<<

Search for Black Holes and Sphalerons in High-Multiplicity Final States in Proton-Proton Collisions at √s = 13 TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation Sirunyan, A. M. et al. “Search for Black Holes and Sphalerons in High-Multiplicity Final States in Proton-Proton Collisions at √s = 13 TeV.” Journal of High Energy Physics 2018, 11 (November 2018): 42 © 2018 The Author(s)

As Published https://doi.org/10.1007/JHEP11(2018)042

Publisher Springer Nature

Version Final published version

Citable link http://hdl.handle.net/1721.1/119253

Terms of Use Creative Commons Attribution 4.0 International License

Detailed Terms http://creativecommons.org/licenses/by/4.0/ JHEP11(2018)042 collected Springer 1 − May 15, 2018 : August 28, 2018 October 27, 2018 : November 7, 2018 : : Received Revised Accepted Published Published for SISSA by https://doi.org/10.1007/JHEP11(2018)042 on whose transformative ideas much of this work relies. . We dedicate this paper to the memory of Prof. Stephen William Hawking, 3 TeV 1805.06013 Beyond , Hadron-Hadron scattering (experiments) A search in energetic, high-multiplicity final states for evidence of physics , Copyright CERN, = 13 [email protected] s √ E-mail: Article funded by SCOAP Open Access for the benefit of the CMS Collaboration. Keywords: ArXiv ePrint: semiclassical black holes withmasses minimum as masses high as as high 9.5 TeVfor as are electroweak excluded 10.1 sphalerons TeV by are and this presented. search. stringlevel An on balls Results upper the of with fraction limit the of of first9 TeV all dedicated 0.021 resulting quark-quark search is in interactions set the above at the sphaleron 95% nominal transition. confidence threshold energy of determined from control regions in dataexcesses without any above reliance on the simulation. predicted Nolevel background evidence upper is for limits observed. on Model-independent thestates 95% cross are confidence section set of andball, beyond further the interpreted and standard in sphaleron model terms of production. signals limits in on these In final semiclassical the black hole, context string of models with large extra dimensions, Abstract: beyond the standard model,is such presented. as The black data holes, sample correspondswith string to the balls, an CMS integrated and experiment luminosity at electroweak of the 35.9 sphalerons, of LHC fb in 13 TeV proton-proton collisions in at 2016. a center-of-mass energy Standard model backgrounds, dominated by multijet production, are The CMS collaboration Search for black holeshigh-multiplicity and final sphalerons states in inat proton-proton collisions JHEP11(2018)042 17 ] predict strong 3 – 1 ], and models with low-scale quantum 8 5 12 – 1 – 11 13 17 10 11 2 14 14 -parity violation [ 20 10 R 11 5 30 8 7 3 1 21 ], strong dynamics, or other nonperturbative physics phenomena. While the 17 – ], with or without 13 11 – 4 8.1 Model-independent8.2 limits Model-specific limits 6.1 Background composition 6.2 Background shape6.3 determination Background normalization 6.4 Comparison with data 5.1 Black hole5.2 and string ball Sphaleron signal signal5.3 samples samples Background samples 1.1 Microscopic black1.2 holes Sphalerons three or more energetictry jets, [ , or photons.gravity [ Among these modelsfinal states are predicted supersymme- in thesetheir multiplicity, models and the differ transverse significantly momentum in imbalance, they the share type the common of feature produced, 1 Introduction Many theoretical models ofproduction physics beyond of the particles standard decaying model into (SM) [ high-multiplicity final states, i.e., characterized by 9 Summary The CMS collaboration 7 Systematic uncertainties 8 Results 6 Background estimate 5 Simulated samples 2 The CMS detector and3 the data sample Event reconstruction 4 Analysis strategy Contents 1 Introduction JHEP11(2018)042 , 25 ]. [ 2 17 S , 16 πR ], and, more ≈ 24 σ is the radius of R , i.e., S R , , where +1 1 ]. This is because in the SM, ED 100 GeV. With the discovery ED n n 23 ∼ R !# +2 ) ED n +3 2 D + 2 ED n M ED ∼ n 8Γ( 2 ] at the EW scale, the large difference between ] and the Randall–Sundrum model [ dimensions is related to the apparent Planck

