Introduction to Nuclear Fusion

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Nuclear Fusion Introduction to Nuclear Fusion Prof. Dr. Yong-Su Na To build a sun on earth - Open magnetic confinement - Closed magnetic confinement 2 What is closed magnetic confinement? 3 Open Magnetic System B sin 2 min Bmax v|| loss cone loss cone - Suffering from end losses J.P. Freidberg, “Ideal Magneto-Hydro-Dynamics”, lecture note A. A. Harms et al, “Principles of Fusion Energy”, World Scientific (2000) 4 Open Magnetic System Magnetic field Is this motion realistic? ion Dunkin donuts (2010) 5 Closed Magnetic System Magnetic field Donut-shaped vacuum vessel ion 6 Closed Magnetic System 7 Closed Magnetic System Magnetic field R 0 a Plasma needs to be confined ion R0 = 1.8 m, a = 0.5 m in KSTAR 8 Closed Magnetic System Magnetic field R 0 a Plasma needs to be confined ion R0 = 6.2 m, a = 2.0 m in ITER 9 Closed Magnetic System Toroidal Field (TF) coil Magnetic field Toroidal direction Applying toroidal magnetic field ion 3.5 T in KSTAR, 5.3 T in ITER 10 Closed Magnetic System Toroidal Field (TF) coil Toroidal direction Applying toroidal magnetic field 3.5 T in KSTAR, 5.3 T in ITER 11 Closed Magnetic System Toroidal Field (TF) coil Magnetic field Toroidal direction Magnetic field of earth? 0.5 Gauss = 0.00005 T ion 12 http://www.crystalinks.com/earthsmagneticfield.html Closed Magnetic System Magnetic field Magnetic field of earth? 0.5 Gauss = 0.00005 T ion http://www.transformacionconciencia.com/archives/2384 13 Closed Magnetic System Magnetic field ion 14 Lesch, Astrophysics, IPP Summer School (2008) Closed Magnetic System Magnetic field ion electron What kind of drift motions? ion 15 Closed Magnetic System Where does the gradient come from? B 1 B(R) R 16 R http://magnetoglide.wordpress.com/ Closed Magnetic System Where does the gradient come from? B B J 0 B dl NI 0 c 1 NI B(R) B (R) 0 c R 2R 17 http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/toroid.html Closed Magnetic System mv2 R B v || 0 0 ion D,R qB2 R2 +++ 0 1 BB v v r D,B 2 L B2 B mv2 BB 2qB B2 - - - electron m 1 v2 v 2 e D v|| Z 1 q R B (R ) 2 B(R) 0 0 R 18 Closed Magnetic System ion +++ Electric field, E - - - electron 19 Closed Magnetic System ion +++ ExB drift EB E R Electric v D,E 2 field, E B B (R0 ) R0 - - - ExB drift electron A. A. Harms et al, “Principles of Fusion Energy”, World Scientific (2000) 20 Closed Magnetic System ion +++ ExB drift Electric field, E - - - ExB drift electron Poloidal magnetic field required TokamakThen, .VS. how Stellarator to? 21 What is a tokamak? 22 Closed Magnetic System Will be the plasma current driven if a toroidal magnetic field is applied? ion +++ ExB drift Electric field, E - - - ExB drift electron Poloidal magnetic field required HowPlasmaTokamak to Then,drive current .VS. plasmahow Stellarator→ to? Tokamak current? 