Experimental materials and Molecular for 45 - 60 min. DNA bands were analysis visualized using a silver staining method Persian sturgeon fin clips (n=45) were (An et al., 2009) and amplified fragments collected from adult broodstocks from were sized by comparing their migration Iranian coastline of the south Caspian Sea against a 50 bp DNA Ladder (Promega, and preserved in 95% ethanol. Genomic Madison, WI, USA). Fragment sizes were DNA for amplification of 38 microsatellite estimated using UVIDoc version 99.04 loci was extracted using the Qiagen software (UVItech limited. UK). Loci that DNeasy Tissue Kit (Qiagen, Valencia, appeared to be disomic were amplified and CA) and stored at –20°C. scored in a minimum of 30 individuals. We interpreted a locus as being PCR reactions and program polymorphic if multiple bands of the Microsatellite primer sequences tested appropriate size range and appearance here were as reported in Welsh et al. were present in most individuals. We 392 Moghim et al., Development of disomic single-locus DNA microsatellite markers… _________________________________________________________________________________________ determined if bands were of the amplification in Persian sturgeon including appropriate sizes based on allele sizes annealing temperature, observed allele size reported by Welsh et al. (2003) and their range in base pairs, number of Persian migrations relative to the dye in the stop sturgeons screened (N), number of alleles solution. Most loci scored
Recommended publications
  • Leo Semenovich Berg and the Biology of Acipenseriformes: a Dedication
    Environmental Biology of Fishes 48: 15–22, 1997. 1997 Kluwer Academic Publishers. Printed in the Netherlands. Leo Semenovich Berg and the biology of Acipenseriformes: a dedication Vadim J. Birstein1 & William E. Bemis2 1 The Sturgeon Society, 331 West 57th Street, Suite 159, New York, NY 10019, U.S.A. 2 Department of Biology and Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, U.S.A. Received 5.3.1996 Accepted 23.5.1996 Key words: T. Dobzhansky, A. Sewertzoff, T. Lysenko, Paleonisciformes, biogeography This volume is dedicated to the memory of Leo Semenovich Berg (1876–1950), a Russian ichthyologist and geographer. In the foreword to the English translation of Berg’s remarkable treatise, ‘Nomogenesis or evolu- tion according to law’, Theodosius Dobzhansky wrote: ‘Berg was one of the outstanding intellects among Russian scientists. The breadth of his interests and the depth as well as the amplitude of his scholarship were remarkable. He had the reputation of being a ‘walking library’, because of the amount of information he could produce from his memory’ (Dobzhansky 1969, p. xi). Berg was prolific, publishing 217 papers and monographs on ichthyology, 30 papers on general zoology and biology, 20 papers on paleontology, 32 papers on zoogeo- graphy, 320 papers and monographs on geography, geology, and ethnography, as well as 290 biographies, obituaries, and popular articles (Berg 1955, Sokolov 1955). Berg was born 120 years ago, on 14 March 1876, in Sciences. Berg was never formally recognized by the town of Bendery. According to laws of the Rus- the Soviet Academy for his accomplishments in sian Empire, Berg could not enter the university as biology, and only later (1946) was he elected a mem- a Jew, so he was baptized and became a Lutheran, ber of the Geography Branch of the Soviet Acade- which allowed him to study and receive his diploma my of Sciences (Figure 1).