Pl – 2 – 15 22 M D , is the mass of the BH. In the simplest production – ED BH n M 21 13 M BH ] with a production cross section proportional to the " M D 26 , 1 πM 25 , in 3 + D √ could be as low as a few TeV, i.e., relatively close to the EW GeV, i.e., the energy at which gravity is expected to become M D 19 = ] with a mass [ S M 10 R 20 ∼ – , which characterizes the strength of EW interactions. Consequently, Pl 18 2 “large” (compared to the inverse of the EW energy scale) extra spatial 2 − M ≥ , which governs the strength of gravity, is much smaller than the Fermi con- 2 ED GeV − n 4 − 10 GeV ∼ 38 At high-energy colliders, one of the possible manifestations of the ADD model is the In this paper, we look for the manifestation of the ADD model that postulates the − 10 where Γ is the gammascenario, function and the cross section is given by the area of a disk of radius extra dimensions. Since scale, the hierarchy problem would be alleviated. formation of microscopic BHssquared [ Schwarzschild radius, given as: This framework allows oneweakness of to gravity in the elude three-dimensionalstrong the space via gravitational hierarchy the interaction suppression problem of by thefundamental by the fundamentally Planck explaining large scale, volume the ofscale apparent the in 3 extra dimensions space. via Gauss’s As law a as: result, the recently, theoretical frameworks basedDimopoulos, on and extra Dvali dimensions (ADD) in model space: [ the Arkani-Hamed, existence of dimensions, compactified on a sphere or a torus, in which only gravity can propagate. the two scales poses what isthe known as Higgs the boson hierarchy mass problem [ isand not — protected in against the quadratically absence divergent ofof quantum fine corrections the tuning — theory: is expected the toattempt Planck be to scale. solve naturally the at A hierarchy the problem, largest number such energy of as scale theoretical supersymmetry, technicolor models [ have been proposed that In our universe, gravity is∼ the weakest ofstant, all known forces. Indeed,the the Planck Newton scale constant, strong, is 17 orders of magnitude higherof than the the Higgs EW boson scale [ of microscopic semiclassical black holeswith (BHs) electroweak (EW) and sphalerons. stringthis balls These section. (SBs), examples as are discussed well in as detail in1.1 in models the rest Microscopic of black holes search described in thislooking paper for targets final these statesthermore, models of since of various such inclusive beyond-the-SM final multiplicities (BSM) statesmodel-independent featuring physics can exclusions energetic by be on objects. used hypotheticalexamples to signal Fur- of test cross a such sections. large models, Considering variety we concrete of interpret models, the we results provide of the search explicitly in models with of a large number of energetic objects (jets, leptons, and/or photons) in the final state. The JHEP11(2018)042 ] . . ], = D L s 32 35 − ] are , √ set by B 30 34 > M – 2 ), the BH S min BH 28 D /g M ]. The most S M 33 M  BH M 5% of the products of ∼ ]. It is also a critical piece 44 9 TeV range for the parameter − ], which predicts the formation of = 7 and 8 TeV) and Run 2 ( 6 . ) numbers, while preserving s 31 L √ ]. The particular sphaleron solution of the ]. The most stringent limits on 43 ] into a large number of energetic particles, 42 27 – . The formation of an SB occurs once the mass ]. – 3 – S 37 ) and ( 26 M , it is expected to exhibit quantum features, which is the string coupling. As the mass of the SB grows, B D S g M ]. ], which explains the matter-antimatter asymmetry of the 36 , 45 . In the absence of signal, we will express the results of the , where D 34 S M /g . In the semiclassical case (strictly valid for ]. The analogous limits on the minimum SB mass depend on the S ≥ min M BH 36 , M min BH 34 M ] using 2015 data. Results of searches for quantum BHs in Run 2 based on 36 = 4 TeV [ D A number of searches for both semiclassical and quantum BHs, as well as for SBs have If the mass of a BH is close to As BH production is a threshold phenomenon, we search for BHs above a certain M ]. In more complicated production scenarios, e.g., a scenario with energy loss during theories was first proposed in 1976SM by was ’t Hooft first [ describedof by Klinkhamer EW and Manton theoryuniverse in [ by 1984 such [ processes.to The be crucial made, feature is of the the violation sphaleron, of which ( allows such claims choice of the stringchoices scale considered and in coupling refs. and [ are in the1.2 6 Sphalerons The Lagrangian of the EWincludes sector of a the vacuum transition SM known has as a a possible “sphaleron”. nonperturbative solution, This which class of solutions to gauge field recent Run 2 searchesand for semiclassical CMS BHs [ and2015 SBs and were 2016 carried data can outthe be by found Run ATLAS in [ 2 refs. searches [ for are 9.5 and 9.0 TeV for semiclassical and quantum BHs, respectively, of the object exceeds eventually it will transform into a semiclassical BH, oncebeen its performed mass at exceeds the CERN13 TeV) LHC data. using the An Run extensive 1 review ( of Run 1 searches can be found in ref. [ expected to decay before they thermalize,model resulting of in semiclassical low-multiplicity final BH states. precursorsa is Another long, the jagged SB string model excitation,that folded [ of into a a “ball”. semiclassical BH, Thewhich except evaporation depends that of only it an takes SB on place is the at similar string a to scale fixed Hagedorn temperature [ of BH evaporation viaa production semiclassical of BH neutrinos, decay, W whichnoninteracting and constitute stable Z BH boson remnants. decays, heavy-flavor quark decays, gravitons, or can modify the characteristics of its decay products. For example, quantum BHs [ quickly evaporates via Hawkingsuch radiation as [ gluons, quarks,produced leptons, in photons, the etc. process Thefreedom of relative per BH abundance evaporation of in is various the expectedquarks particles SM. and to Thus, gluons, follow about because the 75% they numbersignificant come of of amount in particles degrees of three produced of or missing are eight transverse expected color momentum to combinations, may be respectively. be A also produced in the process the formation ofapproximation the by BH a factor horizon, of the order one cross [ sectionminimum is mass modified fromsearch as this limits on “black disk” 26 JHEP11(2018)042 , ] ], sph 22 34 , 21 ]. In the ˆ s < E 49 √ = 13 TeV [ s √ 1) sphaleron tran- ], is nonzero. The − + sphaleron process, 47 . An anomaly breaks [ 0 L ψ CS µ ], many of the final states γ N = +1 ( q + q L 51 ψ ]. This is because the integral CS → µν = N 0 e F ]. Since between zero and three µ J µν 50 F , 49 ]. )]Tr[ 2 π 48 , because each quark has an absolute baryon ], was recently performed in ref. [ (16 44 – 4 – / 36 2 CS ] it has been suggested that the periodic nature g N ]. 48 . This argument opens up the possibility of observing = [ 46 . Fundamentally, the 9 TeV [ µ sph X J ≈ E µ ) = 0. The anomaly only exists if there is enough energy to ∂ ≥ d + sph L , which is fixed by the values of the EW couplings. Assuming s ˆ s E − CS c √ c B N b t t threshold is within the reach of the LHC, it was originally thought that + and ∆( τ inherited from the initial state [ + sph 0 CS µ E + N 3 and there are three colors and three generations of quarks produced. This e / → , since each of three leptons produced has absolute of 1. The ) = 6 L CS + N A phenomenological reinterpretation in terms of limits on the EW sphaleron production While the Within the framework of perturbative SM physics, there are twelve globally conserved B present paper, we describe thesitions. first dedicated experimental search for EW sphaleron tran- collider signatures, which wouldlarge have many missing energetic transverse momentum jets due and to charged undetected leptons, neutrinos. asof well an as ATLAS search forcomparable microscopic to BHs an in earlier the multijet CMS final analysis states [ at initial- or final-state radiation.12 (anti)fermions results While in the overresulting large a from million these number transitions unique of would transitionsdistinction look allowed [ is identical combinations made in between of a quarks typical the phenomenologically of collider unique the transitions, first experiment, determined two as generations, by no the leadingthe charges third-generation to and quarks only types in a of the few final leptons dozen state. and These transitions would lead to characteristic where 0, 1, orcel” 2 the of q the orof 12 the q fermions produced corresponding particles towhich are the further neutrinos, sphaleron decay, and transition the alsobetween may 7 actual between “can- and zero multiplicity 20 and of or three more. the are Some visible of top final-state the quarks, final-state particles particles may may also vary be gluons from either as: u + u sitions involve 12 (anti)fermions:(anti)quarks, three corresponding (anti)leptons, to one three fromcharge each colors and generation, and weak and three isospin nine 14, generations, of 12, with zero. the or Nevertheless, total 10 at electric particles the produced, LHC, that we arise consider from signatures a with q + q the sphaleron transition probability wouldbarrier. be significantly However, suppressed in byof a a the large recent potential Chern–Simons work potentialremoving [ it reduces completely this for suppressionan at EW collision sphaleron transition energies in proton-proton (pp) collisions at the LHC via processes such overcome the potential in the state at 125 GeV toallowed be the the determination SM Higgs of boson, thesethe the couplings, precise sphaleron giving measurement transitions an of of its estimate mass of [ the energy required for anomaly exists forby each 3 fermion doublet.baryon This number means will thatnumber also of the change 1 lepton by numberresults 3 in changes two important relations,∆( which are essential to the phenomenology of sphalerons: been discussed since the late 1980s [ currents, one for each ofthis the conservation, 12 in particular fundamental fermions: of this term, known as a Chern–Simons (or winding) number The possibility of sphaleron transitions at hadron colliders and related phenomenology has JHEP11(2018)042 ) s. T µ p ]. 53 ]. The first level, 52 ) coverage provided by 800–900 GeV and also η > . Within each tower, the T φ 48, the HCAL cells map on H . 1 74, the coverage of the towers . 1 thresholds of 450–500 GeV. The < and ∆ | T > η p η | | η | – 5 – plane, and for ] aims to reconstruct and identify each individual par- φ 54 − η 74, the HCAL cells have widths of 0.087 in pseudorapidity and . variable, defined as the scalar sum of the transverse momenta ( 1 T < ). In the H | φ η | . Since typical signal events are expected to contain multiple jets, we employ a 1 5 arrays of ECAL crystals to form calorimeter towers projecting radially outwards − × A more detailed description of the CMSThe analysis detector, is together based on with a data a sample definition recorded with of the the CMS detector in pp collisions Events of interest are selected using a two-tiered trigger system [ In the region 9 fb . ment, corrected for zero-suppression effects.combination of The energy the of electronby electrons momentum the is at tracker, determined the the frombremsstrahlung energy primary a photons of interaction spatially the vertex compatible with corresponding as originatingenergy ECAL determined from of cluster, the muons electron and track. is the The obtained energy from sum the of all curvature of the corresponding track. The energy 3 Event reconstruction The particle-flow (PF) algorithm [ ticle in an event withof an the CMS optimized detector. combination of The information energy of from photons the is various directly elements obtained from the ECAL measure- trigger based on the of all jets inuse an event a reconstructed logical at OR theresulting with HLT. trigger several We single-jet selection require triggers isrequirements with fully used efficient in the for analysis. events that subsequently satisfy the offline coordinate system used and the relevant kinematic variables, canat be a found center-of-mass in energy ref. of35 [ 13 TeV in 2016, corresponding to an integrated luminosity of composed of custom hardware processors, usesdetectors information to from select the events calorimeters at and aThe muon rate of second around level, 100 kHz known withinrunning as a time a the interval of version high-level less of trigger thanand 4 the (HLT), reduces consists full the of event event a rate reconstruction to farm software around of optimized 1 processors kHz for before fast data processing, storage. from close to theincreases nominal progressively interaction to point. aenergy maximum deposits For of in 0.174energies, ECAL in subsequently and used ∆ HCAL to provide cells the are energies and summed directions to of define hadronic jets. the calorimeter tower the barrel and endcap detectors.in Muons the are steel detected in flux-return gas-ionization yoke chambers outside embedded the solenoid. 0.087 in azimuth ( to 5 The central feature ofdiameter, the providing CMS a apparatus magneticpixel is field and a strip of superconducting tracker, 3.8 a T.a solenoid lead brass of tungstate Within and 6 crystal m the scintillator electromagneticendcap internal solenoid hadron sections. calorimeter calorimeter volume (ECAL), Forward calorimeters and (HCAL), are extend each a the pseudorapidity composed silicon ( of a barrel and two 2 The CMS detector and the data sample JHEP11(2018)042 4. . 2 is taken < | +jet, and 2 T η γ p | ] is required 58 per degree of freedom of less jet in each event, the energy ]. The muon candidate is re- 2 T χ p 58 spectrum and detector acceptance. 70 GeV and to be within T > p T p , is defined as the magnitude of the vectorial ]. The jet energy resolution amounts typically ]. – 6 – miss T 57 p 59 ] with the tracks assigned to the vertex as inputs, 5. For the leading 4 [ . 56 < , 2 calculation. | η 55 < | | miss T η | p of 10 GeV, 8% at 100 GeV, and 4% at 1 TeV. Additional selection criteria T p jet finding algorithm [ 70 GeV and be within T k > T p The missing transverse momentum, Details of muon reconstruction can be found in ref. [ For each event, hadronic jets are clustered from the PF candidates using the anti- The reconstructed vertex with the largest value of summed physics-object algorithm with a distance parameter of 0.4. The jet momentum is determined as the of those jets. Events are required to have at least one reconstructed vertex within 24 T T The transverse impact parameter and thethe longitudinal muon with distance respect of to the the track primarytively, associated to vertex with are reduce required contamination to be from lesstrajectory cosmic than and ray 2 to muons. and 5 the The mm, muon respec- than global detector track 10. segments fit must Muon to have candidates a the are tracker required to have sum of transverse momentaare of further all propagated PF to candidates the in an event.quired The to jet have at energy least corrections posits one in matching the energy silicon deposit strip in tracker, as the well pixel as tracker at and least two at track least segments in six the de- muon detector. fraction carried byto muon be candidates less failing thanmisreconstructed the 80%. with standard very This identification high requirementfurther [ momentum removes require and events the where misidentified leading0.99 as a jet if in low-momentum a this muon an high-energy jet is event jet. is to found have within We a charged-hadron fraction of less than jet energy scales into data 15% and at simulation a [ jet are applied to each jetfrom to various remove subdetector those potentially componentshave dominated or by reconstruction anomalous contributions failures. All jets are required to To mitigate this effect, trackscorrection originating is from applied to pileup correct verticesderived for from are simulation, the discarded to remaining and bring contributions. an theon Jet measured average. offset response energy In of corrections situ jets are leptonically measurements to of that decaying of the Z+jet particle-level momentum events jets balance are in used dijet, to multijet, account for any residual differences in the k vectorial sum of all particle5 momenta in to the 10% jet, ofAdditional and is the pp found true interactions from simulation within momentumcontribute to the over additional be the same within tracks whole or and neighboring calorimetric bunch energy crossings depositions (pileup) can to the jet momentum. to be the primarythe pp anti- interaction vertex. Theand physics the objects associated are missing the transversep momentum, jets, taken clustered as using the(2) negative cm vector of sum the of nominal the collision point in the direction parallel (perpendicular) to the beams. tracker and the matching ECAL andeffects HCAL and energy for deposits, corrected the forenergy response zero-suppression of function neutral of hadrons the isenergies. calorimeters obtained to from hadronic the showers. corresponding corrected Finally, the ECAL and HCAL of charged hadrons is determined from a combination of their momentum measured in the JHEP11(2018)042 . 3 ], 5, . of i T . p 62 2 2 sum ) ], re- = 0 φ =1 < T ] data. N i 61 | p R η 36 P | + (∆ + 2 ) above a given ] and [ η miss T T 60 p values above the energetic objects p (∆ = √ N miss T T 70 GeV and = p S > R of all T p T p carried by the charged hadrons T p ], which disambiguates them from 61 is defined as the ratio of the due to enhanced emission of gravitons I a better measure of the total transverse T miss T S p – 7 – ], except that for electrons we use a tighter isolation in the event, we do not consider 36 ], is used. The isolation requirements are the same as , defined as the scalar sum of miss T variable makes T 56 p 57 transition region between the ECAL barrel and endcap [ S . T 1 S ] and subsequently used in the studies of early Run 2 [ is robust against variations in the BH evaporation model, and is < | 65 T η – | S in the event, if it exceeds the same threshold: 07. in the . 63 0 < FastJet . For muons, the numerator of the ratio is corrected for the contribution miss T < T miss T p 44 p . p I , respectively. T p This definition of To avoid double counting, we remove jets that are found within a radius of ∆ Muons, electrons, and photons are required to be isolated from other energy deposits Details of electron and photon reconstruction can be found in refs. [ how many objects lead tothreshold the when determining the object multiplicity. also sensitive to the casesor when to there models is in large which a massive, weakly interacting remnant of a BH is formed at the various particles produced, as itsingle considers discriminating all variable types ofin particles in an the event (which final we state.threshold), define We plus as use jets, a electrons,Accounting muons, for and photons with momentum in the event carried by all the various particles. Since it is impossible to tell We follow closely the approachfor for Run semiclassical 1 BH searches analyses originallyThis [ developed approach by is CMS baseddominated on by an the inclusive high-multiplicityof multijet search analysis ones for is in BH less the decays sensitive semiclassical to to BH the all case. details possible of This final BH type evaporation states, and the relative abundance of from a muon, electron, orof photon, the if jet the latter object contributes more than 80, 70,4 or 50% Analysis strategy originating from pileup vertices.as For electrons estimated and with photons,used an in average an area earlier methodrequirement 13 [ TeV of analysis [ in the tracker andof the various calorimeters. types The of additional isolation 0.4 PF (muons) candidates or in 0.3 a (electronsthe and cone candidate’s photons), of centered radius on ∆ theof lepton neutral or particles photon due candidate, to to pileup, using one half of the compatible with the oneof expected the from HCAL a to ECAL(0.0219) genuine for energies electron photons be or in less photon, the thenpass barrel and 0.25 (endcap). the that (0.09) conversion-safe In the for addition, electron electrons ratio electron photon veto and candidates candidates. requirements are less [ required than to 0.0396 spectively. Electron and photon candidates areexcluding required the to have 1 detectors where the reconstructioncorresponding is suboptimal. to an We use averagecriteria standard efficiency include identification of criteria, a 80% requirement per that electron or the photon. transverse size The of identification the electromagnetic cluster be JHEP11(2018)042 ] ] 63 73 ]. 69 invariance” provides a T ] (semiclassical BHs) and . It is equally applicable S D 70 correctly. M N ] searches. It has been found empir- v2.02.0 [ 36 spectrum of a multijet final state using T S – 8 – . BlackMax ] and Run 2 [ spectrum for large 2 T 65 ] and a search for multijet resonances [ , S and 68 64 distribution for the dominant QCD multijet background 11). The background is dominated by SM QCD multijet 1 T S ,..., ] (semiclassical BHs and SBs) generators. The generator settings = 3 72 ]. , distribution, rather than to a narrow peak. Since these signals are values above a chosen threshold is compared with the background T 71 min 67 T , S S . It allows one to predict the N T 66 S ≥ . N distributions are then considered separately for various inclusive object multi- miss T 2 v1.003 [ p T distribution, where signal contamination is negligible even for large multiplicities S T S For semiclassical BH signals, we explore different aspects of BH production and decay To overcome this problem, a dedicated method of predicting the QCD multijet back- The main challenge of the search is to describe the inclusive multijet background in The shape from low-multiplicity events, for which the signal contamination is expected to be T charybdis of each model are listed in tables by simulating various scenarios, including nonrotatingrotating BHs (B1,C2), BHs rotating with BHs (B2,C1), mass loss (B3), and rotating BHs with Yoshino–Rychkov bounds [ search for stealth supersymmetry [ 5 Simulated samples 5.1 Black holeSignal and simulation string is ball performed signal using samples the powerful method of predicting theS dominant background for BHnegligible, production and by normalizing taking it to the theof observed the spectrum at high multiplicitiesof at the the low final-state end objects. The method has been also used for other CMS searches, e.g., a plicities, that the shape ofdoes the not depend onThis the observation multiplicity reflects of the thewhich way final conserves a state, parton above shower alow-multiplicity develops QCD certain via events, turn-on nearly e.g., threshold. collinear dijet emission, or trijet events. This “ rely on simulation to reproduce the ground directly from collision dataand has used in been the developed subsequent for Runically, 1 the first [ via original simulation-based Run studies, 1 and analysis then from [ the analysis of data at low jet multi- a robust way, asthe both high BH tail of and the expected sphaleron to signals involve correspond a highthe to background multiplicity a for of large broad final-state jet multiplicities, particles, enhancementorder which one is in calculations quite has challenging that to theoretically fully as reliably higher- describe describe multijet production do not exist. Thus, one cannot ber of events with and signal+background predictions to eitherproduction. establish a This signal approach or does to notgrounds, set rely limits and on on it the the Monte also signal e.g., Carlo has (MC) lepton+jets higher simulation [ of sensitivity the than back- exclusive searches in specific final states, to sphaleron searches, given thewith expected large energetic, high-multiplicity final states, possibly plicities (i.e., production and is estimated exclusively from control samples in data. The observed num- terminal stage of Hawking evaporation, with a mass below JHEP11(2018)042 , ] S S 4 g S M 75 , /M 6 TeV, 74 . 2, such 2 + 1 TeV ] search, S graviton g D = 3 36 S on M M charybdis is reached. For each D factor turn M points of the constant S loss M is varied between signal sample generation. ), where the SB production cross min 2 signal sample generation. 2 BH S ] and in an earlier Run 2 [ is chosen such that the cross section = 6 is used. The SB dynamics below M /g 65 D values as well as with the constant S – ED M S n 63 M < M BlackMax charybdis is varied within 2–9 TeV in 1 TeV steps, each SB – 9 – factor Momentum D M < M loss 2 and low . S /g ) is continuous. is varied from 2 to 4 TeV, while at constant , is probed by the higher S = 0 2 S S S S g M g M /g S ] LO PDFs, with the value of strong coupling constant of 0.118 ), where the SB production cross section scales with M S 76 /g S case Mass a M nonsplit 0 0 FALSE nonsplit 0.1 0.1 TRUE nonrotating 0 0 FALSE 6. The minimum black hole mass . Generator settings used for . Generator settings used for , 4 , 2 the string scale . = 2 Table 1 Table 2 = 0 S ED g n For the BH and SB signal samples we use leading order (LO) MSTW2008LO [ For SB signals, two sets of benchmark points are generated with is varied from 0.2 to 0.4. For all SB samples, B1 tensionless B2 rotating B3 rotating C1 TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE C2 FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE C3 TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE C4 TRUE TRUE TRUE FALSE TRUE TRUE FALSE FALSE C5 TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE C6 TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE S Model Choose Model BHSPIN MJLOST YRCSC NBODYAVERAGE NBODYPHASE NBODYVAR RMSTAB RMBOIL to give a conservative estimatethe of modern the NNPDF3.0 signal [ crossused section for at the high central masses, prediction,PDF with as set was a checked also with standard used uncertaintywhich in eigenset. all makes Run the The 1 comparison MSTW2008LO BH with searches earlier [ results straightforward. scan. The saturation regimesection ( no longer dependsbenchmark. on For each benchmark point,at the the scale SB-BH transition ( parton distribution functions (PDFs). This choice is driven by the fact that this set tends that different regimes of the SBvalue production can be explored.g For a constant string coupling the first transition ( are probed with the constant to evaporate until amodel, maximum the Hawking fundamental temperature Planckwith equal scale to and 11 TeV in 1 TeV steps. (C4). Models C3,object C5, multiplicities from and the C6stable BH remnant explore remnant, (C5, the varying for from which terminationfrom additionally 2-body its phase the default decaying generator of value remnant parameter of the (C3), 2 NBODY to was BH 0), changed with and “boiling” different remnant (C6), where the remnant continues JHEP11(2018)042 , where 0 mc@nlo v1.0 gen- σ a 1 sphaleron 5  . We simulate = 1.2 = PEF CS = 1 transitions are N σ t, and QCD multijet CS BaryoGEN N ]: = 8, 9, and 10 TeV. The MadGraph = 1 transitions, while those 49 sph ]. In the process of studying CS +jets, t E . The γ 77 N 1 1 sphaleron transitions resulting  distributions for = N CS N 9, and 10 TeV, respectively, and PEF is the , – 10 – 1 transitions and therefore are shifted toward lower − = 8 = sph CS E that undergo the sphaleron transition. N sph E because of cancellations with initial-state partons. 10.1, and 0.51 fb for N , ], capable of simulating various final states described in section . Observed final-state particle multiplicity 50 cover the variation in the signal acceptance between various PDFs due to this effect. The cross section for sphaleron production is given by [ The typical final-state multiplicities for the 7 = 121 0 sphaleron energy threshold 5.3 Background samples In addition, we useevents simulated for samples auxiliary studies. of W+jets, These events Z+jets, are generated with the dominated by 14 final-state partons,making as the the probability proton of mainly cancellations consists small. of valence quarks, thus σ pre-exponential factor, defined as the fraction of all quark-quark interactions above the tainty in this fraction is closeto to the 100%, we median chose of the the CT10tion various set, PDF for sets which this we fraction studied. is The close PDF uncertainties discussed inin sec- 10, 12, or 14 parton-level final states are shown in figure erator [ the sphaleron signal for threeparton-level values simulation of is the done transition withvarious energy the PDF CT10 sets, LO we PDF found setquarks that [ in the NNPDF3.0 the yields kinematic a region significantly of larger interest fraction than of all sea other modern PDFs. While the uncer- at negative valuesmultiplicity correspond to 5.2 Sphaleron signal samples The electroweak sphaleron processes are generated at LO with the Figure 1 transitions resulting in 10,of 12, events and in 14 parton-level thelevel final-state configurations. histograms multiplicities. The are The peaks proportional relative at numbers to positive the values correspond relative to probabilities of these three parton- JHEP11(2018)042 N ]. All 80 distribution, = 2 spectrum T S N distributions for all ma- T spectrum is steeply falling S T p , the central idea of this method 4 value and change the multiplicity . At the same time, jets from initial- T . Consequently, the background shape T S N S = 3 spectrum in terms of the total number N – 11 – 2 QCD processes, as long as the additional jets are value, but because their → 3 and 6 cases, based on simulated background samples. T illustrates the relative importance of these backgrounds S t production, with the QCD multijet background being by ], using the underlying event tune CUETP8M1 [ ≥ ]. As discussed in section 2 79 65 N illustrates an important point: not only is the QCD multijet shape at higher multiplicities better than the – distribution for the dominant multijet background is invariant 2 spectrum, which already has a contribution from ISR jets, and T T 63 ]. The effect of pileup interactions is simulated by superimposing S , T S S 81 value is preserved by the final-state radiation, which is the dominant 36 [ v8.205 [ +jets, and t T γ S = 3 N spectrum, normalized to the threshold used in the definition of pythia Geant4 T T S p ] event generator at LO or next-to-LO, with the NNPDF3.0 PDF set of a matching 78 = 4 The fragmentation and hadronization of parton-level signal and background samples N by just one unit, forshape events from used the in thetherefore analysis. reproduces Consequently, the we extract theused background in earlier analyses.the To estimate any residual noninvariance in the can be extracted from low-multiplicity spectramultiplicities. and The used to describe thesource background of at high extra jetsabove beyond the LO 2 state radiation (ISR) change the they typically contribute only a few percent to the The background prediction methodsimilar CMS used searches in [ theis analysis that follows the shape closely ofwith that the respect in to previous the final-state object multiplicity background at least anboth order low- and of high-multiplicity magnitude cases,jor but more also backgrounds important is the very than shape similar, of otherdiscussed so the below, backgrounds, the provides method for an we acceptable use means to of estimate predicting the the multijet overall background background, 6.2 as well. Background shape determination To reach the overallQCD agreement multijets with are normalized the tothe data, the QCD most all multijet accurate background simulated theoretical is backgrounds predictions normalizedmatches available, so except that while that in for the data. total the sults number While of in we background this do events analysis, not figure use simulated backgrounds to obtain the main re- 6.1 Background composition The main backgrounds in the(where analyzed V multi-object = final W, states Z), are:far QCD the multijet, most V+jets dominant.for Figure the inclusive multiplicity simulated minimum bias eventsdistribution on chosen the to match hard-scattering the interaction, one with observed the in data. multiplicity 6 Background estimate order. is done with signal and background samples aredetector reconstructed via with the detailed simulation of the CMS v2.2.2 [ JHEP11(2018)042 T T 6, p S ≥ N , and are T S = 4 distributions 3 and (right) N ≥ 6 N ≥ N = 3 and N distribution, normalized to the same total T was based on extensive studies of MC samples S = 4 fits is used as an envelope of the systematic T – 12 – S N = 4 N ], contribute less than 2% to the total number of events 36 = 3 and N = 3 distribution, in the range of 2.5–4.3 TeV, where any sizable contri- N distribution or the distribution in data for inclusive multiplicities of (left) T T S S events in data. T = 3 . The S threshold for all objects was raised to 70 GeV, compared to 50 GeV used in earlier N = 13 TeV after the fit to both multiplicities is discarded. The largest spread among all T In order to obtain the background template, we use a set of 16 functions employed in p T S excluded by the previous analysis [ within the fit range.to Any functional form observed notthe accepted to functions be in monotonically the decreasinguncertainty up in the background template. The use of both by construction; however, some ofconstrained them to have contain a polynomial monotonic terms, behavior.fit such In the that order they to determine are theevent not count background as shape, the we butions from BSM physics have been ruledfunctional out forms. by earlier The versions of lowest this masses analysis, of with all the 16 signal models considered, which have not been and low- earlier searches for BSM physicsers. in dijets, These VV functions events, typically and havedescribed multijet an by events exponential 3–5 at or free various power-law collid- parameters. behavior with Some of the functions are monotonously falling with LHC in 2016, whichthe resulted in a higheranalyses. pileup, The reoptimization and that to hasto resulted further be in reduce used the for the choice the ofthreshold effect baseline a for of QCD new the multijet exclusive ISR, objects background multiplicity counted prediction toward and a higher minimum the simulated background prediction,despite divided an by overall the agreement, statistical we do uncertainty not in rely data. on simulation We for note obtaining that the backgroundof prediction. events, is alsoFurthermore, used to as be an less additional sensitive component to of the the higher instantaneous background luminosity shape delivered uncertainty. by the Figure 2 compared with thecontributions normalized of background major prediction backgrounds. from The simulation, lower panels illustrating show the the relative difference between the data and JHEP11(2018)042 . T T S S min = 3 N [TeV] T N S (13 TeV) -1 spectrum invariance T T values below 35.9 fb S (13 TeV) and S noninvariance / T T = 4 (upper edge T S S Data Background shape Systematic uncertainties Fit region S N = value depends on the s T √ S / T = 4 (right), after discarding ) to the ] within each set of nested S ) . In both cases, the best fit x N N = 4 82 ( 3 2 = CMS 3 4 5 6 7 8 log x 4 p = 13 TeV. The description of the best 1 3 2 )+

10 2.0 1.2 0.4 0.4 1.2 2.0

T

threshold on the objects whose trans- 10 10 − − − Fit x threshold, which increases with

Events/0.05 TeV Events/0.05 S (Data-Fit) T T p log( for which this invariance holds, we find a S 3 ), where p ) = 3 (left) and T x + ( S 2 2 p N x log – 13 – ( 3 / p 1 + p 2 ) p x value, the minimum possible x ( [TeV] − T / T = 4 distributions in data, along with the corresponding S 1 (13 TeV) S (1 -1 p 0 ) spectrum for each inclusive multiplicity to that for N p 3 / T 1 35.9 fb S x ) = x − ( Data Background shape Systematic uncertainties Fit region φ = 3 (lower edge of the envelope) distributions. For (1 0 = 3 and p N N is only observed above a certain ) = x ( = 4 distribution. min f N = 3 N N . The results of the fit to data with CMS 5 TeV, most relevant for the present search) is given by the fit with the following 3 4 5 6 7 8 . ≥ 5 N 1 3 2 > The best fits (taking into account the F-test criterion [