23 Tokamak Faraday‘s law d v B dS dt S 24 http://www.electronics-tutorials.ws/electromagnetism/electromagnetic-induction.html Tokamak Faraday‘s law d v B dS dt S 25 Tokamak Central Solenoid (CS) Plasma Transformer 26 http://www.electronics-tutorials.ws/electromagnetism/electromagnetic-induction.html Tokamak Central Solenoid (CS) Plasma Poloidal field Pulsed Operation! 27 http://www.electronics-tutorials.ws/electromagnetism/electromagnetic-induction.html Pulsed Operation Faraday‘s law Plasma Current d (MA) v B dS dt S t (s) CS Coil Current Coil Limit (stress, heating) (kA) t (s) Inherent drawback of Tokamak! 30 Steady-State Operation Plasma Current (MA) t (s) CS Coil Current (kA) t (s) d/dt ~ 0 Steady-state operation by self-generated and externally driven current 30 Tokamak Adding vertical (equilibrium) field coils (PF: Poloidal Field) 30 Tokamak Adding vertical (equilibrium) field coils (PF: Poloidal Field) 31 Tokamak Plasma expansion force I p Bv Force balance by vertical field coils: Plasma positioning 32 J.P. Freidberg, “Ideal Magneto-Hydro-Dynamics”, lecture note Tokamak X PF coils ● X current current Force X Force X ● coil coil X Plasma shaping by PF coils 33 Tokamak The plasma shape can be modified by PF coil currents. 34 Tokamak 35 Tokamak Adding vertical (equilibrium) field coils (PF: Poloidal Field) B B J J Plasma positioning & shaping by PF coils 36 Tokamak Invented by Igor Tamm and Andrei Sakharov in 1952 Toroidalnaja kamera magnitnaja katushka (Toroidal chamber magnetic coil) 37 Tokamak Cutaway of the Toroidal Chamber in Artsimovitch's Paper Research on Controlled Nuclear Fusion in the USSR Toroidalnaja kamera magnitnaja katushka (Toroidal chamber magnetic coil) 38 1958 IAEA FEC, Geneva, Switzerland T1: The world’s first tokamak, Kurchatov Institute, Moscow Russia http://www.iter.org/newsline/55/1194 39 Tokamak R a JET (Joint European Torus): 0 = 3 m, = 0.9 m, 1983-today http://imgarcade.com/1/spherical-tokamak/ 40 Tokamak R a JET (Joint European Torus): 0 = 3 m, = 0.9 m, 1983-today 41 Tokamak R a JET (Joint European Torus): 0 = 3 m, = 0.9 m, 1983-today 42 Tokamak http://cafe.naver.com/gamebox26.cafe?iframe_url=/ArticleRead.nhn%3Farticleid=16140 43 Tokamak KSTAR (Korea Superconducting Tokamak Advanced Research): R a 0 = 1.8 m, = 0.5 m, 2007-today 44 Tokamak KSTAR (Korea Superconducting Tokamak Advanced Research): R a 0 = 1.8 m, = 0.5 m, 2007-today 1st campaign (2008) 2nd campaign (2009) 3rd campaign (2010) 45 Tokamak KSTAR (Korea Superconducting Tokamak Advanced Research): R a 0 = 1.8 m, = 0.5 m, 2007-today 46 Tokamak KSTAR (Korea Superconducting Tokamak Advanced Research): R a 0 = 1.8 m, = 0.5 m, 2007-today 47 Tokamak KSTAR (Korea Superconducting Tokamak Advanced Research): R a 0 = 1.8 m, = 0.5 m, 2007-today KSTAR 1st plasma Analyse the KSTAR 1st plasma 48 Tokamak B B J J 49 .