    [Show full text]
  • 2012 Wildearth Guardians and Friends of Animals Petition to List
    PETITION TO LIST Fifteen Species of Sturgeon UNDER THE U.S. ENDANGERED SPECIES ACT Submitted to the U.S. Secretary of Commerce, Acting through the National Oceanic and Atmospheric Administration and the National Marine Fisheries Service March 8, 2012 Petitioners WildEarth Guardians Friends of Animals 1536 Wynkoop Street, Suite 301 777 Post Road, Suite 205 Denver, Colorado 80202 Darien, Connecticut 06820 303.573.4898 203.656.1522 INTRODUCTION WildEarth Guardians and Friends of Animals hereby petitions the Secretary of Commerce, acting through the National Marine Fisheries Service (NMFS)1 and the National Oceanic and Atmospheric Administration (NOAA) (hereinafter referred as the Secretary), to list fifteen critically endangered sturgeon species as “threatened” or “endangered” under the Endangered Species Act (ESA) (16 U.S.C. § 1531 et seq.). The fifteen petitioned sturgeon species, grouped by geographic region, are: I. Western Europe (1) Acipenser naccarii (Adriatic Sturgeon) (2) Acipenser sturio (Atlantic Sturgeon/Baltic Sturgeon/Common Sturgeon) II. Caspian Sea/Black Sea/Sea of Azov (3) Acipenser gueldenstaedtii (Russian Sturgeon) (4) Acipenser nudiventris (Ship Sturgeon/Bastard Sturgeon/Fringebarbel Sturgeon/Spiny Sturgeon/Thorn Sturgeon) (5) Acipenser persicus (Persian Sturgeon) (6) Acipenser stellatus (Stellate Sturgeon/Star Sturgeon) III. Aral Sea and Tributaries (endemics) (7) Pseudoscaphirhynchus fedtschenkoi (Syr-darya Shovelnose Sturgeon/Syr Darya Sturgeon) (8) Pseudoscaphirhynchus hermanni (Dwarf Sturgeon/Little Amu-Darya Shovelnose/Little Shovelnose Sturgeon/Small Amu-dar Shovelnose Sturgeon) (9) Pseudoscaphirhynchus kaufmanni (False Shovelnose Sturgeon/Amu Darya Shovelnose Sturgeon/Amu Darya Sturgeon/Big Amu Darya Shovelnose/Large Amu-dar Shovelnose Sturgeon/Shovelfish) IV. Amur River Basin/Sea of Japan/Sea of Okhotsk (10) Acipenser mikadoi (Sakhalin Sturgeon) (11) Acipenser schrenckii (Amur Sturgeon) (12) Huso dauricus (Kaluga) V.
    [Show full text]
  • Genetic Diversity of Stellate Sturgeon in the Lower Danube River: the Impact of Habitat Contraction Upon a Critically Endangered Population
    water Article Genetic Diversity of Stellate Sturgeon in the Lower Danube River: The Impact of Habitat Contraction upon a Critically Endangered Population Daniela Nicoleta Holostenco 1,2 , Mitică Ciorpac 1,3,*, Elena Taflan 1, Katarina Toši´c 1,4, Marian Paraschiv 1, 1 1 1 2,5, Marian Iani ,S, tefan Hont, , Radu Suciu and Geta Rîs, noveanu * 1 Danube Delta National Institute for Research and Development, 820112 Tulcea, Romania; [email protected] (D.N.H.); elena.tafl[email protected] (E.T.); [email protected] (K.T.); [email protected] (M.P.); [email protected] (M.I.); [email protected] (S, .H.); [email protected] (R.S.) 2 Doctoral School of Ecology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania 3 Genetic Improvement Laboratory, Research Station for Cattle Breeding Dancu, 707252 Ias, i, Romania 4 Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia 5 Department of Systems Ecology and Sustainability, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania * Correspondence: [email protected] (M.C.); [email protected] (G.R.); Tel.: +40-765442892 (M.C.); +40-727803028 (G.R.) Abstract: One of the last wild populations of the critically endangered stellate sturgeon (Acipenser stellatus) survives in the Danube River. Limited knowledge about the genetic structure, ecology, and Citation: Holostenco, D.N.; Ciorpac, evolution of this species led to poor and inconsistent management decisions with an increased risk for M.; Taflan, E.; Toši´c,K.; Paraschiv, M.; species extinction in the wild. Here we show the results of genetic structure screening of the Danube Iani, M.; Hont,,S, .; Suciu, R.; River wild population over 12 years timespan.