10 2.0 1.2 0.4 0.4 1.2 2.0

10 10 − − −

Fit are the four free parameters of the fit. The envelope of the predictions at large = 3 or

Events/0.05 TeV Events/0.05 T (Data-Fit) i S number of objects in thewith final state, and therefore theIn shape order invariance to for an determine theplateau minimum in value the of ratioin of simulated the multijet events. The plateau for each multiplicity is found by fitting the ratio The next step inmalize the the background template estimation and the fordata uncertainty for various envelope, various inclusive inclusive obtained multiplicities. multiplicities asis This is described has only to above, to expected to nor- be to low- done with bemultiplicity care, requirement. observed as above Indeed, the a since certain thereverse is threshold, energies a which count depends toward the on the inclusive 5.5 TeV the envelope isN built piecewise from other template functions fitted6.3 to either the Background normalization function is p ( 5-parameter function: of the envelope) or to construct the envelopein allows the one systematic to uncertainty in takethe the method into background to account prediction. predict any the We residual observe background a distributions good in closure simulatedfunctions) QCD of to multijet the events. uncertainty envelopes, are shown in the two panels of figure Figure 3 the functions that failfit to function monotonically and decrease the uprange envelope in to are the given ratio in panels the are main outside text. the A fit few region points and beyond do the not plotted contribute vertical to the fit quality. JHEP11(2018)042 9–11, for these ≥ 11. The data are 001 003 006 011 015 012 016 019 025 ...... N 0 0 0 0 0 0 0 0 0          ,..., 3 is the number of events in 002 012 055 186 516 652 379 437 437 ...... ≥ NR range probed, for all inclusive N N T S 11 to that for the exclusive multiplicity , where 8 distribution. A self-consistency check NR ≥ ,..., N 3 N √ ≥ / – 14 – N . The relative scale factor uncertainties are derived 3 24 3.2–3.6 0 26 3.2–3.6 0 28 3.2–3.6 0 21 3.2–3.6 0 13 3.0–3.4 0 11 2.9–3.3 0 07 2.7–3.1 1 06 2.5–2.9 2 06 2.5–2.9 3 ...... 0 0 0 0 0 0 0 0 0          for inclusive multiplicities 89 02 25 18 98 75 60 47 44 ...... 5 point (TeV) region (TeV) scale factor (data) and 4 summarizes the turn-on thresholds and the NR boundaries obtained 9 3 8 3 7 2 6 2 5 2 4 2 3 2 11 2 10 3 3 invariance thresholds from fits to simulated QCD multijet background spec- ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ T S Multiplicity 99% turn-on Normalization Normalization . The = 3 in data, and are listed in table The normalization scale factors are calculated as the ratio of the number of events in N each NR for the inclusive multiplicities of of from the number of events in each NR, as 1 7 Systematic uncertainties There are several sources ofestimation systematic is uncertainty based in on this control analysis. samples Since in the data, background the only uncertainties affecting the back- to reliably extract the turn-onmultiplicities threshold we use for inclusive the multiplicities samewith of the NR CMS as data for sample the hasof shown the that data. this procedure Table providesfor an each adequate inclusive description multiplicity. 6.4 Comparison with data The results of theare background shown prediction in andconsistent figures with their the comparison background predictions withmultiplicities. in the the observed entire data with a sigmoid function. Theabove lower the bound 99% of point the of the normalizationchosen corresponding region to sigmoid (NR) be function. is 0.4 chosen The TeV to above upperin be the bound the corresponding of NR. each Since lower NR the bound is size to of ensure the sufficient simulated event QCD count multijet background sample is not sufficient the corresponding NR. Table 3 tra, normalization region definitions,multiplicities. and normalization scale factors in data for different inclusive JHEP11(2018)042 [TeV] [TeV] T T . They S S (13 TeV) (13 TeV) 6 -1 -1 ); the size of 35.9 fb 35.9 fb , respectively. min Data Background shape Systematic uncertainties Normalization region Data Background shape Systematic uncertainties Normalization region N and T BlackMax S 4 6 ≥ ≥ N N , as described in section CMS CMS 3 4 5 6 7 8 T S ] (up to 6% based on the difference 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 1 1 4 3 2 3 2

2 0 2 2 0 2

− − Unc. Unc. 76 10 10

10 10 10 10 10

Events/0.05 TeV Events/0.05 Events/0.05 TeV Events/0.05 (Data-Fit) (Data-Fit) = 2, as generated by – 15 – n [TeV] [TeV] T T S S (13 TeV) (13 TeV) -1 -1 6 (left to right, upper to lower). The gray band shows the ], and NNPDF2.3 [ 85 5 TeV, and 35.9 fb 35.9 fb . ,..., 3 = 5 ] based on the quadratic sum of variations from the MSTW2008 ≥ Data Background shape Systematic uncertainties Normalization region Data Background shape Systematic uncertainties Normalization region 84 BH N , 5%), as well as the variations obtained by using three different PDF . M 83 0 ≈ 5 3 ≥ ≥ N N = 3 TeV, . The comparison of data and the background predictions after the normalization for CMS CMS 3 4 5 6 7 8 D 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 M 1 1 3 2 4 3 2

2 2 0 2 2 0

For the signal, we consider the uncertainties in the PDFs, jet energy scale (JES), and − − Unc. Unc. 10 10

10 10 10 10 10

Events/0.05 TeV Events/0.05 Events/0.05 TeV Events/0.05 (Data-Fit) (Data-Fit) recommendations [ uncertainty set ( sets: MSTW2008, CTEQ6.1 [ between the default and CTEQ6.1with sets) for one of the benchmark models (nonrotating BH the integrated luminosity.signal For acceptance, the PDF while uncertainty, thepart we PDF of only uncertainty the consider in theoreticalcross the the section uncertainty effect limit. signal and on The cross therefore uncertainty the section in is the is not signal treated acceptance propagated is as calculated in a using the PDF4LHC experimental the shape and normalization uncertainties in the background prediction, added inground quadrature. predictions are thethe modeling normalization of of the the chosen backgroundare function shape found to to via data be template at 1–130% low functions and 0.7–50%, and depending on the values of Figure 4 inclusive multiplicities background shape uncertainty aloneThe and bottom the panels red show linesfit, the also divided difference by include between the the the overall normalization data uncertainty, and uncertainty. which the includes background the prediction statistical from uncertainty of the data as well as JHEP11(2018)042 11) [TeV] [TeV] T T ,..., S S (13 TeV) (13 TeV) 8 -1 -1 ≥ 35.9 fb 35.9 fb N = 9 TeV, PEF = 0.02 sph = 10 TeV, PEF = 0.2 7 ( sph ≥ N Sphaleron, E Data Background shape Systematic uncertainties Normalization region Data Background shape Systematic uncertainties Normalization region Sphaleron, E B1 (sphaleron) signals added to 10 [TeV] T ≥ 8 S (13 TeV) ≥ N -1 CMS N 3.5 4.0 4.5 5.0 5.5 6.0 6.5 CMS 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 1 1 35.9 fb 1 1 3 2 4 3 2

2 0 2 2 0 2 − −

− − Unc. Unc. = 9 TeV, PEF = 0.02 10 10

10 10 10 10 10

10 10 sph

Events/0.1 TeV Events/0.1 Events/0.1 TeV Events/0.1 (Data-Fit) (Data-Fit) BlackMax Sphaleron, E Data Background shape Systematic uncertainties Normalization region – 16 – 11 [TeV] [TeV] T T ≥ S S (13 TeV) (13 TeV) N -1 -1 CMS 3.5 4.0 4.5 5.0 5.5 6.0 =10 TeV, n=6 =9 TeV, n=6 =8 TeV, n=6 1 35.9 fb 35.9 fb 1 3 2

2 0 2 − BH BH BH

− 10 Unc.

10 10

10 11 (left to right, upper to lower). The gray band shows the shape = 9 TeV, PEF = 0.02 = 8 TeV, PEF = 0.002 TeV Events/0.1 (Data-Fit) sph sph =4 TeV, M =4 TeV, M =4 TeV, M D D D ,..., 7 Data Background shape Systematic uncertainties Normalization region B1: M B1: M B1: M ≥ Data Background shape Systematic uncertainties Normalization region Sphaleron, E Sphaleron, E N 7 ≥ 9 ≥ N CMS . The comparison of data and the background predictions after normalization for inclusive N 3.5 4.0 4.5 5.0 5.5 6.0 6.5 CMS 3 4 5 6 7 8 9 10 11 12 13 1 1 1 1 4 3 2 2 5 4 3 2

2 2 0 2 2 0 − −

− − Unc. Unc. 10 10

10 10 10 10 10 10 10

10 10 Events/0.1 TeV Events/0.1 Events/0.1 TeV Events/0.1 10 (Data-Fit) (Data-Fit) the difference between the datauncertainty, which and includes the the statistical background uncertainty of predictionuncertainties data from in as the well the as fit, thedistributions divided background shape also by and prediction, show normalization the contributions added overall fromthe in benchmark expected quadrature. background. The Figure 5 multiplicities of uncertainty and the red lines also include the normalization uncertainty. The bottom panels show JHEP11(2018)042 ]. > 86 T T min S S N , and the 1 and 5%; η < and T p in a variety of models, min BH final states, as a function of M min (1–130)%, depending on and varies between N (0.7–50)%, depending on   BH ≥ M N ], as for most of the models the opti- 90 ] with log-normal priors in the likelihood 89 threshold used for limit setting, as described – 87 min T – 17 – S 5% — method [ ) in inclusive . 5% — 6% — 2 s    σ A , obtained from a simple counting experiment for method [ min s T S distributions. The null results of the search are interpreted in , there is no evidence for a statistically significant signal observed T 5 S and 4 requirement, T S . In order to account for these effects, the jet four-momenta are simultaneously . 8 . Summary of systematic uncertainties in the signal acceptance and the background esti- 4 . These limits can then be translated into limits on the Limits are set using the CL The values of systematic uncertainties that are used in this analysis are summarized Normalization — Shape modeling — Integrated luminosity JES PDF Uncertainty source Effect on signal acceptance Effect on background min T 8.1 Model-independent limits The main result of this analysissignal is cross a section set and of acceptance model-independent ( the upper limits minimum on the product of S to constrain the nuisanceasymptotic parameters near approximation their of best themal estimated CL search values. region We corresponds doasymptotic not to approximation use is a an known very to low overestimate the background search expectation, sensitivity. in which case the As shown in figures in any of theterms inclusive of model-independent limits onand BSM as physics model-specific in limits energetic,EW for multiparticle sphalerons. a final set states, of semiclassical BH and SB scenarios, as well as for in table 8 Results largest of the two differencesuncertainty. with The respect uncertainty to due the towe JES use conservatively depends of assign the on a nominal JES constantto is value JES. assigned of Finally, as 5% the the Effects as integrated of the luminosity all signal is other acceptance measured uncertainties uncertainty on with due the an signal uncertainty acceptance of are 2.5% negligible. [ uncertainty of 6% dueaffects to the the signal choice acceptance of becausefraction PDFs of of for the signal all kinematic events passing requirements signal ain on samples. certain section the objects The and JES the uncertainty shifted up or down by the JES uncertainty, which is a function of the jet Table 4 mate. the effect for other benchmark points is similar. To be conservative, we assign a systematic JHEP11(2018)042 . 2) 3  [TeV] [TeV] 1 ( 5 TeV. (13 TeV) (13 TeV) . -1 -1 min T min T  4 S S > 35.9 fb 35.9 fb T Observed 68% expected 95% expected Observed 68% expected 95% expected S Upper limits, 95% CL Upper limits, 95% CL Upper limits, 95% . When computing 7 and 6 6 4 ≥ ≥ N N . It is reasonable to expect these CMS CMS 7 3 4 5 6 7 8 1 1 1 1 2 2 2 2 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 − − − −

10 10

10 10

T

T 10 10 T

T 10 10

A [fb] A ) A [fb] A ) > S > S ( ( S ( > S > values above the NRs listed in table

× × σ σ

min min T S 4, which can be used to constrain models , 3 ≥ – 18 – N 6 (left to right, upper to lower). Observed (expected) ,..., 3 [TeV] [TeV] (13 TeV) (13 TeV) -1 -1 ≥ min T min T S S N 35.9 fb 35.9 fb values above the background fit region, i.e., for Observed 68% expected 95% expected Observed 68% expected 95% expected Upper limits, 95% CL Upper limits, 95% CL Upper limits, 95% min T S . min T S 5 3 ≥ ≥ N N . Model-independent upper limits on the cross section times acceptance for four sets of CMS CMS 3 4 5 6 7 8 1 1 1 1 2 2 2 2 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 − − − −

10 10

10 10

T

T 10 10 T

T 10 10

A [fb] A ) A [fb] A ) > S > S ( > S > S (

× × σ σ

min min the limits, we use systematic uncertaintiesmodels in the discussed signal in acceptance this applicable paper, tolimits as the to documented specific apply in to section aby large jets. variety of The models limits resultinghigh on in values the multi-object of product final of states the dominated cross section and acceptance approach 0.08 fb at the limits for theresulting inclusive multiplicities in lower multiplicitiesthese of distributions the are final-state used objects.limits to are determine Since set the part only background ofFor shape for the other and multiplicities, data its the entering limits uncertainties,These are the shown limits for at 95% confidence level (CL) are shown in figures limits are shown asstandard the deviation black uncertainty solid in (dotted) the lines. expected limit. The inner (outer) band represents the or on any other signals resulting in an energetic, multi-object final state. We start with Figure 6 inclusive multiplicity thresholds, JHEP11(2018)042 2)  [TeV] [TeV] 1 ( (13 TeV) (13 TeV) -1 -1 min T min T  S S 35.9 fb 35.9 fb Observed 68% expected 95% expected Observed 68% expected 95% expected Upper limits, 95% CL Upper limits, 95% CL Upper limits, 95% 10 8 ≥ ≥ 4 5 6 7 8 N N [TeV] (13 TeV) -1 min T CMS CMS 3.5 4.0 4.5 5.0 5.5 6.0 6.5 S 1 1 1 1 2 2 2 2 − − − − 35.9 fb

10 10

10 10

T

T 10 10 T

T 10 10

A [fb] A ) A [fb] A ) > S > S ( > S > S (

× × σ σ Observed 68% expected 95% expected

min min Upper limits, 95% CL – 19 – 11 (left to right, upper to lower). Observed (expected) 11 ≥ ,..., N 7 [TeV] [TeV] (13 TeV) (13 TeV) -1 -1 min T min T CMS ≥ S S 3.5 4.0 4.5 5.0 5.5 6.0 N 1 1 2 2 − − 35.9 fb 35.9 fb 10

10

T 10

T 10

A [fb] A ) > S > S (

× Observed 68% expected 95% expected σ Observed 68% expected 95% expected min Upper limits, 95% CL Upper limits, 95% CL Upper limits, 95% 9 7 ≥ ≥ 4 5 6 7 8 N N . Model-independent upper limits on the cross section times acceptance for five sets of CMS CMS 3 4 5 6 7 8 1 1 1 1 2 2 2 2 − − − −

10 10

10 10

T

T 10 10 T

T 10 10

A [fb] A ) A [fb] A ) > S > S ( > S > S (

× × σ σ

min min Figure 7 inclusive multiplicity thresholds, limits are shown asstandard the deviation black uncertainty solid in (dotted) the lines. expected limit. The inner (outer) band represents the JHEP11(2018)042 . The 8 between 6 TeV) for increases, . . The 95% 7 benchmark , min BH are shown in min increases, the T min BH M S M min min BH BH starts at 7 for the M M 2) standard deviation [TeV]  (13 TeV) min value is obtained at the -1 BH BlackMax = 6, and = 5 TeV to (3 M N 1 (  min BH ED 35.9 fb min BH n M for a = 4 TeV, n = 6 M D 8 = 5 TeV. As M Observed 68% expected 95% expected for a semiclassical nonrotating BH min T Upper limits, 95% CL Upper limits, = 6, as a function of min S BH in this benchmark model can be read = 4 TeV, M D ED 0 TeV) for . n min BH 5 M , M – 20 – and the minimum multiplicity of the final-state = 4 TeV ]. min T D 36 S M = 11 TeV. The corresponding 95% CL upper limit curve . The resulting observed limits on the 2 min BH M 5 6 7 8 9 10 11 Nonrotating BH (BlackMax) CMS and 1 1 1 2 3 2 point B1) with − −