Recommended publications
  • Engineering Design Evolution of the JT-60SA Project
    EngineeringEngineering DesignDesign EvolutionEvolution ofof thethe JTJT --60SA60SA ProjectProject P. Barabaschi, Y. Kamada, S. Ishida for the JT-60SA Integrated Project Team EU: F4E-CEA-ENEA-CNR/RFX-KIT-CRPP-CIEMAT-SCKCEN JA: JAEA 1 JTJT --60SA60SA ObjectivesObjectives •A combined project of the ITER Satellite Tokamak Program of JA-EU (Broader Approach) and National Centralized Tokamak Program in Japan. •Contribute to the early realization of fusion energy by its exploitation to support the exploitation of ITER and research towards DEMO. ITER DEMO Complement Support ITER ITER towards DEMO JT-60SA 2 TheThe NewNew LoadLoad AssemblyAssembly • JT60-U: Copper Coils (1600 T), Ip=4MA, Vp=80m 3 • JT60-SA: SC Coils (400 T), Ip=5.5MA, Vp=135m 3 JTJTJT-JT ---60U60U JTJTJT-JT ---60SA60SA JT-60SA(A ≥2.5,Ip=5.5 MA) ITER (A=3.1,15 MA) 3.0m 6.2m ~2.5m ~4m 1.8m KSTAR (A=3.6, 2 MA) 1.7m EAST (A=4.25,1 MA) 1.1m 3 SST-1 (A=5.5, 0.22 MA) 3 HighHigh BetaBeta andand LongLong PulsePulse • JT-60SA is a fully superconducting tokamak capable of confining break- max even equivalent class high-temperature deuterium plasmas ( Ip =5.5 MA ) lasting for a duration ( typically 100s ) longer than the timescales characterizing the key plasma processes, such as current diffusion and particle recycling. • JT-60SA should pursue full non-inductive steady-state operations with high βN (> no-wall ideal MHD stability limits). 4 4 PlasmaPlasma ShapingShaping • JT-60SA will explore the plasma configuration optimization for ITER and DEMO with a wide range of the plasma shape including the shape of ITER , with the capability to produce both single and double null configurations.
    [Show full text]
  • Overview of Versatile Experiment Spherical Torus (VEST)
    Overview of Versatile Experiment Spherical Torus (VEST) Y.S. Hwang and VEST team March 29, 2017 CARFRE and CATS Dept. of Nuclear Engineering Seoul National University 23rd IAEA Technical MeetingExperimental on Researchresults and plans of Using VEST Small Fusion Devices, Santiago, Chille Outline Versatile Experiment Spherical Torus (VEST) . Device and discharge status Start-up experiments . Low loop voltage start-up using trapped particle configuration . EC/EBW heating for pre-ionization . DC helicity injection Studies for Advanced Tokamak . Research directions for high-beta and high-bootstrap STs . Preparation of long-pulse ohmic discharges . Preparation for heating and current drive systems . Preparation of profile diagnostics Long-term Research Plans Summary 1/36 VEST device and Machine status VEST device and Machine status 2/36 VEST (Versatile Experiment Spherical Torus) Objectives . Basic research on a compact, high- ST (Spherical Torus) with elongated chamber in partial solenoid configuration . Study on innovative start-up, non-inductive H&CD, high and innovative divertor concept, etc Specifications Present Future Toroidal B Field [T] 0.1 0.3 Major Radius [m] 0.45 0.4 Minor Radius [m] 0.33 0.3 Aspect Ratio >1.36 >1.33 Plasma Current [kA] ~100 kA 300 Elongation ~1.6 ~2 Safety factor, qa ~6 ~5 3/36 History of VEST Discharges • #2946: First plasma (Jan. 2013) • #10508: Hydrogen glow discharge cleaning (Nov. 2014) Ip of ~70 kA with duration of ~10 ms • #14945: Boronization with He GDC (Mar. 2016) Maximum Ip of ~100 kA • # ??:
    [Show full text]
  • Past, Present and Future of the US-KSTAR Collaboration Hyeon K
    Past, Present and Future of the US-KSTAR Collaboration Hyeon K. Park POSTECH at 2009 US-KSTAR Workshop GA.SanDiego, CA On April 15-16, 2009 Past of the international fusion effort • Three large tokamak era: non-steady state device based on Cu coils (pulse length is limited by the cooling system < ~ 20 sec.) – Tokamak Fusion Test Reactor (USA) 1982-1997, Princeton Plasma Physics Laboratory, USA ¾ Fusion power yield: Q ~ 0.3 from D-T experiment – Joint European Tokamak (EU):1983 – present, Culham, Oxfordshore, UK ¾ Fusion power yield: Q ~ 0.7 from D-T experiment – JT-60U (Japan):1985 - present, Japan Atomic Energy Agency (JAEA), Japan ¾ Q~1.25 extrapolated from D-D experiment Internal view of Internal view of TFTR Internal view of JT60-U JET/plasma discharge Future (ITER) • The goal is "to demonstrate the scientific and technological feasibility of fusion power for peaceful purposes". – Demonstration of fusion power yield; Q (output power/input power) ~10 – International consortium (Europe, Japan, USA, Russia, Korea, China, and India) – Total cost ~ $10 B for ~10 years Physics