    [Show full text]
  • Yangtze Sturgeon (Acipenser Dabryanus) - Sturgeons
    Pond Life - Yangtze Sturgeon (Acipenser dabryanus) - Sturgeons http://www.pond-life.me.uk/sturgeon/acipenserdabryanus.php Search Pond Life... Home Sturgeons Koi Other Fish Fish Health Ponds Plants Forums Contents Yangtze Sturgeon (Acipenser dabryanus) Home Sturgeons Acipenseriformes Sturgeon Food & Feeding Sturgeon Care Sheet Sturgeon Guide Sturgeon Species List Adriatic Sturgeon Alabama Sturgeon Amu Darya Sturgeon Amur Sturgeon Atlantic Sturgeon Beluga Sturgeon Chinese Paddlefish Chinese Sturgeon Yangtze Sturgeon (Acipenser dabryanus) photo from the website of CAFS Common Sturgeon (http://zzzy.fishinfo.cn/) Diamond Sturgeon Dwarf Sturgeon by Karen Paul Green Sturgeon Description: The Yangtze Sturgeon (Acipenser dabryanus) has 8-13 dorsal scutes, 26-39 lateral Gulf Sturgeon scutes, 9-13 ventral scutes, 44-57 dorsal fin rays and 25-36 anal fin rays. Colouration ranges from Kaluga Sturgeon dark grey to brown-grey on the back to white on the ventral side. The body is rough because it is Lake Sturgeon covered with small pointed denticles. The four barbels are located closer to the mouth than the end Paddlefish of the snout. The Yangtze Sturgeon can reach 1.3 meters in length and a weight of 16kg. Pallid Sturgeon Persian Sturgeon Sakhalin Sturgeon Ship Sturgeon Shortnose Sturgeon Shovelnose Sturgeon Siberian Sturgeon Stellate Sturgeon Sterlet Syr Darya Sturgeon White Sturgeon Yangtze Sturgeon Sturgeon Videos Koi Other Fish Fish Health Yangtze Sturgeon (Acipenser dabryanus) photo from the website of CAFS Ponds (http://zzzy.fishinfo.cn/) Plants Forums Wild Distribution: Asia; restricted to the upper and middle reaches of the Yangtze River system, Search rarely seen below the Gezhouba Dam. The Yangtze Sturgeon is a potamodromous (freshwater only) species.
    [Show full text]
  • (Acipenser Persicus Borodin) in the Caspian Sea
    FISHERIES & AQUATIC LIFE (2020) 28: 62 - 72 Archives of Polish Fisheries DOI 10.2478/aopf-2020-0009 RESEARCH ARTICLE Population dynamics and the risk of stock extinction of Persian sturgeon (Acipenser persicus Borodin) in the Caspian Sea Hasan Fazli, Mahmoud Tavakoli, Mohammad Reza Khoshghalb, Mehdi Moghim, Tooraj Valinasab Received – 12 August 2019/Accepted – 21 May 2020. Published online: 30 June 2020; ©Inland Fisheries Institute in Olsztyn, Poland Citation: Fazli H., Tavakoli M., Khoshghalb M.R., Moghim M., Valinasab T. 2020 – Population dynamics and the risk of stock extinction of Per- sian sturgeon (Acipenser persicus Borodin) in the Caspian Sea – Fish. Aquat. Life 28: 62-72 Abstract. Persian sturgeon, Acipenser persicus Borodin, has to 144.1 tons in 2014–15. Although >93% of the catch been the most significant proportion of Iranian commercial included maturing specimens, the Persian sturgeon stock is sturgeon catches in the Caspian Sea over in the last three now critically endangered because of several anthropogenic decades. This endemic species has suffered continuous factors. population declines from the impact of anthropogenic factors. The present study filled in information gaps on underlying Keywords: growth parameters, fishing indicators, population biology parameters, evaluated the population biomass, stock extinction, Persian sturgeon, Caspian Sea status, and determined the vulnerability risk of the stock extinction of Persian sturgeon in the south Caspian basin of Iran. Growth parameters were L¥ = 224.7 cm, K = 0.058 -1 Introduction years , t0 = -3.4 years. Sexual maturity of 50% for males and females was FL = 127.2 cm and 137.5 cm, respectively. The long-term age composition data showed 35 age groups, and Several researchers report that anthropogenic effects the ages of 14–18 years comprised 80% of the total catch.