) point, which ranges from (7 10

10 10

[fb] 10 10 σ min T for setting an exclusion limit for a particular model, we calculate the ac- 6 TeV) for . ,S value of 5 TeV, with the corresponding 7 ) is chosen as the point that gives the lowest expected cross section limit. In , min min . Example of a model-specific limit on min BH N min T N BlackMax M ,S = 11 TeV. Also shown with a dashed line are the theoretical cross sections corresponding We repeat the above procedure for all chosen benchmark scenarios of semiclassical An example of a model-specific limit is given in figure min min BH N observed (expected) 95% CLfrom lower this plot limit as on theCL intersection of upper the limit theoretical on curve with the the cross observed section, (expected) and 95% isBHs, found listed to in be tables 9.7 (9.7) TeV. point B1 (nonrotating semiclassical5 BH) and with 11 TeV.lowest In this case,optimal point the shifts optimal to inclusive lowerreaching inclusive multiplicity (3 multiplicities and theand corresponding the theoretical cross section for the chosen benchmark point is shown in figure the model-independent limit curves,( for all inclusive multiplicities.most of The the optimal cases this pointof point a of also nonzero maximizes signal the present significance in of data an [ observation, for the case 8.2 Model-specific limits To determine the optimalobjects point of ceptance and the expected limit on the cross section for a given model for each point of CL upper exclusionoptimal limit ( onM the signal crossto section these for optimaluncertainty each in points. the expected limit. The inner (outer) band represents the Figure 8 model ( JHEP11(2018)042 ] 49 for the = 9 TeV n sph E [TeV] D M (13 TeV) -1 at different . Following ref. [ CMS 2 as a function of the = 9 and 10 TeV, and D . 6 TeV, as a function of 5.2 M . sph 35.9 fb = 0 E S = 3 ]. g S 34 M n = 2 n = 6 n = 4 ) point is also chosen by scanning 2 benchmarks, respectively. We also 2 TeV) for . min T as a function of 6 , ,S = 9 TeV, as well as for the modified values min BH min M sph N E – 21 – charybdis . and for a fixed string scale 11 BlackMax BlackMax Nonrotating, no graviton emission (B1) Rotating, no graviton emission (B2) Rotating, energy/momentum loss (B3) (left plot) and for a fixed string coupling = 8 TeV. Consequently, the exclusion limit on the sphaleron cross S g BlackMax 2 3 4 5 6 7 . The observed (expected) limit obtained for the nominal sph E (right plot). The search excludes SB masses below 7.1–9.4 TeV, depending , for the 12 9 8 7 6

11 S

10

BH

[TeV] Excluded M Excluded 10 min M . The observed 95% CL lower limits on and = 8 and 10 TeV. The observed and expected 95% CL upper limits on the PEF are ] based on the reinterpretation of the ATLAS result [ 9 6 TeV) for 49 sph For the sphaleron signal, the optimal ( . 5 E , 9 Summary A search hasresulting been in presented energetic multi-object for finalblack generic states, holes, signals such as string of would balls,proton be beyond collision and produced data the by electroweak at standard semiclassical a sphalerons. center-of-mass model energy of The physics 13 TeV, search collected with was the based CMS detector on proton- of shown in figure is 0.021 (0.012), which isref. an [ order of magnitude more stringent than the limit obtained in for the lowest expected limit(9 and is found tosection can be be (8 converted intowe a calculate limit the on PEF the limits for PEF, the defined nominal in section obtain similar limits onThese the limits SB are mass shown for inthe the string figure set coupling of thestring SB scale model parameters weon scanned. the values of the string scale and coupling. Figure 9 models B1–B3 generated with figures JHEP11(2018)042 2) s for g  S for a 1 ( S for the M g  n (13 TeV) -1 Observed 68% expected 95% expected 35.9 fb [TeV] n = 2 n = 6 n = 4 Lower limits, 95% CL D M (13 TeV) at different -1 CMS D M 35.9 fb = 3.6 TeV S M String balls (Charybdis 2) CMS as a function of 9 8 7 6 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 11 10 Rotating, boiling remnant (C6) Nonrotating (C2) Rotating, YR model (C4)

9.5 8.5 7.5 6.5

min

BH SB 10.5 [TeV] M M – 22 – 2. 2 (left) and as a function of the string coupling [TeV] . S M (13 TeV) -1 = 0 6 TeV (right). The inner (outer) band represents the . S g Observed 68% expected 95% expected 35.9 fb = 3 S Lower limits, 95% CL charybdis M Rotating (C1) Rotating, evaporation model (C3) Rotating, stable remnant (C5) 2 3 4 5 6 7 Charybdis 2 9 8 7 10

9.5 8.5 7.5 6.5

10.5 BH

[TeV] Excluded M Excluded min . The 95% observed CL lower limits on . The 95% CL lower limits on a string ball mass as a function of the string scale = 0.2 s String balls (Charybdis 2) g CMS 1 1.5 2 2.5 3 3.5 9 8 7 11

10

6.5 9.5 8.5 7.5

10.5 SB [TeV] M a fixed value of thefixed value string of coupling the stringstandard scale deviation uncertainty inby the this expected search. limit. The area below the solid curve is excluded Figure 11 Figure 10 models C1–C6 generated with JHEP11(2018)042 thresholds. of the final- T T S S . The inner (outer) for minimum final- . The background, sph 1 T E − S [TeV] (13 TeV) 9 fb sph -1 . E 35.9 fb – 23 – Observed 68% expected 95% expected CMS 8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10 1 1 3 2