basis is empirical energy confinement scaling KSTAR-US collaboration (past) • US-KSTAR workshop at GA on May 2004 • Areas of interest (first priority of KSTAR)~$1.62M – Steady-state Technology ($14.3M) ($0.37M) – Control, Stability and AT modes($1.48M) ($0.35M) – Conventional Diagnostics ($ 6.5M) ($0.45M) – Advanced Diagnostics ($2.8M) ($0.2M) – Collaboratory ($1.25M)($0.25M) • US-KSTAR workshop 2005 at Daejeon (active work) • US-KSTAR workshop 2006 at Princeton – FY06 International Collaboration to prepare for KSTAR operation (Finals 04/06; $1352K total) – Total allocation for Institution: PPPL (~500k), GA (~400k), ORNL (~200k), LLNL (~20k), MIT(~40k) Columbia (~100k), Escalated KSTAR progress • US-KSTAR workshop (Sept, 2007), Dajeon, Korea – Korean National Assembly passed the Fusion Energy Developm ent Promotion Act on November 30, 2006.
    [Show full text]
  • A European Success Story the Joint European Torus
    EFDA JET JETJETJET LEAD ING DEVICE FOR FUSION STUDIES HOLDER OF THE WORLD RECORD OF FUSION POWER PRODUCTION EXPERIMENTS STRONGLY FOCUSSED ON THE PREPARATION FOR ITER EXPERIMENTAL DEVICE USED UNDER THE EUROPEAN FUSION DEVELOPEMENT AGREEMENT THE JOINT EUROPEAN TORUS A EUROPEAN SUCCESS STORY EFDA Fusion: the Energy of the Sun If the temperature of a gas is raised above 10,000 °C virtually all of the atoms become ionised and electrons separate from their nuclei. The result is a complete mix of electrons and ions with the sum of all charges being very close to zero as only small charge imbalance is allowed. Thus, the ionised gas remains almost neutral throughout. This constitutes a fourth state of matter called plasma, with a wide range of unique features. D Deuterium 3He Helium 3 The sun, and similar stars, are sphe- Fusion D T Tritium res of plasma composed mainly of Li Lithium hydrogen. The high temperature, 4He Helium 4 3He Energy U Uranium around 15 million °C, is necessary released for the pressure of the plasma to in Fusion T balance the inward gravitational for- ces. Under these conditions it is pos- Li Fission sible for hydrogen nuclei to fuse together and release energy. Nuclear binding energy In a terrestrial system the aim is to 4He U produce the ‘easiest’ fusion reaction Energy released using deuterium and tritium. Even in fission then the rate of fusion reactions becomes large enough only at high JG97.362/4c Atomic mass particle energy. Therefore, when the Dn required nuclear reactions result from the thermal motions of the nuclei, so-called thermonuclear fusion, it is necessary to achieve u • extremely high temperatures, of at least 100 million °C.
    [Show full text]
  • TH/P8-21 Transport Simulations of KSTAR Advanced Tokamak
    1 TH/P8-21 Transport Simulations of KSTAR Advanced Tokamak Scenarios Yong-Su Na 1), 2), C. E. Kessel 3), J. M. Park 4), J. Y. Kim 1) 1) National Fusion Research Institute, Daejeon, Korea 2) Department of Nuclear Engineering, Seoul National University, Seoul, Korea 3) Princeton Plasma Physics Laboratory, Princeton, NJ, USA 4) Oak Ridge National Laboratory, Oak Ridge, TN, USA e-mail contact of main author: [email protected] Abstract. Predictive modeling of KSTAR operation scenarios are performed with the aim of developing high performance steady state operation scenarios. Various transport codes are employed for this study. Firstly, steady state operation capabilities are investigated with time dependent simulations using a free-boundary transport code. Secondly, reproducibility of high performance steady state operation scenario from an existing tokamak to KSTAR is investigated using the experimental data from other tokamak device. Finally, capability of DEMO-relevant advanced tokamak operation is investigated in KSTAR. From those simulations, it is found that KSTAR is able to establish high performance steady state operation scenarios. The selection of the transport model and the current ramp up scenario is also discussed which have strong influence on target profiles. 1. Introduction As the fusion era is rapidly approaching, the necessity of development of steady state operation scenarios becomes more and more important, particularly for fusion reactor models based on the tokamak concept. In addition to the steady state operation, fusion performance of the tokamak needs to be improved compared with conventional H-modes for developing economically viable fusion power plants. In this context, the, so-called, advanced tokamak (AT) scenarios are being developed aiming at satisfying these two reactor requirements simultaneously.