    [Show full text]
  • Review of Four Sturgeon Species from the Caspian Sea Basin
    Review of four sturgeon species from the Caspian Sea basin (Version edited for public release) A report to the European Commission Directorate General E - Environment ENV.E.2. – Environmental Agreements and Trade by the United Nations Environment Programme World Conservation Monitoring Centre April, 2010 UNEP World Conservation Monitoring Centre 219 Huntingdon Road Cambridge CB3 0DL United Kingdom Tel: +44 (0) 1223 277314 Fax: +44 (0) 1223 277136 Email: [email protected] Website: www.unep-wcmc.org ABOUT UNEP-WORLD CONSERVATION CITATION MONITORING CENTRE UNEP-WCMC (2010). Review of four sturgeon species The UNEP World Conservation Monitoring Centre from the Caspian Sea basin. A Report to the European (UNEP-WCMC), based in Cambridge, UK, is the Commission. UNEP-WCMC, Cambridge. specialist biodiversity information and assessment centre of the United Nations Environment PREPARED FOR Programme (UNEP), run cooperatively with The European Commission, Brussels, Belgium WCMC 2000, a UK charity. The Centre's mission is to evaluate and highlight the many values of biodiversity and put authoritative biodiversity DISCLAIMER knowledge at the centre of decision-making. The contents of this report do not necessarily reflect Through the analysis and synthesis of global the views or policies of UNEP or contributory biodiversity knowledge the Centre provides organisations. The designations employed and the authoritative, strategic and timely information for presentations do not imply the expressions of any conventions, organisations and countries to use in opinion whatsoever on the part of UNEP, the the development and implementation of their European Commission or contributory policies and decisions. organisations concerning the legal status of any country, territory, city or area or its authority, or The UNEP-WCMC provides objective and concerning the delimitation of its frontiers or scientifically rigorous procedures and services.
    [Show full text]
  • Age, Growth and Mortality of the Persian Sturgeon, Acipenser Persicus, in the Iranian Waters of the Caspian Sea
    Caspian J. Env. Sci. 2011, Vol. 9 No.2 pp. 159~167 ©Copyright by The University of Guilan, Printed in I.R. Iran CJES [Research] Caspian Journal of Environmental Sciences Age, growth and mortality of the Persian Sturgeon, Acipenser persicus, in the Iranian waters of the Caspian Sea S. Bakhshalizadeh*1, A. Bani 1, S. Abdolmalaki2, R. Nahrevar2, R. Rastin2 1- Dept. of Fisheries, Faculty of Natural Resources, University of Guilan, P.O.Box 1144, Someh Sara, Iran 2- Inland water Aquaculture Research Institute, P.O.Box 66, Bandar Anzali, Iran * Corresponding author’s E-mail: [email protected] ABSTRACT The age and growth of the Persian Sturgeon, Acipenser persicus, obtained from the Iranian coastal waters of the Caspian Sea, were studied through analysis of the pectoral fin ray section from 180 specimens, ranging in fork length (FL) from 66 to 203 cm. The specimens were obtained from commercial fisheries between October 2008 and June 2010. Interpretation of growth bands in the pectoral fin ray sections was carried out objectively using the direct reading of thin sections and image analysis. The maximum age recorded in this study for the spacimens of Persian Sturgeon was 39 years. The von Bertalanffy growth parameters estimated for females were greater than for males. The estimates of asymptotic length (L∞) and growth -1 coefficient (K) of females were 173.07 cm and 0.1 year , respectively and for males 164.33 cm L∞ and 0.08 year -1 K respectively,. Total mortality coefficient (Z) for females and males was estimated to be 0.45 and 0.76 year -1, respectively.