− − 2) standard deviation uncertainty in the expected limit. The area above PEF 10  10 10 1 (  . Observed (solid curve) and expected (dashed black curve) 95% CL upper limit on the We congratulate our colleagues in theformance CERN of accelerator departments the for LHC theother and excellent CMS per- thank institutes the for technical theirwe and contributions gratefully to administrative acknowledge the staffs success the atComputing of computing CERN Grid the and for centers CMS delivering at effort. and so In personnel effectively addition, the of computing the infrastructure Worldwide essential LHC to our thus improving significantly onupper previous limit results. on the We electroweaktransition have sphaleron energy also pre-exponential of set factor 9 TeV. the of 0.021 first for experimental the sphaleron Acknowledgments acceptance for suchstate final multiplicities states, between as 3By a and calculating function the 11. acceptance of valuessignal These the models, for limits we benchmark minimum convert reach black these hole, 0.08 model-independentsemiclassical fb limits string black into at ball, hole lower limits high and mass on sphaleron and the string minimum ball mass. The limits extend as high as 10.1 TeV, in 2016 anddominated corresponding by QCD to multijet production, an isin determined integrated data. solely luminosity from low-multiplicity Comparing samples ofstate the 35 objects distribution in oflevel data the model-independent total with upper transverse that limits momentum expected on from the product the of backgrounds, the we production set cross 95% section confidence and Figure 12 pre-exponential factor PEF ofband the represents sphaleron the productionthe as solid a curve function is of excluded by this search. JHEP11(2018)042 – 24 – ´ UNKP, the NKFIA research grants 123842, 123959, ), which permits any use, distribution and reproduction in CC-BY 4.0 This article is distributed under the terms of the Creative Commons Individuals have received support from the Marie-Curie program and the European C-1845; and the Weston Havens Foundation (U.S.A.). Open Access. Attribution License ( any medium, provided the original author(s) and source are credited. search Program by Qatar National de T´ecnica ResearchInvestigaci´onCient´ıficay Excelencia Fund; Mar´ıade the Maeztu, Programa grant Estatal MDM-2015-0509 deand Fomento the de la Programa Severo Ochoagrammes cofinanced del by Principado EU-ESF de and Asturias;Postdoctoral the Greek the Fellowship, Chulalongkorn NSRF; Thalis University the and Rachadapisek andIts Aristeia Sompot the 2nd pro- Fund Chulalongkorn Century for Academic Project Advancement into Project (Thailand); the Welch Foundation, contract India; the HOMING PLUS programEuropean of Union, the Regional Foundation for Development Polishistry Fund, Science, the of cofinanced Mobility Science from Plus andHarmonia programme Higher of 2014/14/M/ST2/00428, the Education, Opus Min- the 2014/13/B/ST2/02543,and 2015/19/B/ST2/02861, National 2014/15/B/ST2/03998, Sonata-bis Science 2012/07/E/ST2/01406; the Center National (Poland), Priorities Re- contracts the “Excellence of Sciencetion, — Youth EOS” and — Sports (MEYS) be.hgramme of project and the the n. Czech J´anosBolyai Research Republic; Scholarship 30820817; of thethe the the Lend¨ulet(“Momentum”) New Pro- Hungarian Ministry National Academy Excellence of of Program Sciences, Educa- 124845, 124850 and 125105 (Hungary); the Council of Science and Industrial Research, Research Council and HorizonLeventis 2020 Foundation; the Grant, A. contracttion; P. No. the Sloan Belgian Foundation; 675440 Federal the Science (European Policy Alexanderdans Union); Office; l’Industrie von the et the Humboldt Fonds dans pour l’Agriculture Founda- la (FRIA-Belgium);Wetenschap Formation en the `ala Recherche Agentschap Technologie voor (IWT-Belgium); Innovatie the door F.R.S.-FNRS and FWO (Belgium) under SEIDI, CPAN, PCTI, andcies FEDER (Switzerland); (Spain); MST MOSTR (Taipei);TUBITAK (Sri and ThEPCenter, Lanka); TAEK IPST, Swiss (Turkey); NASU STAR,DOE Funding and and and Agen- SFFR NSF NSTDA (U.S.A.). (Ukraine); (Thailand); STFC (United Kingdom); CEA and CNRS/IN2P3 (France);NKFIA BMBF, (Hungary); DAE DFG, and and DST (India);and HGF IPM NRF (Germany); (Iran); (Republic SFI of GSRT (Ireland); Korea); (Greece); BUAP, INFN MES CINVESTAV, CONACYT, (Italy); (Latvia); LNS, MSIP LAS SEP, (Lithuania); and MOE UASLP-FAIgro); (Mexico); and MBIE MOS UM (New (Montene- (Malaysia); Zealand); PAEC (Pakistan);JINR MSHE (Dubna); and NSC MON, (Poland); RosAtom, FCT (Portugal); RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); of the LHC andand the FWF CMS (Austria); detector FNRS providedand and by FAPESP the FWO (Brazil); (Belgium); following MES funding CNPq,CIENCIAS (Bulgaria); (Colombia); agencies: CAPES, MSES CERN; FAPERJ, and BMBWF CAS, CSF FAPERGS, (Croatia); MoST,MoER, RPF (Cyprus); and ERC SENESCYT IUT, NSFC (Ecuador); and (China); ERDF COL- (Estonia); Academy of Finland, MEC, and HIP (Finland); analyses. Finally, we acknowledge the enduring support for the construction and operation JHEP11(2018)042 , (1972) ]. ]. B 70 13 Phys. (1999) , Phys. 16 ]. , . 83 (1971) 86 ]. SPIRE (1984) 1 SPIRE IN IN ][ SPIRE [ ]. B 31 110 SPIRE IN Nucl. Phys. IN ][ , (1961) 579 [ JETP Lett. (2012) 1 , (1998) 257 SPIRE 22 IN ]. , N. Svartholm ed., GeV with the CMS (1978) 575 [ New dimensions at a Phys. Rev. Lett. ]. , B 716 Phys. Rept. Nucl. Phys. 125 B 436 , , SPIRE (1971) 2415 B 76 hep-ph/9803315 IN SPIRE [ Pisma Zh. Eksp. Teor. Fiz. ]. IN Nucl. Phys. [ D 3 , arXiv:1207.7235 ]. ]. (1967) 1264 Elementary : relativistic [ Phys. Lett. The hierarchy problem and new Phenomenology, astrophysics and SPIRE 19 Phys. Lett. , , in IN , Phys. Lett. SPIRE SPIRE (1998) 263 , IN (1971) 323 [ IN (1975) 104 ][ ][ (2012) 30 Phys. Rev. 13 , – 25 – B 429 B 90 ]. Extension of the algebra of Poincar´egroup generators (1972) 621] [ B 716 Phys. Rev. Lett. ]. 16 , Possible universal neutrino interaction SPIRE JETP Lett. An alternative to compactification A large mass hierarchy from a small extra dimension ]. Factorizable dual model of pions , IN Phys. Lett. ]. [ hep-ph/9905221 , hep-ph/9807344 SPIRE Phenomenology of the production, decay and detection of new Nucl. Phys. [ [ IN A Lagrangian model invariant under supergauge transformations Supergauge transformations in four-dimensions , Phys. Lett. Observation of a new particle in the search for the Standard Model , ][ SPIRE SPIRE ]. IN Observation of a new boson at a mass of IN ]. ][ invariance (1974) 52 ][ p Partial-symmetries of weak interactions SPIRE (1999) 3370 A model of leptons SPIRE Dual theory for free fermions IN Supersymmetry, supergravity and particle physics B 49 (1999) 086004 IN Weak and electromagnetic interactions 83 Supergauge invariant extension of the and a model for the [ collaboration, ]. ]. collaboration, hep-th/9906064 D 59 Pisma Zh. Eksp. Teor. Fiz. [ SPIRE SPIRE arXiv:1207.7214 hep-ph/9804398 IN IN ATLAS with the[ ATLAS detector at the LHC CMS experiment at the LHC Rev. Rev. Lett. 4690 dimensions at a millimeter millimeter to a Fermi[ and superstrings at a TeV cosmology of theories with submillimeter dimensions and TeV scale quantum gravity [ hadronic states associated with supersymmetry (1974) 39 electron and its neutrino [ 438 [ Phys. Lett. and violation of (1971) 452] [ groups and analyticity. Proceedings ofAlmqvist the & eighth Wiksell, Nobel Stockholm, symposium Sweden, (1968), pg. 367 [ J. Wess and B. Zumino, A. Neveu and J.H. Schwarz, D.V. Volkov and V.P. Akulov, J. Wess and B. Zumino, P. Ramond, Yu. A. Golfand and E.P. Likhtman, S.L. Glashow, S. Weinberg, A. Salam, L. Randall and R. Sundrum, L. Randall and R. Sundrum, I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, H.P. Nilles, G.R. Farrar and P. Fayet, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, P. Fayet, [9] [6] [7] [8] [4] [5] [1] [2] [3] [18] [19] [16] [17] [14] [15] [11] [12] [13] [10] References JHEP11(2018)042 114 G 37 ]. pp ] (2015) pp ]. B 526 (2001) Phys. Lett. Nucl. Phys. SPIRE Nuovo Cim. 178 (2016) 302 collisions at , , , IN J. Phys. (2016) 520 87 , ][ pp SPIRE (2016) 026 (1975) 199 IN (1979) 237 03 B 754 ][ Phys. Rev. Lett. 43 B 760 , ]. Phys. Lett. arXiv:0911.5370 , GeV in [ B 155 JHEP (2017) 047 125 , SPIRE 11 IN Phys. Rev. Lett. Phys. Lett. , , ][ Phys. Lett. arXiv:1705.01403 , Fundam. Theor. Phys. [ hep-ph/0106219 , (2010) 1917 JHEP Nucl. Phys. [ , TeV , 181 TeV = 13 Commun. Math. Phys. s , ]. (2017) 279 √ ]. = 13 ]. s arXiv:1303.4571 √ (2002) 056010 – 26 – [ SPIRE ]. ]. Colorful quantum black holes at the LHC B 774 SPIRE IN SPIRE Black holes at the LHC IN ][ IN ]. Combined measurement of the Higgs boson mass in ][ D 65 High-energy colliders as black hole factories: the end of String balls at the LHC and beyond ][ SPIRE Mass without scalars SPIRE IN IN Upper bounds on supersymmetric particle masses ]. ]. ]. ]. (2013) 081 TeV with the ATLAS detector ]. SPIRE ][ collisions at IN Phys. Lett. TeV with the ATLAS and CMS experiments 06 ]. , pp 8 ][ Comput. Phys. Commun. = 13 SPIRE SPIRE SPIRE SPIRE , Search for TeV-scale gravity signatures in high-mass final states with Search for new phenomena in dijet mass and angular distributions Search for strong gravity in multijet final states produced in s Phys. Rev. SPIRE IN IN IN IN , TeV TeV using the ATLAS detector at the LHC √ IN and Search for black holes in high-multiplicity final states in proton-proton Measurements of properties of the Higgs boson decaying into the Observation of a new boson with mass near SPIRE ][ ][ ][ ][ collaborations, JHEP (1976) 206] [ arXiv:0806.4605 IN , [ [ = 13 = 13 = 7 Monte Carlo event generator for black hole production and decay in Quantum black holes with charge, colour and spin at the LHC Particle creation by black holes arXiv:0912.0826 arXiv:1503.07589 Black holes at the 46 s s s Statistical thermodynamics of strong interactions at high-energies [ [ TeV CMS ]. √ √ √ 8 hep-ph/0108060 [ collaboration, collaboration, collaboration, and (1965) 147 [ ]. ]. collisions at hep-ph/0106295 and (2008) 20 (1988) 63 3 [ SPIRE collaboration, collaboration, collaboration, pp IN = 7 [ SPIRE SPIRE s arXiv:1512.01530 arXiv:1512.02586 arXiv:1606.02265 IN Erratum ibid. arXiv:1706.09936 IN [ [ CMS collisions at ATLAS from [ ATLAS collisions at [ ATLAS leptons and jets with the ATLAS detector at Suppl. 267 (2010) 105008 proton-proton collisions [ (2002) 393 [ B 668 161602 short distance physics B 306 [ ATLAS collisions at (2015) 191803 CMS four-lepton final state in CMS √ R. Hagedorn, G. Landsberg, D.M. Gingrich, S. Dimopoulos and R. Emparan, S.W. Hawking, X. Calmet, W. Gong and S.D.H. Hsu, D.M. Gingrich, S. Dimopoulos and G.L. Landsberg, S.B. Giddings and S.D. Thomas, R. Barbieri and G.F. Giudice, S. Dimopoulos and L. Susskind, [36] [37] [34] [35] [32] [33] [30] [31] [27] [28] [29] [25] [26] [23] [24] [21] [22] [20] JHEP11(2018)042 ] , ] 04 99 (2008) C 78 (1976) 8 (2016) (2017) 04 JHEP pp (2015) 37 , 04 of ]. ]. S08004 1 D 96 TeV − JHEP D 92 3 Annals Math. , fb JHEP , SPIRE hep-ph/9803479 , SPIRE 37 = 13 arXiv:1609.02366 [ IN Eur. Phys. J. IN [ s , ][ ][ √ JINST Phys. Rev. (1990) 1 Phys. Rev. Lett. , Phys. Rev. ]. , , (2016) 041 P01020 69 2008 , (1999) 1463 03 12 SPIRE 71 IN ][ JHEP JINST jet clustering algorithm , t arXiv:1805.02786 Front. Phys. arXiv:1703.09986 k [ , [ 2017 , ]. ]. ]. – 27 – TeV with the ATLAS detector The anti- Rev. Mod. Phys. ]. SPIRE (2018) 041 , ]. ]. (2017) 013 IN A saddle point solution in the Weinberg-Salam theory Bloch wave function for the periodic sphaleron potential [ SPIRE SPIRE 11 TeV with the ATLAS detector = 13 arXiv:1706.04965 ]. 07 IN IN ]. [ s SPIRE ]. SPIRE SPIRE ][ ][ √ IN ]. The early universe = 13 IN IN [ SPIRE s JHEP Characteristic forms and geometric invariants ][ ][ JHEP (1990) 1 final states in proton-proton collisions at SPIRE , SPIRE IN √ P10003 , BaryoGEN, a Monte Carlo generator for sphaleron-like transitions IN IN Search for sphalerons in proton-proton collisions ][ SPIRE eµ Search for new phenomena in dijet events using Search for new phenomena in high-mass final states with a photon Search for new phenomena with photon+jet events in proton-proton ][ 12 IN TeV TeV with the ATLAS detector The CMS trigger system The CMS experiment at the CERN LHC Particle-flow reconstruction and global event description with the CMS Search for lepton-flavor violating decays of heavy resonances and Search for new physics with dijet angular distributions in proton-proton ][ B 330 ]. collisions at (1984) 2212 = 13 = 13 pp JINST s s High-energy breakdown of perturbation theory in the electroweak Electroweak baryogenesis Symmetry breaking through Bell-Jackiw anomalies √ √ SPIRE arXiv:1709.10440 arXiv:1802.01122 D 30 IN [ [ [ collaboration, collaboration, collaboration, ]. ]. ]. ]. 2017 arXiv:1505.03690 arXiv:1703.09127 , Nucl. Phys. [ [ collaboration, collaboration, collaboration, collaboration, collaboration, , arXiv:0802.1189 arXiv:1601.03654 [ [ SPIRE SPIRE SPIRE SPIRE IN IN IN IN arXiv:1512.05910 [ CMS detector 063 [ISBN:978-0201626742] [ CMS [ CMS 045005 086 in proton-proton collisions sector (1974) 48 and unsuppressed baryon and lepton number violating processes Phys. Rev. [ CMS quantum black holes to (2018) 073 [ collision data collected at 052004 ATLAS and a jet from (2018) 102 collisions at [ CMS collisions at ATLAS ATLAS M. Cacciari, G.P. Salam and G. Soyez, E.W. Kolb and M.S. Turner, J. Ellis and K. Sakurai, C. Bravo and J. Hauser, S.-S. Chern and J. Simons, S.-H. Henry Tye and S.S.C. Wong, F.R. Klinkhamer and N.S. Manton, M. Trodden, A. Ringwald, G. ’t Hooft, [54] [55] [51] [52] [53] [49] [50] [47] [48] [44] [45] [46] [42] [43] [41] [39] [40] [38] JHEP11(2018)042 D , , JHEP JHEP , , B 770 ] B 743 (2008) 119 collisions TeV TeV (2012) 1896 Phys. Rev. pp , = 7 = 8 ]. s s C 72 B 659 Phys. Lett. √ √ BlackMax: a Phys. Lett. , , SPIRE (2012) 122 ]. (2014) 103 TeV P06005 P08010 IN TeV arXiv:1804.04528 ][ 8 08 [ 10 10 = 8 ]. CMS-PAS-JME-16-003 Phys. Lett. , s , SPIRE B 716 collisions at collisions at Eur. Phys. J. √ IN , ][ pp pp JHEP SPIRE P06015 JINST JINST , IN 13 ][ TeV data collisions at TeV 13 2015 2015 Phys. Lett. , , pp ]. , = 8 arXiv:0904.0979 ]. s CHARYBDIS: a black hole event generator JINST [ TeV TeV √ TeV ]. ]. SPIRE = 8 = 8 ]. IN = 7 – 28 – 2018 SPIRE s s arXiv:1012.3375 ]. , FastJet user manual s ][ [ IN √ √ √ SPIRE SPIRE ][ (2009) 014 TeV IN IN arXiv:1607.03663 SPIRE SPIRE [ ][ ][ IN 10 IN ][ = 13 ]. ]. ][ Pileup subtraction using jet areas s ]. ]. ]. ]. (2011) 434 √ P02014 JHEP , SPIRE SPIRE Search for microscopic black holes and string balls in final states with Search for TeV-scale gravity signatures in final states with leptons 12 SPIRE SPIRE SPIRE SPIRE hep-ph/0307305 IN IN B 697 [ IN IN IN IN Search for stealth supersymmetry in events with jets, either photons or Search for new phenomena in events with high jet multiplicity and low Search for microscopic black hole signatures at the Large Hadron Search for microscopic black holes in Search for microscopic black holes in Performance of the CMS muon detector and muon reconstruction with Jet algorithms performance in Performance of electron reconstruction and selection with the CMS Performance of photon reconstruction and identification with the CMS Jet energy scale and resolution in the CMS experiment in ][ ][ arXiv:0711.3012 ][ ][ ][ ][ [ Phenomenology of production and decay of spinning extra-dimensional black arXiv:1202.6396 arXiv:1303.5338 JINST [ [ arXiv:1608.01224 arXiv:1411.7255 [ [ (2003) 033 Phys. Lett. 2017 collaboration, collaboration, ]. , , 08 collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, collaboration, TeV (2008) 076007 (2013) 178 (2012) 061 8 SPIRE arXiv:1405.4254 arXiv:1204.4646 arXiv:1502.02702 arXiv:0707.1378 IN arXiv:1502.02701 arXiv:1111.6097 ATLAS leptons and jets with the ATLAS detector at CMS leptons and low missing transverse momentum in CMS Collider CMS [ CMS CERN, Geneva, Switzerland, (2017). CMS detector in proton-proton collisions at 77 JHEP holes at hadron colliders CMS missing transverse momentum in(2017) proton-proton collisions 257 at black-hole event generator with rotation, recoil, split branes and brane tension [ (2015) 503 CMS 07 ATLAS and jets with the[ ATLAS detector at 04 CMS detector in proton-proton collisions at [ [ [ [ CMS at CMS proton-proton collisions at C.M. Harris, P. Richardson and B.R. Webber, J.A. Frost et al., D.