    [Show full text]
  • Fusion: the Way Ahead
    Fusion: the way ahead Feature: Physics World March 2006 pages 20 - 26 The recent decision to build the world's largest fusion experiment - ITER - in France has thrown down the gauntlet to fusion researchers worldwide. Richard Pitts, Richard Buttery and Simon Pinches describe how the Joint European Torus in the UK is playing a key role in ensuring ITER will demonstrate the reality of fusion power At a Glance: Fusion power • Fusion is the process whereby two light nuclei bind to form a heavier nucleus with the release of energy • Harnessing fusion on Earth via deuterium and tritium reactions would lead to an environmentally friendly and almost limitless energy source • One promising route to fusion power is to magnetically confine a hot, dense plasma inside a doughnut-shaped device called a tokamak • The JET tokamak provides a vital testing ground for understanding the physics and technologies necessary for an eventual fusion reactor • ITER is due to power up in 2016 and will be the next step towards a demonstration fusion power plant, which could be operational by 2035 By 2025 the Earth's population is predicted to reach eight billion. By the turn of the next century it could be as many as 12 billion. Even if the industrialized nations find a way to reduce their energy consumption, this unprecedented increase in population - coupled with rising prosperity in the developing world - will place huge demands on global energy supplies. As our primary sources of energy - fossil fuels - begin to run out, and burning them causes increasing environmental concerns, the human race faces the challenge of finding new energy sources.
    [Show full text]
  • DISTRIBUTION of THIS DOCUMENT IS UNLIMITED Temperatures in the Range 5-10 Kev Are Still Needed, but the Lawson Number Can Be Reduced to the Low 10 Cm Sec Range
    TFTR and Other Large Tokamaks Plasma Physics Laboratory, Princeton University Princeton, New Jersey 08544 H.P. Furth CONF-8604223—1 DE86 012761 Introduction The near-term goal of fusion research is to produce deuterium-tritium plasmas with temperatures above 10 keV and Lawson numbers nTE above 10 cm sec. As indicated in Fig. 1, experiments entering this parameter range will be able to satisfy Lawson's break-even criterion, where the fusion power output equals the required plasma-heating-power input (Q = 1 ). The ultimate reactor goal is to reach equilibrium-burn conditions, where the energetic alpha particles generated by the D-T reaction are sufficient to maintain the plasma temperature against all heat losses (Q = °°). At the outset of the international controlled-fusion research effort in the 19 50's, Lawson's goal seemed intimidatingly remote from experimental capabilities. During the following ten years, substantial scientific progress was made, but the rate of advance in the Lawson diagram was not such as to inspire confidence that the fusion program would reach fruition within the lifetime of its pioneers. The notable success of the Kurchatov Institute's T-3 tokamak during 1968-69 brightened the outlook considerably. The tokamak configuration was recognized as a cost-effective experimental tool and has permitted steady progress during subsequent decades. World-wide recognition of the favorable experimental opportunity for entry into the reactor plasma regime led to the initiation, in the mid-1970's, of four large new tokamak projects (Table I). Plans for the Joint European Torus (JET) were defined in 1971-73: th_ very large plasma size and high current of the JET plasma offered a potential for exceeding the Lawson break- even criterion and possibly evan reaching ignition in D-T plasmas.