    [Show full text]
  • Sturgeon (Acipenser Persicus Borodin, 1898) Raised “From Eggs" in the Hatchery of Azerbaijan
    Journal of Ecology & Natural Resources ISSN: 2578-4994 Reproductive Females of the Kura (Persian) Sturgeon (Acipenser Persicus Borodin, 1898) Raised “From Eggs" in the Hatchery of Azerbaijan Chingiz M* Research Article Baku State University, Azerbaijan Volume 3 Issue 1 Received Date: December 17, 2018 *Corresponding author: Chingiz Mamedov, Baku State University, Az1141, 23, Z. Published Date: April 18, 2019 Xalilov Street, Baku, Azerbaijan, Tel: +994125390294; Email: [email protected] DOI: 10.23880/jenr-16000157 Abstract The reproduction stock of various species of sturgeons in the conditions of the aquaculture of Azerbaijan on the basis of Khylly Sturgeon Fish Farm was formed on the basis of the young fish of artificial generation which total quantity is equal to more than 5000 individuals. For the first time in the sturgeon-breeding history of Azerbaijan sex and maturity of various species grown in aquaculture condition was determined by the method of ultrasound examination. 67% (47 pieces) of examined fish (70 pieces) was Persian (Kura) sturgeon. Most of them 59.6% (♂-28 and ♀-19) were males. Among the analyzed Persian (Kura) sturgeon fish the species at II maturity stage (♂-16 and ♀-10) was dominant. In 2013 the reproductive females of the Persian (Kura) sturgeon reared “from eggs” in the fish cultural practices of Azerbaijan for the first time were used under the hatchery conditions. The aim of the present study is a comparative evaluation of the quality of reproductive females holding under the conditions of sturgeon hatcheries and obtaining their off spring. This research is also needed to develop scientifically substantiated documents on exploitation of sturgeon broodstocks on the basis of sturgeon hatcheries of Azerbaijan.
    [Show full text]
  • Feasibility Studies on Vitrification of Persian Sturgeon
    e Rese tur arc ul h c & a u D q e A v e f l o o Keivanloo and Sudagar, J Aquac Res Development 2013, 4:3 l p a m n Journal of Aquaculture r e u n o t DOI: 10.4172/2155-9546.1000172 J ISSN: 2155-9546 Research & Development Research Article OpenOpOpenen Access Access Feasibility Studies on Vitrification of Persian Sturgeon (Acipenser persicus) Embryos Saeide Keivanloo* and Mohammad Sudagar Department of Fisheries, University of Agricultural and Natural Resources, Gorgan, 49138-15749, Iran Abstract The feasibility of cryopreservation by vitrification of Persian sturgeon Acipenser( persicus) embryos at 48 h post-fertilization stage was investigated. Vitrification is considered the most promising option. Many factors are involved in the success of the process. The choice of a proper vitrificant solutions and temperature for thawing, were the parameters considered in the present study. Six vitrificant solutions (V1-V6) were tested using a stepwise incorporation protocol. The tested solutions contained acetamide as the main cryoprotectant +3 other permeable cryoprotectants +3 non-permeable cryoprotectants. Before loading the embryos into tubes, toxicity tested was affected with these solutions. The hatching rate of embryos that had been exposed to the vitrificant solutions was analyzed and the highest hatching rate was obtained with exposure to V1. After thawing (water bath, 0 or 20°C), embryos were incubated until hatched. The highest survival rate (69.69%) was observed in samples frozen with V1 and thawed at 20°C. These results establish that cryopreservation of Persian sturgeons embryos by vitrification is possible. Keywords: Vitrification; Cryopreservation; Persian sturgeon; for chorion permeabilization (type XIV Streptomyces griseus), were Embryo; Cryoprotectant; Vitrificant solution purchased from Merck Company, Germany.
    [Show full text]
  • Seafood Watch Seafood Report
    Seafood Watch Seafood Report Commercially Wild-caught Sturgeons and Paddlefish UNITED STATES White sturgeon (Acipenser transmontanus) Green sturgeon (Acipenser medirostris) Shovelnose sturgeon (Scaphirhynchus platorhyncus) Paddlefish (Polyodon spathula) INTERNATIONAL (CASPIAN SEA) Beluga sturgeon (Huso huso) Stellate sturgeon (Acipenser stellatus) Russian sturgeon (Acipenser gueldenstaedtii) Persian sturgeon (Acipenser persicus) Ship sturgeon (Acipenser nudiventris) White sturgeon (Acipenser transmontanus) (Taken from California Department of Fish and Game) United States and Caspian Sea Regions Final Report May 19, 2005 Peter T. McDougall Independent Contractor 6/23/2005 About Seafood Watch® and the Seafood Reports Monterey Bay Aquarium’s Seafood Watch® program evaluates the ecological sustainability of wild-caught and farmed seafood commonly found in the United States marketplace. Seafood Watch® defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. Seafood Watch® makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from the Internet (seafoodwatch.org) or obtained from the Seafood Watch® program by emailing [email protected]. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans. Each sustainability recommendation on the regional pocket guides is supported by a Seafood Report. Each report synthesizes and analyzes the most current ecological, fisheries, and ecosystem science on a species, then evaluates this information against the program’s conservation ethic to arrive at a recommendation of “Best Choice”, “Good Alternative”, or “Avoid”.