-C. Dai, G. Starkman, D. Stojkovic, C. Issever, E. Rizvi and J. Tseng, M. Cacciari and G.P. Salam, M. Cacciari, G.P. Salam and G. Soyez, [71] [72] [69] [70] [67] [68] [65] [66] [63] [64] [61] [62] [59] [60] [57] [58] [56] JHEP11(2018)042 ]. J. , p , ]. (2014) SPIRE (2015) Phys. Nucl. (2010) 51 IN , 07 [ , , CERN, , SPIRE 191 IN (2010) 074024 Nucl. Instrum. (2002) 2693 C 70 ][ , JHEP Procedure for the (2013) 2501] , arXiv:1101.0538 (2013) 244 D 82 , (2008) 089905] G 28 C 73 Group, B 867 D 77 data taking period arXiv:1101.0536 Eur. Phys. J. , ]. J. Phys. , Phys. Rev. , ]. , 2016 arXiv:1512.00815 [ SPIRE : a simulation toolkit Parton distributions for the LHC Heavy-quark mass dependence in ATL-PHYS-PUB-2011-011 ]. Erratum ibid. 4 IN SPIRE Nucl. Phys. Comput. Phys. Commun. [ , IN ][ technique Erratum ibid. 2, ][ [ . s 2011, Asymptotic formulae for likelihood-based 8 SPIRE IN CL (2016) 155 GEANT ][ (2011) 1554 from contingency tables, and the calculation of – 29 – C 76 2 LHC Higgs Combination χ (2005) 104028 hep-ex/9902006 C 71 ]. [ -flavour parton distributions ]. ]. 4 arXiv:0901.0002 Improved analysis of black hole formation in high-energy [ . D 71 ]. ]. ]. ]. LHC working group interim report SPIRE ]. 4 arXiv:0802.0007 SPIRE SPIRE LHC working group interim recommendations - and IN Eur. Phys. J. 4 3 [ IN IN [ , (1999) 435 , CERN, Geneva, Switzerland, (2017). ][ ][ SPIRE SPIRE SPIRE SPIRE Implications of CTEQ global analysis for collider observables (1922) 87 SPIRE Eur. Phys. J. IN IN IN IN CMS luminosity measurements for the Event generator tunes obtained from underlying event and multiparton (2009) 189 An introduction to PYTHIA , IN Phys. Rev. ][ ][ ][ ][ 85 The PDF ][ , Parton distributions with LHC data New parton distributions for collider physics The automated computation of tree-level and next-to-leading order The PDF collaborations and the A 434 C 63 (2003) 250 On the interpretation of Presentation of search results: the (2008) 013004 collaboration, S. Agostinelli et al., Confidence level computation for combining searches with small statistics ]. ]. A 506 collaboration, collaboration, D 78 arXiv:1405.0301 arXiv:1410.3012 [ [ SPIRE SPIRE arXiv:1007.1727 IN IN arXiv:1007.2624 arXiv:1207.1303 arXiv:1007.2241 hep-th/0503171 tests of new physics [ Instrum. Meth. [ ATLAS, CMS LHC Higgs boson search combinationGeneva, in Switzerland, (2011) Summer [CMS-NOTE-2011-005]. Rev. CMS CMS-PAS-LUM-17-001 Roy. Statist. Soc. [ CMS scattering measurements GEANT4 Meth. differential cross sections and their079 matching to parton shower simulations 159 [ [ [ particle collisions [ Eur. Phys. J. global PDF analyses and G. Cowan, K. Cranmer, E. Gross and O. Vitells, A.L. Read, P.M. Nadolsky et al., T. Junk, S. Alekhin et al., M. Botje et al., R.A. Fisher, J. Alwall et al., T. Sj¨ostrandet al., H.-L. Lai et al., R.D. Ball et al., A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, H. Yoshino and V.S. Rychkov, [90] [88] [89] [85] [86] [87] [83] [84] [80] [81] [82] [78] [79] [77] [76] [74] [75] [73] JHEP11(2018)042 , 1 , E. Coelho, E.M. Da Costa, 3 , D. Poyraz, C. Roskas, D. Trocino, 2 , V.M. Ghete, J. Hrubec, M. Jeitler 1 – 30 – , M. Zarucki 1 , F. Torres Da Silva De Araujo, A. Vilela Pereira 3 , D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, 4 , R. Sch¨ofbeck, M. Spanring, D. Spitzbart, A. Taurok, W. Waltenberger, 1 E. Belchior Batista Das Chagas,G.G. W. Da Carvalho, Silveira J. Chinellato H. Malbouisson, D. Matos Figueiredo,H. M. Nogima, Melo De W.L. Almeida, Prado C. DaE.J. Mora Silva, Tonelli Herrera, L.J. Manganote L. Sanchez Mundim, Rosas, A. Santoro, A. Sznajder, M. Thiel, A. Mertens, M. Musich, K. Piotrzkowski, A.Centro Saggio, Brasileiro M. de Vidal Pesquisas Marono,F.L. Fisicas, S. Alves, Rio Wertz, J. G.A. de Zobec Alves, Janeiro,A. L. Brazil Moraes, Brito, M.E. M. Pol, Correa P. Martins RebelloUniversidade Junior, Teles do G. Estado Correia do Silva, C. Rio Hensel, de Janeiro, Rio de Janeiro, Brazil M. Tytgat, W. Verbeke, B. Vermassen, M.Universit´eCatholique de Vit, Louvain, N. Louvain-la-Neuve, Zaganidis Belgium H. Bakhshiansohi, O.M. Bondu, S. Delcourt, Brochet, B. G. Francois, Bruno, A. C. Caputo, Giammanco, P. G. David, C. Krintiras, Delaere, V. Lemaitre, A. Magitteri, D. Beghin, B. Bilin,G. H. Fasanella, Brun, L. B. Favart,N. R. Clerbaux, Postiau, Goldouzian, G. E. A. Starling, De L. Grebenyuk, Lentdecker, Thomas, H. A.K.Ghent C. Delannoy, University, Kalsi, Vander Ghent, B. Velde, T. P. Belgium Dorney, Vanlaer, Lenzi, D.T. J. Cornelis, Vannerom, D. Q. Luetic, Dobur, Wang A. Fagot, M. Gul, I. Khvastunov Vrije Universiteit Brussel, Brussel, Belgium S. Abu Zeid, F. Blekman,D. J. Lontkovskyi, S. D’Hondt, Lowette, I. I. Marchesini, De S.S. Bruyn, Moortgat, J. Tavernier, L. W. De Moreels, Van Clercq, Q. Doninck, Python, K. P. K. Deroover, Van Skovpen, G.Universit´eLibre Mulders, de Flouris, I. Bruxelles, Van Bruxelles, Parijs Belgium V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium E.A. De Wolf, D.H. Van Di Haevermaet, Croce, P. Van X. Mechelen, N. Janssen, Van J. Remortel Lauwers, M. Pieters, M. Van De Klundert, A. Escalante Del Valle,N. M. Krammer, Flechl, I. R. D.J. Kr¨atschmer, Fr¨uhwirth Liko, Schieck T. Madlener,J. Wittmann, I. C.-E. Mikulec, Wulz N. Rad,Institute for H. Nuclear Rohringer, Problems, Minsk, Belarus Yerevan Physics Institute, Yerevan, Armenia A.M. Sirunyan, A. Tumasyan Institut f¨urHochenergiephysik, Wien, Austria W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, M. Dragicevic, J. Er¨o, The CMS collaboration JHEP11(2018)042 , b , S˜aoPaulo, b , E.M. Gregores a b , T. Susa 7 , D. Romero Abad a – 31 – , T.R. Fernandez Perez Tomei a , A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, 6 , Universidade Federal do ABC a , SandraS. Padula a , L. Calligaris a 8 , L. Yuan 5 , S.F. Novaes b , M. Finger Jr. 8 , C.A. Bernardes , X. Gao 5 a University of Cyprus, Nicosia, Cyprus M.W. Ather, A.F. Ptochos, Attikis, P.A. Razis, M. H. Rykaczewski Kolosova,Charles G. University, Prague, Mavromanolakis, Czech Republic J.M. Finger Mousa, C. Nicolaou, University of Split, Faculty ofZ. Science, Antunovic, Split, M. Kovac Croatia Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov C.F. Gonz´alezHern´andez,M.A. Segura Delgado University of Split, Facultyand of Naval Electrical Architecture, Engineering, Split, Mechanical Croatia B. Engineering Courbon, N. Godinovic, D. Lelas, I. Puljak, T. Sculac Tsinghua University, Beijing, China Y. Wang Universidad de Los Andes, Bogota,C. Colombia Avila, A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, H. Liao, Z. Liu, F. Romeo,H. S.M. Shaheen Zhang, J. Zhao State Key Laboratory ofBeijing, Nuclear China Physics andY. Technology, Peking Ban, G. University, Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang, Z. Xu Beihang University, Beijing, China W. Fang Institute of High EnergyM. Physics, Ahmad, Beijing, J.G. China Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, A. Aleksandrov, R.M. Shopova, Hadjiiska, G. Sultanov P. Iaydjiev,University of A. Sofia, Sofia, Marinov, Bulgaria A. M. Dimitrov, L. Misheva, Litov, B. Pavlov, M. P. Petkov Rodozov, Brazil S. Ahuja P.G. Mercadante Institute for NuclearSciences, Research Sofia, Bulgaria and Nuclear Energy, Bulgarian Academy of Universidade Estadual Paulista JHEP11(2018)042 – 32 – 11 ¨ O. Sahin, M. Titov , S. Khalil , D. Gel´e,U. Goerlach, M. Jansov´a,A.-C. Le Bihan, N. Tonon, 10 13 , C. Amendola, I. Antropov, F. Beaudette, P. Busson, C. Charlot, 12 , J. Andrea, D. Bloch, J.-M. Brom, E.C. Chabert, V. Cherepanov, C. Collard, , S. Elgammal 13 10 , , J.-C. Fontaine 9 13 E. Conte P. Van Hove Centre de Calcul dedes l’Institut Particules, National CNRS/IN2P3, de Villeurbanne, Physique France S. Nucleaire Gadrat et de Physique A. Zabi, A. Zghiche Universit´e de Strasbourg,France CNRS, IPHC UMRJ.-L. Agram 7178, F-67000 Strasbourg, Laboratoire Leprince-Ringuet, Ecole polytechnique,Paris-Saclay, CNRS/IN2P3, Palaiseau, Universit´e France A. Abdulsalam R. Granier de Cassagnac, I.C. Kucher, S. Ochando, Lisniak, G. A. Ortona, Lobanov, P. J. Pigard, Martin Blanco, R. M. Salerno, Nguyen, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, IRFU, CEA, Universit´eParis-Saclay, Gif-sur-Yvette, France M. Besancon, F.A. Couderc, Givernaud, P. M. Gras, G. Dejardin, HamelG. de D. Monchenault, Negro, P. J. Jarry, Denegri, C. Rander, Leloup, J.L. A. E. Rosowsky, Locci, Faure, M. J. F. Malcles, Ferri, S. Ganjour, J. Havukainen, J.K.K. Heikkil¨a, Lassila-Perini, T. S. J¨arvinen, V. Laurila,E. S. Tuominen, Karim¨aki, R. J. Lehti, Tuominiemi Kinnunen, T. Lind´en,P. T. Luukka, Siikonen, Lappeenranta T. Lamp´en, University M¨aenp¨a¨a,H. of Technology, Lappeenranta,T. Finland Tuuva M. Raidal, C. Veelken Department of Physics, University ofP. Helsinki, Eerola, H. Helsinki, Kirschenmann, Finland J. Pekkanen, M.Helsinki Voutilainen Institute of Physics, Helsinki, Finland Egyptian Network of High EnergyY. Physics, Assran Cairo, Egypt National Institute of Chemical PhysicsS. and Bhowmik, A. Biophysics, Carvalho Tallinn, Antunes Estonia De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, E. Ayala Universidad San Francisco de Quito,E. Quito, Carrera Ecuador Jarrin Academy of Scientific Research and Technology of the Arab Republic of Egypt, Escuela Politecnica Nacional, Quito, Ecuador JHEP11(2018)042 , 16 14 15 – 33 – , A. Geiser, J.M. Grados Luyando, A. Grohsjean, 17 8 , R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, M. Meyer, M. Missiroli, 8 18 , V. Sordini, M. Vander Donckt, S. Viret, S. Zhang 14 University of Hamburg, Hamburg, Germany R. Aggleton, S. Bein,E. Garutti, L. D. Benato, Gonzalez, J. A.R. Haller, A. Benecke, Kogler, Hinzmann, V. A. N. Blobel, Karavdina,M. G. Kovalchuk, M. Niedziela, Kasieczka, R. S. D. Centis Klanner, Nowatschin, Vignali, Kurz, A. T. Perieanu, V. A. Dreyer, Kutzner, Reimers, O. J. Rieger, C. Lange, Scharf, D. P. Schleper, Marconi, J. Multhaup, W. Lohmann G. Mittag, J. Mnich,P. V. Saxena, Myronenko, S.K. P. Pflitsch,H. D. Sch¨utze, Tholen, C. Pitzl, O. Schwanenberger, A. Turkot, A.C. Raspereza, R. Vagnerini, Wissing, M. G.P. O. Shevchenko, Van Savitskyi, Zenaiev Onsem, A. R. Walsh, Singh, Y. Wen, N. K. Wichmann, Stefaniuk, V. Botta, A.A. Campbell, De Wit, P. M.M. Defranchis, Connor, C.horn, Diez C. Pardos, A. D. Contreras-Campana, Dom´ınguezDamiani, G. Elwood, Eckerlin, T. F.P. E. Eich- Eren, Gunnellini, Costanza, E. V. M. Gallo J. Danilov, Guthoff, Keaveney, C. M. Kleinwort, J. Haranko, Knolle, D. A. W. Kr¨ucker, Lange, Harb, A. Lelek, J. T. Hauk, Lenz, K. H. Lipka, Jung, M. Kasemann, G. Fl¨ugge,O. Hlushchenko, B.A. Kargoll, Nowack, T. C. Pistone, Kress, O. A. Pooth, T. K¨unsken, H.Deutsches M¨uller,A. Sert, Elektronen-Synchrotron, Nehrkorn, A. Hamburg, Stahl Germany M. Aldaya Martin,O. Behnke, T. U. Behrens, Arndt, A. Mart´ınez,D. Bertsche, Berm´udez A.A. C. Bin Anuar, Asawatangtrakuldee, K. Borras I. Babounikau, K. Beernaert, T. Hebbeker, C.M. Heidemann, Merschmeyer, A. K. Meyer,M. Hoepfner, P. Rieger, Millet, F. H. Scheuch, S. A. Keller, Mukherjee, Schmidt, S. D. T.RWTH Aachen Teyssier Pook, Knutzen, University, M. III. L. Radziej, Physikalisches Institut Mastrolorenzo, H. B, Reithler, Aachen, Germany RWTH Aachen University, I. Physikalisches Institut,C. Aachen, Autermann, Germany L.C. Feld, Schomakers, M.K. J. Kiesel, Schulz, M. K. Teroerde, B. Klein,RWTH Wittmer, Aachen M. V. University, III. Lipinski, Zhukov Physikalisches M.A. Institut Albert, Preuten, A, D. Aachen, M.P. Duchardt, Germany Rauch, M. Endres, M. Erdmann, T. Esch, R. Fischer, S. Ghosh, A. G¨uth, Georgian Technical University, Tbilisi, Georgia A. Khvedelidze Tbilisi State University, Tbilisi, Georgia Z. Tsamalaidze de Physique Nucl´eairede Lyon, Villeurbanne,S. France Beauceron, C. Bernet,H. G. El Mamouni, Boudoul, J. N. Fay, L. Chanon, Finco,I.B. S. R. Gascon, Laktineh, Chierici, M. Gouzevitch, D. G. H.A. Grenier, Contardo, Popov B. Lattaud, P. Ille, Depasse, F. Lagarde, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, Universit´ede Lyon, Universit´eClaude Bernard Lyon 1, CNRS-IN2P3, Institut JHEP11(2018)042 , S.K. Swain 22 , S. Kudella, H. Mild- 14 ´ A. V´ami,V. Veszpremi, , D.K. Sahoo , I. Katkov 23 15 – 34 – ´ A. Hunyadi, F. Sikler, T. , 20 , A. Makovec, J. Molnar, Z. Szillasi 21 † , C. Kar, P. Mal, K. Mandal, A. Nayak , S.M. Heindl, U. Husemann, F. Kassel 22 15 , M. Csanad, N. Filipovic, P. Major, M.I. Nagy, G. Pasztor, O. Sur´anyi, 19 Indian Institute of ScienceS. (IISc), Choudhury, Bangalore, J.R. India Komaragiri, P.C. Tiwari National Institute ofIndia Science Education and Research,S. Bahinipati HBNI, Bhubaneswar, Institute of Nuclear Research ATOMKI,N. Debrecen, Beni, Hungary S. Czellar, J. Karancsi Institute of Physics, University ofP. Raics, Debrecen, Z.L. Debrecen, Trocsanyi, Hungary B. Ujvari G.I. Veres Wigner Research Centre for Physics,G. Budapest, Bencze, Hungary C.G. Hajdu, Vesztergombi D. Horvath I. Evangelou, C. Foudas,I. P. Papadopoulos, Gianneios, E. P. Paradas, Katsoulis, J. P. Strologas, Kokkas,MTA-ELTE F.A. Particle Lend¨uletCMS S. and Triantis, Nuclear D. Mallios, Physics Tsitsonis Group, N. E¨otv¨osLor´and University, Manthos, Budapest, Hungary M. Bart´ok K. Vellidis National Technical University of Athens,K. Athens, Kousouris, Greece I. Papakrivopoulos, G. Tsipolitis University of Io´annina,Io´annina,Greece G. Anagnostou, G. Daskalakis, T.Giotis Geralis, A. Kyriakis, D. Loukas, G. Paspalaki,National I. Topsis- and Kapodistrian UniversityG. of Karathanasis, Athens, S. Athens, Kesisoglou, Greece P. Kontaxakis, A. Panagiotou, N. Saoulidou, E. Tziaferi, ner, S. Mitra, M.U.I. Mozer, Th. Shvetsov, M¨uller,M. Plagge, G.S. G. Williamson, Sieber, Quast, C. K. W¨ohrmann,R. H.J. Wolf Rabbertz, M. Simonis, Schr¨oder, Institute R. of Nuclear Ulrich,Paraskevi, and S. Greece Particle Wayand, Physics (INPP), M. NCSR Weber, Demokritos, T. Aghia Weiler, D. Troendle, A. Vanhoefer, B. Vormwald Institut f¨urExperimentelle Teilchenphysik, Karlsruhe, Germany M. Akbiyik, C. Barth, M.W. Baselga, S. De Baur, E. Boer, Butz,F. R. A. Hartmann Caspart, T. Dierlamm, Chwalek, F. N. Colombo, Faltermann, B. Freund, M. Giffels, M.A. Harrendorf, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, F.M. G. Stober, Steinbr¨uck, M. St¨over, JHEP11(2018)042 , , , , , , , , , a a a 24 a,b a,b a,b a,b a,b 24 , S. My , C. Ciocca a,b , Bari, Italy , A. Gelmi c a,b a 25 , P. Giacomelli , G. Selvaggi , A. Montanari a a a,b , L. Cristella a,c , L. Fiore a , G. Miniello , S. Braibant-Giacomelli a,b a , M. Zeinali , S.S. Chhibra a,b a , Bologna, Italy , A. Fanfani , A. Ranieri 27 b a , G. Masetti a a , G. Zito , M. Khakzad, M. Mohammadi Na- a 26 , D. Creanza , F. Errico a , Politecnico di Bari b , M. Maggi a,b , F. Fabbri a,c a , F.R. Cavallo , L. Borgonovi , R. Radogna a,b a,b , S. Marcellini – 35 – a,c , P. Verwilligen a,b a , G. Maggi , A. Colaleo , A. Di Florio a,b a,b , A. Castro a,b , S. Dutta, S. Ghosh, K. Mondal, S. Nandan, A. Purohit, , Universit`adi Bologna a , G.M. Dallavalle a,b 24 , D. Bonacorsi , F. Iemmi a,b , G. Pugliese , Universit`adi Bari a,b , R. Venditti a a,b a,b a , S. Lezki , G. Majumder, K. Mazumdar, N. Sahoo, T. Sarkar a,b 25 , C. Calabria , M. De Palma , P. Capiluppi , M. Bharti, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep , M. Cuffiani a,b , E. Eskandari Tadavani, S.M. Etesami a,c a,b 24 , C. Battilana 26 a,b a , A. Pompili , L. Silvestris , M. Ince , L. Guiducci a a a,b a,c INFN Sezione di Bologna G. Abbiendi R. Campanini G. Codispoti C. Grandi M. Abbrescia N. De Filippis G. Iaselli S. Nuzzo A. Sharma jafabadi, M. Naseri, F. Rezaei Hosseinabadi,University B. College Safarzadeh Dublin, Dublin,M. Ireland Felcini, M. Grunewald INFN Sezione di Bari S. Kumar, M. Maity Indian Institute of ScienceS. Education Chauhan, and S. Research Dube, (IISER), V. Pune, Hegde,Institute A. India for Kapoor, Research K. Kothekar, in S.S. Fundamental Pandey, Chenarani Sciences A. (IPM), Rane, Tehran, S. Iran Sharma Tata Institute of Fundamental Research-A,T. Mumbai, Aziz, India M.A. Bhat, S. Dugad,Tata G.B. Institute Mohanty, N. of Sur, Fundamental B. Research-B,S. Sutar, Mumbai, Banerjee, RavindraKumar India S. Verma Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Karmakar, Indian Institute of Technology Madras,P.K. Behera Madras, India Bhabha Atomic Research Centre, Mumbai,R. India Chudasama, D. Dutta, V. Jha, V. Kumar, P.K. Netrakanti, L.M. Pant, P. Shukla M. Naimuddin, P. Priyanka, K. Ranjan, AashaqSaha Shah, Institute R. of Sharma NuclearR. Physics, HBNI, Bhardwaj Kolkata, India D. Bhowmik, S. Dey,P.K. S. Rout, Dutt A. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, B. Singh, S. Thakur S. Bansal, S.B.A. Beri, Kaur, V. A. Bhatnagar,K. Kaur, Sandeep, S. S. M. Chauhan, Sharma, Kaur, J.B. R. Singh, S.University G. Chawla, of Walia Kaur, N. Delhi, R. Delhi, Dhingra,A. India Kumar, Bhardwaj, R. B.C. P. Gupta, Choudhary, R.B. Kumari, Garg, M. M. Gola, S. Lohan, Keshri, Ashok A. Kumar, S. Mehta, Malhotra, Panjab University, Chandigarh, India JHEP11(2018)042 , , , , , , , , , , , , , , , a a a a 15 a,b a,b a,b a,b a,b a,b a,b a,b a,b a,b a,d, , Roma, d , Milano, b , L. Fan`o , D. Strom a,b , G. Galati a a , D. Pedrini a,b , E. Focardi , C. Sciacca , M. Menichelli , R. Rossin a,b , T. Rovelli , M. Malberti , Napoli, Italy, a,b 15 b , U. Gasparini a,b a, a,b , M. Ressegotti a,b a,b , S. Di Guida a a,b 15 a,b , A.T. Meneguzzo a,b, , F. Fienga , G. Zumerle a,b a,c , G. Sguazzoni a,b , V. Re 28 , D. Ciangottini , Catania, Italy a,b , Perugia, Italy a, , V. Mariani , P. Govoni b , Firenze, Italy , Genova, Italy , C. Tuve , M. Paganoni b a,b , P. Paolucci b b a , Padova, Italy, Universit`adi a,b a,b b a,b 15 , A.M. Rossi , R. D’Alessandro , P. Ronchese , A. Bragagnolo, M. Dall’Osso a , Pavia, Italy 15 , F. Gasparini , V. Ciriolo b a a,d, a,b , P. Zotto a,b a,b a,b, , F. Fabozzi a,b , L. Russo a,b a , C. Cecchi , S.P. Ratti a a,b , L. Moroni , A. Ghezzi a,b a,b a , A. Tricomi a , C. Civinini – 36 – , S. Meola , G. Mantovani a,b , Universit`adi Milano-Bicocca a a , F. Brivio a , A. Boletti a,b , U. Dosselli a a , M. Zanetti a,b a,b a , S. Tosi , S. Paoletti , N. Pozzobon , P. Vitulo a a a,b , G.M. Bilei , P. Lujan, M. Margoni , F. Primavera a,b a,b a a , Potenza, Italy, Universit`aG. Marconi a,b , S. Gennai c , Universit`adi Catania , Universit`adi Perugia , Universit`adi Firenze , Universit`adi Genova , L. Lista , Universit`adi Napoli ‘Federico II’ , D. Menasce a , A. Di Crescenzo , Universit`adi Padova , V. Ciulli a a a a a,b a , P. Montagna a , D. Spiga , E. Manoni , R. Potenza , Universit`adi Pavia a a,b a a,c a,b a a,b a,b , I. Vai , T. Dorigo , L. Brianza , D. Bisello a a b a , E. Robutti a , M. Meschini , M. Biasini a,b , J. Pazzini a,b a a,b , A. Perrotta , S. Fiorendi , W.A. Khan , A. Tiko, E. Torassa , N. Cavallo , S. Lacaprara a,b a a a,b , P. Salvini , A. Magnani a,b a,b , A. Di Mattia , R. Leonardi a,b , A. Beschi , T. Tabarelli de Fatis , N. Tosi a , A. Massironi , K. Chatterjee a a a a,b , A. Santocchia a,b a,b a,b a,b a , Trento, Italy , F. Ravera , N. Bacchetta c a,b a a C. Riccardi INFN Sezione di Perugia L. Alunni Solestizi P. Lariccia A. Rossi F. Montecassiano F. Simonetto INFN Sezione di Pavia A. Braghieri INFN Sezione di Padova Trento P. Azzi P. De CastroA. Manzano Gozzelino Universit`adella Basilicata Italy S. Buontempo A.O.M. Iorio E. Voevodina A. Benaglia M.E. Dinardo S. Malvezzi S. Ragazzi INFN Sezione di Napoli INFN Sezione di Genova F. Ferro INFN Sezione diItaly Milano-Bicocca G. Barbagli G. Latino, P. Lenzi L. Viliani INFN Laboratori Nazionali diL. Frascati, Benussi, Frascati, Italy S. Bianco, F. Fabbri, D. Piccolo G.P. Siroli INFN Sezione di Catania S. Albergo INFN Sezione di Firenze F.L. Navarria JHEP11(2018)042 , , , , , , , , , , a a a a a,b a,b a,b a,b a,b a,b a,b , V. Sola a , A. Giassi , F. Palla a,b , R. Bellan a,c a,b , L. Borrello, a a , F. Vazzoler , M. Pelliccioni , V. Monaco a , G. Organtini a,b , R. Covarelli , E. Di Marco a a,b , F. Santanastasio a,b a,b a , P.G. Verdini , Rome, Italy b a , K. Shchelina , L. Giannini , N. Bartosik , A. Messineo a,b , T. Boccali a,c a,c a , N. Pastrone a,c , C. Rovelli , Trieste, Italy a,b , E. Migliore , Torino, Italy, Universit`adel b , P. Meridiani , D. Del Re , G. Della Ricca b a,b a a a a,b , A. Venturi , F. Fiori a a,b , R. Sacchi , Scuola Normale Superiore di Pisa b a,c , M. Arneodo , L. Pacher , N. Daci , G. Mandorli , L. Bianchini a,b a,b a , S. Maselli , S. Rahatlou a,b , G. Fedi , S. Cometti, M. Costa , F. Cossutti – 37 – a,c a a a a,b a,b , G. Tonelli , B. Marzocchi a , M. Ruspa a,b a,b a , S. Argiro a,c , Universit`adi Trieste , E. Manca , Universit`adi Torino , G. Bagliesi a , Sapienza Universit`adi Roma , F. Preiato a , M. Cipriani , M. Casarsa a a , R. Dell’Orso , M.M. Obertino a,c , C. Mariotti a , F. Cenna , Universit`adi Pisa a a,b a,b a a a,b , R. Tenchini a,b , E. Longo , Novara, Italy a c , A. Romero a,b a,b , R. Arcidiacono , P. Azzurri , F. Ligabue a , B. Kiani a , M. Monteno , F. Cavallari a,b , S. Gelli a , D. Soldi, A. Staiano , M.A. Ciocci , R. Paramatti , V. Candelise a a a , P. Spagnolo a a,b a,b a , N. Cartiglia a,b a , T.J. Kim a,b 29 , Pisa, Italy Seoul National University, Seoul, Korea J. Almond, J. Kim,S.h. Seo, J.S. U.K. Kim, Yang, H. H.D. Yoo, Lee,University G.B. K. of Yu Lee, Seoul, Seoul, K.D. Korea Nam, Jeon, S.B. H. Oh, Kim, J.H. B.C. Kim, Radburn-Smith, J.S.H. Lee, I.C. Park S. Cho, S. Choi, Y.S.K. Go, Park, D. Y. Gyun, Roh S. Ha,Sejong B. Hong, University, Seoul, Y. Jo, Korea K.H.S. Lee, Kim K.S. Lee, S. Lee, J. Lim, Kwangju, Korea H. Kim, D.H. Moon, G. Oh Hanyang University, Seoul, Korea J. Goh Korea University, Seoul, Korea Kyungpook National University D.H. Kim, G.N. Kim, M.S.D.C. Kim, J. Son, Lee, Y.C. S. Yang Lee, S.W. Lee,Chonnam C.S. National Moon, University, Institute Y.D. for Oh, Universe S. and Sekmen, Elementary Particles, G.L. Pinna Angioni A. Solano INFN Sezione di Trieste S. Belforte A. Zanetti Piemonte Orientale N. Amapane C. Biino N. Demaria E. Monteil INFN Sezione di Roma L. Barone M. Diemoz F. Pandolfi INFN Sezione di Torino K. Androsov R. Castaldi M.T. Grippo A. Rizzi INFN Sezione di Pisa c JHEP11(2018)042 , W.A.T. Wan Abdullah, 31 , F. Mohamad Idris – 38 – 30 , K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, 33 , R.I. Rabadan-Trejo, R. Lopez-Fernandez, J. Mejia Guisao, 32 M. Szleper, P. Traczyk, P. Zalewski Institute of Experimental Physics,Warsaw, Poland Faculty of Physics,K. University of Bunkowski, Warsaw, A.M. Byszuk Misiura, M. Olszewski, A. Pyskir, M. Walczak A. Ahmad, M. Ahmad,M. M.I. Shoaib, Asghar, M. Q. Waqas Hassan, H.R. Hoorani,National A. Centre Saddique, for M.A. Nuclear Shah, Research,H. Swierk, Bialkowska, Poland M. Bluj, B. Boimska, T. Frueboes, M. G´orski,M. Kazana, K. Nawrocki, D. Krofcheck University of Canterbury, Christchurch, NewS. Zealand Bheesette, P.H. Butler National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen,Universidad C. Aut´onomade Uribe San Estrada Luis Potos´ı,San LuisA. Potos´ı,Mexico Morelos Pineda University of Auckland, Auckland, New Zealand Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, F.Benemerita Vazquez Universidad Valencia Autonoma de Puebla, Puebla, Mexico A. Castaneda Hernandez, J.A. Murillo Quijada Centro de Investigacion y de Estudios AvanzadosM.C. del IPN, Duran-Osuna, Mexico City, H. Mexico I. Castilla-Valdez, Heredia-De E. LaR De Cruz Reyes-Almanza, A. La Sanchez-Hernandez Cruz-Burelo, G. Ramirez-Sanchez, Malaysia I. Ahmed, Z.A. Ibrahim,M.N. M.A.B. Yusli, Md Z. Ali Zolkapli Universidad de Sonora (UNISON), Hermosillo, Mexico Y. Choi, C. Hwang, J. Lee, I.Vilnius Yu University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Sungkyunkwan University, Suwon, Korea JHEP11(2018)042 , E. Tarkovskii 40 38 , P. Moisenz, V. Palichik, 35 , 34 , S.V. Rusakov, A. Terkulov , Y. Skovpen 35 40 , P. Levchenko, V. Murzin, V. Ore- 37 , L. Dudko, A. Ershov, A. Gribushin, 39 , D. Shtol 40 – 39 – , M. Kirakosyan 35 , E. Kuznetsova 36 , P. Parygin, D. Philippov, S. Polikarpov , I. Dremin , L. Kardapoltsev 38 35 40 , M. Danilov , T. Dimova 38 40 State Research Center of Russian Federation,of Institute NRC for High ‘Kurchatov Energy Institute’, Physics Protvino,I. Azhgirey, Russia I. Bayshev, S. Bitioukov,D. D. Konstantinov, Elumakhov, A. P. Mandrik, Godizov, V. V. Kachanov,N. Petrov, A. R. Tyurin, Kalinin, Ryutin, A. S. Uzunian, Slabospitskii, A. A. Volkov Sobol, S. Troshin, V. Klyukhin, O. Kodolova, I. Lokhtin,A. I. Snigirev Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, Novosibirsk State University (NSU), Novosibirsk,V. Russia Blinov P.N. Lebedev Physical Institute, Moscow,V. Russia Andreev, M. Azarkin Skobeltsyn Institute of NuclearMoscow, Physics, Russia Lomonosov Moscow State University, A. Baskakov, A. Belyaev, E. Boos, M. Dubinin T. Aushev National Research Nuclear University(MEPhI), ‘Moscow Engineering Moscow, Physics Russia Institute’ R. Chistov Institute for Theoretical and ExperimentalV. Physics, Epshteyn, Moscow, Russia V.A. Gavrilov, Spiridonov, A. N. Stepennov, V. Lychkovskaya, Stolin, V. M.Moscow Toms, Institute Popov, E. of Vlasov, I. Physics A. and Pozdnyakov, Zhokin Technology, G. Moscow, Russia Safronov, V. Golovtsov, Y. Ivanov,shkin, V. I. Kim Smirnov, D. Sosnov, V. Sulimov,Institute L. for Uvarov, Nuclear S. Research, Vavilov, A. Moscow,Yu. Vorobyev Russia Andreev, A.N. Krasnikov, Dermenev, A. Pashenkov, S. D. Tlisov, Gninenko, A. Toropin N. Golubev, A. Karneyeu, M. Kirsanov, S. Afanasiev, V. Alexakhin,bounov, P. V. Bunin, Karjavin, M. A.V. Gavrilenko, Lanev, Perelygin, A. A. M. Golunov, Savina, Malakhov, I. S. V. Shmatov, Golutvin, Matveev V.Petersburg N. Smirnov, Nuclear Gor- N. Physics Voytishin, Institute, A. Zarubin Gatchina (St. Petersburg), Russia Portugal P. Bargassa, C.M. Beir˜aoDa Gallinaro, Cruz J.G. E Hollar, Strong, Silva, N. O. Toldaiev, Leonardo, A. D. L. Vadruccio, Di J.Joint Lloret Varela Francesco, Institute Iglesias, P. for M.V. Nuclear Faccioli, Research, Nemallapudi, B. Dubna, J. Russia Galinhas, Seixas, Laborat´oriode F´ısicaExperimental Instrumenta¸c˜aoe de Lisboa, Part´ıculas, JHEP11(2018)042 , C. Lange, , A. Stakia, 1 45 , M. Rovere, H. Sakulin, 44 , W.D. Zeuner 46 – 40 – , D. Fasanella, G. Franzoni, J. Fulcher, W. Funk, 42 , J. Kieseler, A. Kornmayer, M. Krammer 18 , F. Moortgat, M. Mulders, J. Ngadiuba, S. Orfanelli, L. Orsini, 43 ´ Alvarez Fern´andez,I. Bachiller, M. Barrio Luna, J.A. Brochero Ci- , L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, 15 , P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic 41 E. Meschi, P. Milenovic F. Pantaleo M. Pierini, F.M. Pitters, D. Rabady,C. A. Schwick, Sch¨afer,C. Racz, M. T. Seidel, Reis, M. G. Selvaggi, Rolandi J. A. Sharma, Steggemann, P. M. Silva, P. Tosi, Sphicas D. Treille, A. Tsirou, V. Veckalns E. Chapon, Y. Chen,A. G. De Cucciati, Roeck, D.Peisert, N. d’Enterria, P. Deelen, A. Everaerts, Dabrowski, M. F.D. V. Dobson, Fallavollita Gigi, Daponte, A. T. Gilbert, A. K. duA. David, Gill, Jafari, Pree, F. P. Glege, Janot, M. M. O. Guilbaud, D¨unser,N.P. Karacheban D. Gulhan, Dupont, Lecoq, J. A. Hegeman, C. V. Elliott- Innocente, Louren¸co, L. Malgeri, M. Mannelli, F. Meijers, J.A. Merlin, S. Mersi, lar Cortabitarte CERN, European Organization for NuclearD. Research, Abbaneo, Geneva, Switzerland B.M. Akgun, Bianco, A. E. Bocci, Auffray, C. Botta, P. E. Baillon, Brondolin, A.H. T. Camporesi, Ball, M. D. Cepeda, G. Barney, Cerminara, J. Bendavid, Santander, Spain I.J. Cabrillo, A.P.J. Fern´andezManteca, A. Calderon, Garc´ıaAlonso, J. B. Garcia-Ferrero,J. G. Chazin Marco, Gomez, C. A. Quero, Martinez Lopez Rivero,C. Virto, J. P. Martinez Prieels, Duarte Ruiz del T. Campderros, Arbol, Rodrigo, F. M. Matorras, A. J. Fernandez, Piedra Ruiz-Jimeno, Gomez, L. Scodellaro, N. Trevisani, I. Vila, R. Vi- Universidad de Oviedo, Oviedo, Spain J. Cuevas, C.J.R. Gonz´alezFern´andez,E. Erice, Palencia Cortezon, J.P. V. Vischia, J.M. Rodr´ıguezBouza, Fernandez Vizan S. Menendez, Garcia Sanchez Cruz, S.Instituto Folgueras, de I. F´ısica de Gonzalez Cantabria Caballero, (IFCA), CSIC-Universidad de Cantabria, nandez, M.I. Josa, D.L. Moran, Romero, A. M.S. Yzquierdo, Soares, P´erez-Calero J. A. Triossi PuertaUniversidad Pelayo, Aut´onomade I. Madrid, Redondo, Madrid, Spain C. Albajar, J.F. de Troc´oniz Centro de(CIEMAT), Madrid, Investigaciones Spain Energ´eticasJ. Medioambientales Alcaraz Maestre, y A. fuentes, M. Tecnol´ogicas Cerrada, N.J.P. Colino, Fern´andezRamos, J. B. De Flix, La M.C. Cruz, Fouz, O. A. Gonzalez Delgado Lopez, Peris, C. S. Fernandez Goy Bedoya, Lopez, J.M. Her- A. Babaev, S. Baidali University of Belgrade,Sciences, Belgrade, Faculty Serbia of PhysicsP. Adzic and Vinca Institute of Nuclear National Research Tomsk Polytechnic University, Tomsk, Russia JHEP11(2018)042 , , 51 52 58 59 , C. Isik, E.E. Kangal 50 , S. Tekten, E.A. Yetkin 57 – 41 – , U.G. Tok, S. Turkcapar, I.S. Zorbakir, C. Zor- 49 , O. Kaya 56 , B. Tali , D. Brzhechko, M.F. Canelli, A. De Cosa, R. Del Burgo, 49 , S. Damarseckin, Z.S. Demiroglu, F. Dolek, C. Dozen, I. Du- , M. Yalvac, M. Zeyrek 48 49 55 , K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, 47 , D. Sunar Cerci , G. Karapinar 53 54 Bogazici University, Istanbul, Turkey I.O. Atakisi, E. G¨ulmez,M. Kaya Istanbul Technical University, Istanbul, Turkey M.N. Agaras, S. Atay, A. Cakir, K. Cankocak, Y. Komurcu, S. Sen O. Kara, A.S. Ozturk Kayis Topaksu,bilmez U. Kiminsu, M.Middle Oglakci, East Technical G. University, Physics Onengut,B. Department, Isildak Ankara, K. Turkey Ozdemir ¸krv University,C¸ukurova Physics Department, ScienceTurkey and Art Faculty,A. Adana, Bat, F. Boran, S.manoglu, Cerci S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos P. Chang, Y. Chao,R.-S. K.F. Lu, Chen, E. P.H. Paganis, Chen, A. Psallidas, W.-S. A. Hou,Chulalongkorn University, Steen, Faculty Arun of J.f. Science, Kumar, Tsai Department Y.y. ofThailand Li, Physics, Bangkok, Y.F. Liu, B. Asavapibhop, N. Srimanobhas, N. Suwonjandee National Central University, Chung-Li, Taiwan Y.H. Chang, K.y. Cheng, T.H.nyakov, S.S. Doan, Yu Sh. Jain, R. Khurana, C.M.National Kuo, Taiwan W. University (NTU), Lin, A. Taipei, Pozd- Taiwan nvri¨t¨rc,Zurich, Switzerland Universit¨atZ¨urich, T.K. Aarrestad, C.S. Amsler Donato, C.P. Robmann, Galloni, D. T. Salerno, K. Hreus, Schweiger, C. B. Seitz, Y. Kilminster, Takahashi, A. I. Zucchetta Neutelings, D. Pinna, G. Rauco, C. Dorfer, C. Grab, C. Heidegger,zoni, D. Hits, M. J. Hoss, Marionneau, T. Klijnsma, M.T.F. W. Meinhard, Lustermann, Pauss, R.A. F. G. Man- Perrin, Micheli,M. L. P. L. Sch¨onenberger, Perrozzi, Musella, Shchutska, V.R. S. F. Tavolaro, Pigazzini, K. Nessi-Tedaldi,R. M. Theofilatos, J. Wallny, Quittnat, M.L. D.H. Pata, D. Vesterbacka Zhu Olsson, Ruini, D.A. Sanz Becerra, L. Caminada D. Kotlinski, U. Langenegger, T. Rohe, S.A.ETH Wiederkehr Zurich — InstituteSwitzerland for Particle Physics andM. Astrophysics Backhaus, L. P. (IPA), Berger, B¨ani, Zurich, N. Chernyavskaya, G. Dissertori, M. Dittmar, M. Doneg`a, Paul Scherrer Institut, Villigen, Switzerland JHEP11(2018)042 , , 63 64 , S. Paramesvaran, 60 , V. Palladino, M. Pesaresi, A. Richards, 7 – 42 – , N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz 15 , A. Nikitenko 62 , C. Brew, R.M. Brown, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, 61 D. Arcaro, T. Bose, D. Gastler,Brown D. Rankin, University, Providence, C. U.S.A. Richardson, J.G. Rohlf, L. Benelli, Sulak, D. X.K.H.M. Zou Kwok, Coubez, E. Laird, D. G.R. Landsberg, Syarif, Cutts, J. E. Lee, Usai, M. Z. D. Mao, Hadley, Yu M. J. Narain, S. Hakala, Piperov, S. U. Sagir Heintz, J.M. Hogan R. Bartek, A. Dominguez The University of Alabama, Tuscaloosa,A. U.S.A. Buccilli, S.I. Cooper, C. Henderson,Boston P. Rumerio, University, Boston, C. West U.S.A. Baylor University, Waco, U.S.A. K. Call, J.C. Dittmann, Smith K. Hatakeyama, H.Catholic Liu, University of C. America, Madrid, Washington DC, B. U.S.A. Mcmaster, N. Pastika, A. Tapper, K. Uchida, T. Virdee Brunel University, Uxbridge, United Kingdom J.E. Cole, P.R.L. Hobson, Teodorescu, S. A. Zahid Khan, P. Kyberd, C.K. Mackay, A. Morton, I.D. Reid, G. Auzinger, R. Bainbridge,S. P. Casasso, Bloch, D. J. Colling,Y. Borg, L. Haddad, S. Corpe, G. Breeze, P. Hall,S. Dauncey, O. G. Malik, G. Buchmuller, Iles, A. Davies, A. T. Martelli, M.A. Bundock, James, J. Della Rose, M. Nash Negra, E. Komm, R. Scott, C. Di C. Laner, Maria, Seez, L. A. Shtipliyski, Lyons, G. A.