    [Show full text]
  • Modeling and Control of Plasma Rotation for NSTX Using
    PAPER Related content - Central safety factor and N control on Modeling and control of plasma rotation for NSTX NSTX-U via beam power and plasma boundary shape modification, using TRANSP for closed loop simulations using neoclassical toroidal viscosity and neutral M.D. Boyer, R. Andre, D.A. Gates et al. beam injection - Topical Review M S Chu and M Okabayashi To cite this article: I.R. Goumiri et al 2016 Nucl. Fusion 56 036023 - Rotation and momentum transport in tokamaks and helical systems K. Ida and J.E. Rice View the article online for updates and enhancements. Recent citations - Design and simulation of the snowflake divertor control for NSTX–U P J Vail et al - Real-time capable modeling of neutral beam injection on NSTX-U using neural networks M.D. Boyer et al - Resistive wall mode physics and control challenges in JT-60SA high scenarios L. Pigatto et al This content was downloaded from IP address 128.112.165.144 on 09/09/2019 at 19:26 IOP Nuclear Fusion International Atomic Energy Agency Nuclear Fusion Nucl. Fusion Nucl. Fusion 56 (2016) 036023 (14pp) doi:10.1088/0029-5515/56/3/036023 56 Modeling and control of plasma rotation for 2016 NSTX using neoclassical toroidal viscosity © 2016 IAEA, Vienna and neutral beam injection NUFUAU I.R. Goumiri1, C.W. Rowley1, S.A. Sabbagh2, D.A. Gates3, S.P. Gerhardt3, M.D. Boyer3, R. Andre3, E. Kolemen3 and K. Taira4 036023 1 Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA I.R. Goumiri et al 2 Department of Applied Physics and Applied Mathematics,
    [Show full text]
  • Corrosion Issues in Fusion Reactors
    Corrosion Issues in Fusion Reactors Digby D. Macdonald1 and George R. Engelhardt2 1Department of Nuclear Engineering University of California at Berkeley Berkeley, CA 94720 2OLI Systems, Inc. 240 Cedar Knolls Rd Cedar Knolls, NJ 07927 WCO Forum Corrosion 2020 Houston, TX, USA Background • Nuclear fusion is the process of fusing the light elements (primarily 1 2 3 the isotopes of hydrogen, H1, D1, T1. • Fusion results in a loss of mass, which is converted into energy, E = Δm.c2. • Process that occurs in the sun and stars in nuclear synthesis. Minimum temperature for D + T is 10 keV = 300,000,000 oC equivalent. • First demonstrated on earth in 1950s through thermonuclear weapons. • Almost a limitless source of clean energy if it can be made to work. • First controlled fusion demonstrated at JET in Oxford, UK, Q =0.75. • First technology demonstration, ITER (‘the way”), being constructed at Cadarache, France. Q > 10. Thermonuclear Reactions Reaction Reaction Equation Initial Mass (u) Mass Change (u) % Mass Change 2 2 3 1 -3 D-D D1 + D1 → He2 + n0 4.027106424 -2.44152x10 0.06062 2 2 3 1 -3 D-D D1 + D1 → H1 + p1 4.027106424 -3.780754x10 0.09388 2 3 4 1 D-T D1 + T1 → He2 + n0 5.029602412 -0.019427508 0.3863 e--p+ e- + p+ → 2hν 1.8219x10-31 -1.8219x10-31 100 Must overcome Coulombic repulsion of nuclei in the plasma Preferred Reaction • The easiest reaction to achieve 2 3 4 1 is: D1 + T1 → He2 + n0 because it has the lowest ignition temperature (10 keV).
    [Show full text]
  • June 2018 Fusion in Europe
    FUSION IN EUROPE NEWS & VIEWS ON THE PROGRESS OF FUSION RESEARCH “Let us face it: TO DTT OR NOT TO DTT there is no VACUUM – HOW NOTHING REALLY planet B!” MATTERS NOW IS THE TIME TO BE AT JET 2 2018 Fusion Writers … wanted! … and Artists This could be you Fusion in Europe is call- ing for aspiring writers and gifted artists! Introduce yourself to an international audience! Catch one of our topics and turn it into your own! • The future powered by fusion energy • Fusion science and industrial reality • Fusion - a melting pot of different sciences • Fusion drives innovation Find the entire list here: tinyurl.com/ybd4omz7 Your application should include a short CV and a motivational letter. Please apply here: tinyurl.com/ybd4omz7 EUROfusion | Communications Team | Anne Purschwitz (”Fusion in Europe“ Editor) Boltzmannstr. 2 | 85748Application Garching | +49 89 deadline: 3299 4128 | [email protected] 25 June 2018 | Editorial | EUROfusion | “It is the best time to be at JET right now” says a passionate Eva Belo nohy. The member of JET’s Exploitation Unit has recently organised a very suc- cessful workshop. It was aimed to ‘refresh’ the knowledge of European fu- sion researchers regarding the Joint European Torus (JET) but that was a classic understatement. The meeting was a fully-fledged overview on JET’s capabilities which have tremendously changed in the past. The tokamak has gone through major upgrades since it saw its first deuterium tritium campaign in 1997. Those include not only an ITER-like wall but also an Fusion Writers… wanted! … increase of the heating power by 50 percent.
    [Show full text]
  • Nuclear Fusion Research Activities at KAERI
    Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 12-13, 2016 Nuclear Fusion Research Activities at KAERI Dong Won Leea, Sun Ho Kima, Seong Ho Jeonga, Byung Hoon Oha aKorea Atomic Energy Research Institute, Republic of Korea *Corresponding author: [email protected] 1. Introduction Large aspect ratio (5.6) High bootstrap current (≥50%) Nuclear fusion is considered to be a next generation Intensive RF heating and current drive (5 clean and sustainable energy due to its inherent safety MW) and abundant fuel resource. In this context, ITER has been built to resolve the scientific and technological issues remained for the ignition at Cadarache in France 3. Research & Development on KSTAR heating since 2006 [1, 2]. Korea has joined the ITER project system and contributed to ITER construction and understanding of plasma physics through KSTAR We have participated in KSTAR construction and (Korea Super Conducting Tokamak Advanced operation using the lessons from the former tokamaks Research) [3]. [4-6] with focus on tokamak heating and current drive KAERI has much experience on fusion plasmas devices such as ICRF and NB since 1996. It provided through KT-1 development and KT-2 planning since KSTAR heating power up to 6MW at present time. 1983. After that we have participated the KSTAR and Especially, NB contributed to achievement of long- ITER projects in various fields. In the present paper, pulse stable H-mode during 40 sec at KSTAR [7]. It these activities at KAERI, especially for Fusion Nuclear will enable KSTAR to achieve high beta long pulse Engineering Development Division were introduced.
    [Show full text]
  • Neutron Emission Spectrometry for Fusion Reactor Diagnosis
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1244 Neutron Emission Spectrometry for Fusion Reactor Diagnosis Method Development and Data Analysis JACOB ERIKSSON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9217-5 UPPSALA urn:nbn:se:uu:diva-247994 2015 Dissertation presented at Uppsala University to be publicly examined in Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Friday, 22 May 2015 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Dr Andreas Dinklage (Max-Planck-Institut für Plasmaphysik, Greifswald, Germany). Abstract Eriksson, J. 2015. Neutron Emission Spectrometry for Fusion Reactor Diagnosis. Method Development and Data Analysis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1244. 92 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9217-5. It is possible to obtain information about various properties of the fuel ions deuterium (D) and tritium (T) in a fusion plasma by measuring the neutron emission from the plasma. Neutrons are produced in fusion reactions between the fuel ions, which means that the intensity and energy spectrum of the emitted neutrons are related to the densities and velocity distributions of these ions. This thesis describes different methods for analyzing data from fusion neutron measurements. The main focus is on neutron spectrometry measurements, using data used collected at the tokamak fusion reactor JET in England. Several neutron spectrometers are installed at JET, including the time-of-flight spectrometer TOFOR and the magnetic proton recoil (MPRu) spectrometer. Part of the work is concerned with the calculation of neutron spectra from given fuel ion distributions.
    [Show full text]