    [Show full text]
  • Sterlet (Acipenser Ruthenus) Ecological Risk Screening Summary
    Sterlet (Acipenser ruthenus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, Web Version - 9/5/2017 Photo: J. Bukovský. Licensed under CC BY-NC. Available: http://eol.org/data_objects/2005171. 1 Native Range and Status in the United States Native Range From Gesner et al. (2010): “This species is known from rivers draining to Black, Azov and Caspian Seas; Siberia from Ob eastward to Yenisei drainages. Its current strong holds are the Volga, Ural and Danube systems.” From CITES (2000): “It originally inhabited the rivers of Eurasia, being widely distributed in rivers flowing into the Caspian, Black, Baltic, White, Barents and Kara Seas and the Sea of Azov.” Status in the United States No reliable records of Acipenser ruthenus in the United States were found. A record of Acipenser ruthenus for a location near Baltimore, Maryland was found (GBIF 2013). No other records indicate any Acipenser ruthenus within the United States. The record dates 1 from 1888 and cannot be determined if it is the result of a voucher specimen with the Smithsonian Institution or a misidentification. Means of Introductions in the United States No records of Acipenser ruthenus in the United States were found. Remarks Witkowski and Grabowska (2012) and CITIES (2000) state that Acipenser ruthenus may be able to hybridize with other Acipenser species and with Mississippi Paddlefish Polyodon spathula. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From Eschmeyer et al. (2017): “ruthenus, Acipenser Linnaeus [C.] 1758:237 [Systema Naturae, Ed. X v. 1] ?Danube River. Holotype: NRM 96. Based on several sources, see Kottelat 1997:31 so 96 should be regarded as a syntype.
    [Show full text]
  • Parasitic Worms of the Persian Sturgeon, Acipenser Persicus Borodin, 1897 from the Southwestern Shores of the Caspian Sea
    Iran. J. Ichthyol. (December 2015), 2(4): 287–295 Received: August 27, 2015 © 2015 Iranian Society of Ichthyology Accepted: November 25, 2015 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: http://www.ijichthyol.org Parasitic worms of the Persian sturgeon, Acipenser persicus Borodin, 1897 from the southwestern shores of the Caspian Sea Mohammad Reza NOEI1, Shaig IBRAHIMOV1, Masoud SATTARI2* 1Institute of Zoology, the Azerbaijan National Academy of Sciences, Baku, Azerbaijan. 2Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran. *Email: [email protected] Abstract: Although the Persian sturgeon, Acipenser persicus, is a commercially valuable sturgeon species of the Caspian Sea, but there are only few reports about its parasite fauna in the southern part of the Caspian Sea. In this study, a total of 209 individuals of Persian sturgeon were collected from two regions in the southwestern of Caspian Sea (Guilan Province, Iran) from March 2009 to May 2011. After recording their biometric characteristics, standard necropsy and parasitology methods were used for finding parasites. The nematodes were fixed in 70% ethanol and then cleared in lactophenol. The other worms were fixed in 10% buffered formalin and stained with aqueous acetocarmine. In this study, a total of 1396 worms belonging to six species, including two nematode species viz. Cucullanus sphaerocephalus and Eustrongylides excisus, two cestodes viz. Amphilina foliacea and Bothrimonus fallax, one digenean trematode, namely Skrjabinopsolus semiarmatus, and one acanthocephalan, namely Leptorhynchoides plagicephalus were found in 209 examined Persian sturgeons. Keywords: Acipenseriformes, Nematoda, Cestoda, Prevalence, Intensity. Introduction Specific parasitological information about The fishery of Persian sturgeon, Acipenser persicus A.
    [Show full text]