-M. Singh, Magnan, M. Stoye, T. Strebler, S. Summers, Rutherford Appleton Laboratory, Didcot, UnitedK.W. Bell, Kingdom A. Belyaev K. Harder, S.A. Harper, Thea, J. I.R. Tomalin, Linacre, T. E. Williams, W.J. Olaiya,Imperial Womersley College, D. London, Petyt, United C.H. Kingdom Shepherd-Themistocleous, University of Bristol, Bristol, UnitedF. Ball, Kingdom L. Beck, J.J.J. Brooke, D. Goldstein, Burns, G.P. E. Clement, Heath,B. D. Penning, H.F. Cussans, T. O. Heath, Sakuma, Davignon, D. H. L. Flacher, Smith, Kreczko, V.J. Smith, D.M. J. Newbold Taylor, A. Titterton Kharkov, Ukraine B. Grynyov National ScientificKharkov, Center, Ukraine Kharkov InstituteL. Levchuk of Physics and Technology, Institute for Scintillation Materials of National Academy of Science of Ukraine, JHEP11(2018)042 , J. Wood, 65 , K. Burkett, J.N. But- † – 43 – Fermi National Accelerator Laboratory, Batavia,S. U.S.A. Abdullin, M. Albrow,L.A.T. M. Bauerdick, Alyari, A. G. Beretvas,ler, J. Apollinari, Berryhill, A. A. P.C. Canepa, Apresyan, Bhat,V.D. A. G.B. G. Apyan, Elvira, Bolla Cerati, S. J. H.W.K. Banerjee, Freeman, Cheung, Z. F. Gecse, Chlebana, E. M. Gottschalk, Cremonesi, L. J. Gray, Duarte, D. Green, S. Gr¨unendahl, T. Mulholland, K. Stenson, K.A. Ulmer,Cornell S.R. University, Wagner Ithaca, U.S.A. J. Alexander, J.J.R. Patterson, Chaves, D. Quach, Y. A.J. Rinkevicius, Cheng, Thom, A. J. Ryd, J. Tucker, L. P. Skinnari, Chu, Wittich, L. M. A. Soffi, Zientek S.M. Datta, Tan, Z. Tao, K. Mcdermott, N. Mirman, Carnegie Mellon University, Pittsburgh, U.S.A. M.B. Andrews, T. Ferguson, T. Mudholkar, M.University Paulini, of M. Colorado Sun, I. Boulder, Vorobiev,J.P. Boulder, M. Cumalat, U.S.A. Weinberg W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, E. MacDonald, V. Dutta, M. FrancoJ. Sevilla, Richman, L. D. Gouskos, Stuart, I. R. Suarez, Heller,California S. J. Institute Wang, Incandela, J. of Yoo A. Technology, Pasadena, Ovcharova,D. U.S.A. H. Anderson, Qu, A. Bornheim,J.R. Vlimant, J.M. R. Lawhorn, Wilkinson, H.B. S. Newman, Xie, Z. T.Q. Zhang, Nguyen, R.Y. M. Zhu Spiropulu, M. Pieri, M. Sani, V.F. A. Sharma, W¨urthwein, Yagil, S. G. Simon, Zevi M. Della Tadel, A. Porta University Vartak, S. of Wasserbaech California,Barbara, U.S.A. Santa BarbaraN. — Amin, Department R. of Bhandari, Physics, J. Santa Bradmiller-Feld, C. Campagnari, M. Citron, A. Dishaw, H. Wei, S. Wimpenny, B.R. Yates University of California, SanJ.G. Diego, Branson, La S. Jolla, Cittolin, U.S.A. D. M. Derdzinski, Klein, R. Gerosa, G. D. Gilbert, Kole, B. V. Hashemi, A. Krutelyov, Holzner, J. Letts, M. Masciovecchio, D. Olivito, S. Padhi, M. Bachtis, C.N. Bravo, Mccoll, R. S. Cousins, Regnard, D. A. Saltzberg, Dasgupta,University C. of Schnaible, A. California, V. Florent, Riverside, Valuev J. Riverside,E. Bouvier, U.S.A. Hauser, K. M. Burt, R.toli, Ignatenko, Clare, E. J.W. Kennedy, F. Gary, Lacroix, S.M.A. O.R. Ghiasi Long, Shirazi, M. G. Olmedo Hanson, Negrete, M.I. G. Paneva, Karapos- W. Si, L. Wang, R. Band, C.M. Chertok, Brainerd, J. R. Conway,O. R. Kukral, Breedon, Conway, P.T. R. Cox, D. Lander, R.D. C. Burns, Erbacher, Stolp, Mclean, C. D. M. M. Taylor, Flores, Mulhearn, K. G. D. Calderon Tos, Pellett, Funk, M.University W. J. De Tripathi, of Z. Pilot, Ko, California, La Wang, S. Los F. Shalhout, Barca Zhang Angeles, M. U.S.A. Shi, Sanchez, University of California, Davis, Davis, U.S.A. JHEP11(2018)042 , S. Durgut, R.P. Gandrajula, M. Hayt- 68 , B. Schneider, E. Sexton-Kennedy, A. Soha, 66 – 44 – , A. Penzo, C. Snyder, E. Tiras, J. Wetzel 70 , W. Clarida, K. Dilsiz 67 , Y. Onel, F. Ozok 69 A. Kropivnitskaya, D.E. Majumder, Schmitz, J.D. Tapia W. Takaki, Q. Mcbrayer, Wang Kansas M. State Murray, University, Manhattan, C. U.S.A. S. Duric, Rogan, A. Ivanov, S. K. Kaadze,A. Sanders, D. Mohammadi, Kim, L.K. Y. Saini, Maravin, D.R. N. Mendis, Skhirtladze T. Mitchell, A. Modak, B. Blumenfeld, A. Cocoros,P. N. Maksimovic, Eminizer, J. D. Roskes, U. Fehling, L. Sarica, M. Feng,The A.V. Swartz, University M. Gritsan, of Xiao, W.T. Kansas, C. Hung, Lawrence,A. You Al-bataineh, U.S.A. P. Baringer, A. Bean, S. Boren, J. Bowen, A. Bylinkin, J. Castle, S. Khalil, The University of Iowa, IowaM. City, Alhusseini, U.S.A. B. Bilki myradov, V. Khristenko,H. Ogul J.-P. Merlo,Johns A. Hopkins Mestvirishvili, University, Baltimore, U.S.A. A. Moeller, J. Nachtman, University of Illinois at ChicagoM.R. (UIC), Adams, L. Chicago, Apanasevich, U.S.A. D.O. Berry, Evdokimov, R.R. C.E. Betts, R. Gerber,I.D. Cavanaugh, Sandoval D.A. X. Gonzalez, Chen, Hangal, M.B. S. Tonjes, D.J. N. Dittmer, Hofman, Varelas, H. K. Wang, X. Jung, Wang, J. Z. Wu, Kamin, J. C. Zhang Mills, A. Ackert, T. Adams,G. A. Martinez, Askew, T. Perry, S. H. Hagopian, Prosper, V. A.Florida Saha, Hagopian, Institute V. K.F. of Sharma, Johnson, Technology, R. Melbourne,M.M. T. Yohay U.S.A. Baarmand, Kolberg, V. Bhopatkar, S. Colafranceschi,T. M. Hohlmann, Roy, D. F. Noonan, Yumiceva M. Rahmani, P. Ma, K. Matchev, H. Mei, G.Florida Mitselmakher, International K. University, Shi, Miami, D. U.S.A. Y.R. Sperka, Joshi, J. S. Wang, S. Linn Wang Florida State University, Tallahassee, U.S.A. N.V. Tran, L. Uplegger, E.W.H.A. Vaandering, Weber, C. A. Vernieri, Whitbeck M. Verzocchi, R. Vidal,University of M. Wang, Florida, Gainesville, U.S.A. D. Acosta, P. Avery, P. Bortignon,M. D. Carver, Bourilkov, A. D. Brinkerhoff, Curry, L. R.D. Cadamuro, A. Field, Carnes, S.V. Gleyzer, B.M. Joshi, J. Konigsberg, A. Korytov, S. Jindariani, M. Johnson,D. Lincoln, U. R. Lipton, Joshi, M. B. Liu,P. T. McBride, Klima, Liu, P. J. M.J. Merkel, Lykken, K. S. Kortelainen,G. Maeshima, Mrenna, B. J.M. Rakness, S. Marraffino, Kreis, D. L. Nahn, Mason, S. V. Ristori,W.J. O’Dell, Lammel, A. Spalding, K. Savoy-Navarro Pedro, L. C. Pena, Spiegel, O. Prokofyev, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, O. Gutsche, J. Hanlon, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, JHEP11(2018)042 , M. Planer, 34 – 45 – A. Reinsvold, R. Ruchti,M. P. Wolf, A. Siddireddy, Woodard G. Smith, S.The Taroni, Ohio M. State Wayne, University, A. Columbus,J. U.S.A. Wightman, Alimena, L. Antonelli, B.W. Bylsma, Ji, L.S. T.Y. Durkin, Ling, S. W. Flowers, Luo, B. B.L. Francis, A. Winer, Hart, H.W. C. Wulsin Hill, S. Bhattacharya, O. Charaf,M. Trovato, K.A. M. Velasco Hahn, N. Mucia,University of N. Notre Odell, Dame, M.H. NotreR. Bucci, Dame, Schmitt, N. Dev, U.S.A. K. M. Hildreth, Sung, K. K. Lannon, Hurtado Anampa, W. C. Li, Jessop, N. D.J. Loukas, Karmgard, N. N. Marinelli, Kellams, F. Meng, C. Mueller, Y. Musienko Northeastern University, Boston, U.S.A. E. Barberis, C. Freer,T. A. Wamorkar, Hortiangtham, B. Wang, D.M. A. Morse, Wisecarver, T. D.Northwestern Orimoto, Wood University, Evanston, R. U.S.A. Teixeira De Lima, malieddin, I. Kravchenko, J. Monroy, J.E. Siado,State G.R. University Snow, of B. New Stieger YorkA. at Godshalk, C. Buffalo, Harrington, Buffalo, I.cio, U.S.A. Iashvili, B. A. Roozbahani Kharchilava, D. Nguyen, A. Parker, S. Rappoc- J. Mans, S. Nourbakhsh, N. Ruckstuhl,University R. of Rusack, J. Mississippi, Turkewitz, Oxford, M.A. U.S.A. J.G. Wadud Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, U.S.A. E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, F. Golf, R. Gonzalez Suarez, R. Ka- G. Roland, G.S.F. Stephans,B. K. Wyslouch, Sumorok, S. Zhaozhong K. Tatar, D.University Velicanu, of J. Minnesota, Wang, Minneapolis, T.W.A.C. U.S.A. Wang, Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, Y. Kubota, Z. Lesko, Massachusetts Institute of Technology, Cambridge,D. U.S.A. Abercrombie, B. Allen,I.A. V. Cali, Azzolini, A. M.D. Baty, D’Alfonso, Hsu, G. M. Z. Bauer, Hu, Y. R. Demiragli, Iiyama,B. G.M. Bi, Maier, G. Innocenti, A.C. S. M. Marini, Gomez Klute, Brandt, C. D. Mcginn, W. Ceballos, Kovalskyi, C. Y.-J. Busza, M. Lee, Mironov, P.D. S. Luckey, Goncharov, Narayanan, X. P. Niu, C. Harris, Paus, C. Roland, F. Rebassoo, D. Wright University of Maryland, College Park,A. U.S.A. Baden, O. Baron,G.Y. A. Jeng, Belloni, R.G. S.C. Kellogg, Eno,S.C. J. Y. Tonwar, K. Kunkle, Feng, Wong C. A.C. Ferraioli, Mignerey, N.J. F. Hadley, Ricci-Tam, S. Y.H. Jabeen, Shin, A. Skuja, Lawrence Livermore National Laboratory, Livermore, U.S.A. JHEP11(2018)042 – 46 – , S. Luo, R. Mueller, Y. Pakhotin, R. Patel, A. Perloff, 72 , A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, 71 N. Akchurin, J. Damgov, F.T. De Mengke, Guio, S. P.R. Muthumuni, Dudero, T. S. Peltola, Kunori, S.Vanderbilt K. Undleeb, University, Lamichhane, I. Nashville, S.W. Volobouev, U.S.A. Lee, Z. Wang S. Greene, A. Gurrola,J.D. R. Ruiz Alvarez, Janjam, P. W. Sheldon, Johns, S. Tuo, C. J. Maguire, Velkovska, M. A. Verweij, Q. Melo, Xu H. Ni, K. Padeken, O. Bouhali J. Gilmore, T. Huang, T.L. Kamon Perni`e,D. Rathjens, A. Safonov, A. Tatarinov Texas Tech University, Lubbock, U.S.A. S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, U.S.A. A.G. Delannoy, J. Heideman, G. Riley, K.Texas Rose, A&M S. University, Spanier, College K. Station, Thapa U.S.A. R. Taus, M. Verzetti Rutgers, The State University ofA. New Agapitos, Jersey, J.P. Piscataway, Chou, U.S.A. E. Y. Hughes, Gershtein, T.A. S. G´omezEspinosa, Kaplan,K. E. Nash, R. Halkiadakis, M. Kunnawalkam M. Osherson, Elayavalli, H. Heindl, S. Saka, S. Kyriacou, Salur, A. S. Schnetzer, Lath, D. Sheffield, R. S. Montalvo, Somalwar, R. Stone, B.P. Padley, J. Roberts, J. Rorie, W.University Shi, of Z. Rochester, Tu, J. Rochester, Zabel, U.S.A. A. A. Zhang Bodek, P.M. de Galanti, A. Barbaro, Garcia-Bellido, R. J. Han, Demina, O. Hindrichs, Y.t. A. Khukhunaishvili, Duh, K.H. Lo, J.L. P. Tan, Dulemba, C. Fallon, T. Ferbel, Purdue University Northwest, Hammond, U.S.A. T. Cheng, J. Dolen, N. Parashar Rice University, Houston, U.S.A. Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, W. Li, B. Michlin, Purdue University, West Lafayette, U.S.A. A. Barker, V.E. Barnes,hakud, S. D.H. Das, Miller, L. Gutay, N.R. M. Xiao, Neumeister, Jones, W. C.C. A.W. Xie Peng, Jung, H. A. Khatiwada, Qiu, B. J.F. Ma- Schulte, J. Sun, F. Wang, S. Cooperstein, P. Elmer, J.D. Hardenbrook, P. Lange, Hebda, S. M.T. Higginbotham,P. A. Lucchini, Pirou´e,J. Kalogeropoulos, Salfeld-Nebgen, J. D. Luo, Stickland, C. D. Tully Marlow,University of K. Puerto Mei, Rico, I. Mayaguez,S. Ojalvo, U.S.A. Malik, J. S. Norberg Olsen, C. Palmer, Princeton University, Princeton, U.S.A. JHEP11(2018)042 – 47 – University, Tehran, Iran University, Budapest, Hungary Moscow, Russia Also at University of ChineseAlso Academy at of Institute Sciences, for Beijing,Also Theoretical China at and Joint Experimental Institute Physics, for Moscow,Also Russia Nuclear at Research, Suez Dubna, University, Suez, Russia Egypt Also at Vienna University ofAlso Technology, at Vienna, IRFU, Austria CEA,Also Gif-sur-Yvette, Universit´eParis-Saclay, France at Universidade Estadual deAlso Campinas, at Campinas, Federal University Brazil ofAlso Rio at Grande Universit´eLibre de do Bruxelles, Sul, Bruxelles, Porto Belgium Alegre, Brazil Deceased Also at Universit`adegli Studi diAlso Siena, at Siena, Kyunghee Italy University, Seoul,Also Korea at International Islamic UniversityAlso of at Malaysia, Malaysian Kuala Nuclear Lumpur, Agency,Also MOSTI, Malaysia at Kajang, Consejo Malaysia Nacional de Ciencia y Tecnolog´ıa,Mexico city, Mexico Also at Indian InstituteAlso of at Technology Bhubaneswar, Institute Bhubaneswar, of India Also Physics, Bhubaneswar, at India Shoolini University, Solan,Also India at University of Visva-Bharati,Also Santiniketan, at India Isfahan University ofAlso Technology, Isfahan, at Iran Plasma Physics Research Center, Science and Research Branch, Islamic Azad Also at University of Hamburg,Also Hamburg, at Germany Brandenburg University ofAlso Technology, Cottbus, at Germany MTA-ELTE Lend¨uletCMS Particle andAlso Nuclear at Physics Institute of Group,Also Nuclear E¨otv¨osLor´and at Research ATOMKI, Institute Debrecen, of Hungary Physics, University of Debrecen, Debrecen, Hungary Also at Department of Physics,Also King at Abdulaziz Universit´ede Haute University, Alsace, Jeddah,Also Mulhouse, Saudi France Arabia at Skobeltsyn Institute ofAlso Nuclear at CERN, Physics, EuropeanAlso Organization Lomonosov at for RWTH Nuclear Moscow Aachen Research, University, Geneva, State III. Switzerland Physikalisches University, Institut A, Aachen, Germany Now at British University inAlso Egypt, at Cairo, Zewail Egypt City of Science and Technology, Zewail, Egypt : † 6: 7: 8: 9: 1: 2: 3: 4: 5: 28: 29: 30: 31: 32: 22: 23: 24: 25: 26: 27: 17: 18: 19: 20: 21: 12: 13: 14: 15: 16: 10: 11: M. Brodski, J.M. Grothe, Buchanan, M. Herndon, C. A. Herv´e,U. Hussain,R. P. Caillol, Klabbers, Loveless, A. T. D. Lanaro, Ruggles, A. A. Carlsmith, Levine, Savin, K. Long, N. S. Smith, Dasu, W.H. Smith, L. N. Woods Dodd, B. Gomber, M.W. Arenton, P.A. Ledovskoy, H. Barria, Li, C. B. Neu, T.Wayne Cox, State Sinthuprasith, Y. University, G. Detroit, Wang, E. U.S.A. Dezoort,R. Wolfe, F. Harr, Xia P.E. R. Karchin, N. Hirosky, Poudyal, J.University H. of Sturdy, P. Wisconsin Thapa, Jiwon, — S. Madison, Zaleski M. Madison, Joyce, WI, U.S.A. University of Virginia, Charlottesville, U.S.A. JHEP11(2018)042 , Pavia, Italy b – 48 – , Universit`adi Pavia a Kingdom Belgrade, Serbia (MEPhI), Moscow, Russia Also at Beykent University, Istanbul,Also Turkey at Bingol University, Bingol,Also Turkey at Sinop University, Sinop,Also Turkey at Mimar SinanAlso University, Istanbul, at Istanbul, Texas Turkey A&M UniversityAlso at at Qatar, Kyungpook Doha, National Qatar University, Daegu, Korea Also at Monash University, FacultyAlso of at Science, Bethel Clayton, University, Australia St.Also Paul, at U.S.A. Karamano˘gluMehmetbey University, Karaman,Also Turkey at Utah Valley University,Also Orem, at U.S.A. Purdue University, West Lafayette, U.S.A. Also at Marmara University, Istanbul,Also Turkey at Kafkas University, Kars,Also Turkey at Istanbul Bilgi University,Also Istanbul, at Turkey Hacettepe University, Ankara,Also Turkey at Rutherford AppletonAlso Laboratory, Didcot, at School United of Kingdom Physics and Astronomy, University of Southampton, Southampton, United Also at Istanbul Aydin University,Also Istanbul, at Turkey Mersin University, Mersin,Also Turkey at Piri ReisAlso University, Istanbul, at Turkey Gaziosmanpasa University, Tokat,Also Turkey at Ozyegin University, Istanbul,Also Turkey at Izmir Institute of Technology, Izmir, Turkey Also at Scuola NormaleAlso e at Sezione National dell’INFN, and Pisa,Also Kapodistrian Italy at University Riga of Technical Athens, University, Athens,Also Riga, Zurich, Greece at Latvia Switzerland Universit¨atZ¨urich, Also at Stefan Meyer InstituteAlso for at Subatomic Adiyaman University, Physics Adiyaman, (SMI), Turkey Vienna, Austria Also at California InstituteAlso of at Technology, Pasadena, Budker U.S.A. Institute ofAlso Nuclear at Physics, Faculty of Novosibirsk, Physics, Russia Also University at of INFN Belgrade, Sezione Belgrade,Also di Serbia Pavia at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Also at Institute forNow Nuclear Research, at Moscow, Russia National Research NuclearAlso at University St. ‘Moscow PetersburgAlso State at Engineering Polytechnical University University, St. of Physics Florida,Also Petersburg, Gainesville, Russia Institute’ at U.S.A. P.N. Lebedev Physical Institute, Moscow, Russia Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 67: 68: 69: 70: 71: 72: 62: 63: 64: 65: 66: 56: 57: 58: 59: 60: 61: 50: 51: 52: 53: 54: 55: 44: 45: 46: 47: 48: 49: 39: 40: 41: 42: 43: 34: 35: 36: 37: 38: 33: