Baryogenesis Through Lepton Number Violation

Total Page:16

File Type:pdf, Size:1020Kb

Baryogenesis Through Lepton Number Violation Baryogenesis through lepton number violation 1 Utpal Sarkary yPhysical Research Lab oratory, Ahmedabad - 380 009, INDIA Abstract. The most promising scenarios of baryogenesis seems to b e the one through lepton numb er violation. Lepton numb er violation through a Ma jarana mass of the right-handed neutrinos can generate a lepton asymmetry of the universe when the right- handed neutrinos decay. The left-handed neutrinos get small Ma jorana masses through see-saw mechanism in these mo dels. A triplet higgs scalar violating lepton numb er explicitly through its couplings to two leptons or two higgs doublets can also nat- urally give small Ma jorana masses to the left-handed neutrinos and also generate a lepton asymmetry of the universe. We re- view b oth these mo dels of leptogenesis, where the lepton number asymmetry then gets converted to a baryon asymmetry of the universe b efore the electroweak phase transition. 1. Intro duction To get the baryon asymmetry of the universe [1] starting from a symmetric universe, one requires [2] three conditions (A) Baryon number violation, (B) C and CP violation, and (C) Departurefrom thermal equilibrium. In grand uni ed theories (GUTs) all these conditions are satis ed [3, 4], but the generated asymmetry conserves (B L). It was then realised that the chiral nature of the weak interaction also breaks the global baryon and lepton numb ers in the standard mo del [5]. At nite temp erature these baryon and lepton numb er violating interactions were found to b e very strong in 1 E-mail:[email protected] 1 the presence of some static top ological eld con guration - sphalerons [6]. Although the anomalous sphaleron pro cesses conserves (B L), the GUT (B + L) asymmetry will b e completely washed out by these interactions. Attempts were then made to make use of the baryon numb er violation of the standard mo del to generate a baryon asymmetry of the universe. How- ever, in these mo dels one needs to protect the generated baryon asymmetry after the phase transition, which requires the mass of the standard mo del doublet higgs b oson to be lighter than the present exp erimental limit of 95 GeV. Then the most interesting scenario remains for the understanding of the baryon numb er of the universe is through lepton numb er violation [7]{[14], which is also referred to as leptogenesis. In mo dels of leptogenesis one generates a lepton asymmetry of the uni- verse, which is the same as the (B L) asymmetry of the universe at some high energy. This (B L) asymmetry of the universe then get con- verted to the baryon asymmetry of the universe during the p erio d when the sphaleron elds maintain the baryon numb er violating interactions in equi- librium. Since lepton numb er violation is the source of leptogenesis, they are related to mo dels of neutrino masses. In this article we shall review two scenarios of leptogenesis. In the rst scenario right handed neutrinos are intro duced, which gets a Ma jorana mass and breaks lepton number [7]. The left-handed neutrinos get small Ma jorana masses through see-saw mechanism [15]. In the second scenario only a triplet higgs is intro duced and the fermion content of the standard mo del is unaltered [16, 17, 18]. Unlike earlier treatments, lepton number is now broken explicitly at a very high scale [16,17]. Although the triplet is very heavy, its vev b ecomes of the order of eV to givevery small Ma jorana mass to the neutrinos natu- rally [16]. Decays of the triplet higgs generate a lepton asymmetry of the universe at very high scale. In the next section we shall discuss the electroweak anomalous pro cesses and then how the baryon and lepton numb ers of the universe gets related to the (B L)numb er of the universe. This will imply that if there is vary fast lepton numb er violation in the universe during the p erio d when these pro cesses are in equilibrium, that can also wash out the baryon asymmetry of the universe [19,20]. In the following two sections we present the two scenarios of leptogenesis. 2. Sphaleron pro cesses in thermal equilibrium and relation be- tween baryon and lepton numb ers Anomaly breaks any classical symmetry of the lagrangian at the quantum level. So, all lo cal gauge theories should be free of anomalies. However, there may be anomalies corresp onding to any global current. That will 2 simply mean that such global symmetries of the classical lagrangian are broken through quantum e ects. In the standard mo del the chiral nature of the weak interaction makes the baryon and lepton numb er anomalous and give us non vanishing axial current [5] 2 1 5 ~ ~ Y ] j =6[ W W + Y a a (B +L) 8 8 which will break the (B + L) symmetry, while still preserving (B L), during the electroweak phase transition, Z 2 4 ~ (B + L)=2N d xW W =2N g a g a 8 But their rate is very small at zero temp erature, since they are suppressed 2 by quantum tunnelling probability, exp[ ]; where is the Chern- 2 Simmons numb er. At nite temp erature, however, it has b een shown that there exists non- trivial static top ological soliton con guration, called the sphalerons, which enhances the baryon numb er violating transition rate [6] and the suppres- V 0 sion factor is now replaced by the Boltzmann factor exp[ ] where the T p otential or the free energy V is related to the mass of the sphaleron eld, 0 which is ab out TeV. As a result, at temp eratures b etween 12 2 10 GeV >T >10 GeV (1) the sphaleron mediated baryon and lepton numb er violating pro cesses are in equilibrium. For the simplest scenario of = 1, the sphaleron induced pro cesses are B =L= 3, given by, jvac >! [u u d e + c c s + t t b ]: (2) L L L L L L L L L L L L These baryon and lepton numb er violating fast pro cesses will wash out any pre-existing baryon or lepton numb er asymmetry, or will convert any pre- existing (B L) asymmetry of the universe to a baryon asymmetry of the universe, which can b e seen from an analysis of the chemical p otential [21]. We consider all the particles to be ultrarelativistic and ignore small mass corrections. The particle asymmetry, i.e. the di erence b etween the numb er of particles (n ) and the numberofantiparticles (n ) can b e given + in terms of the chemical p otential of the particle sp ecies (for antiparticles 3 gT the chemical p otential is )asn n =n ; where n = 2 for + d d 6 T b osons and n = 1 for fermions. d In the standard mo del there are quarks and leptons q ;u ;d ;l and iL iR iR iL e ; where, i =1;2;3 corresp onds to three generations. In addition, the iR scalar sector consists of the usual Higgs doublet , which breaks the elec- troweak gauge symmetry SU (2) U (1) down to U (1) . In Table 1, we L Y em 3 presented the relevantinteractions and the corresp onding relations b etween the chemical p otentials. In the third column we give the chemical p oten- tial which we eliminate using the given relation. We start with chemical p otentials of all the quarks ( ; ; ; ); leptons ( ; ; , uL dL uR dR aL aL aR where a = e; ; ); gauge b osons ( for W , and 0 for all others); and W the Higgs scalars ( ; ). 0 Table 1. Relations among the chemical p otentials Interactions relations eliminated y D D = + W 0 q q W = + L L dL uL W dL l l W = + L L W iL iL iL y q u = + L R uR 0 uL uR q d = + L R dR 0 dL dR l e = + iL iR 0 iR iR iL The chemical p otentials of the neutrinos always enter as a sum and for that reason we can consider it as one parameter. We can then express all the chemical p otentials in terms of the following indep endentchemical P P p otentials only, = ; ; = ; = = . We 0 W u uL i iL 0 i i can further eliminate one of these four p otentials by making use of the relation given by the sphaleron pro cesses, 3 +2 + =0. We then u W express the baryon numb er, lepton numb ers and the electric charge and the hyp ercharge numb er densities in terms of these indep endentchemical p otentials, B =12 +6 ; L =3+2 u W i W 0 Q =24 + (12 + 2m) (4+2m) ; Q = (10 + m) u 0 W 3 W where m is the numb er of Higgs doublets . At temp eratures ab ove the electroweak phase transition, T >T , b oth c < Q > and < Q > must vanish, while b elow the critical temp erature 3 < Q > should vanish, but since SU (2) is now broken we can consider L = 0 and Q 6=0. These conditions and the sphaleron induced B L 3 0 conserving, B + L violating condition will allow us to write down the baryon asymmetry in terms of the B L numb er density as, 24+4m 32 + 4m B (T >T )= (BL) B(T <T )= (BL): (3) c c 66+13m 98+13m Thus the baryon and lepton numb er asymmetry of the universe after the electroweak phase transition will dep end on the primordial (B L) asym- 4 metry of the universe, while all the primordial (B + L) asymmetry will b e washed out.
Recommended publications
  • The Five Common Particles
    The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2.
    [Show full text]
  • Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model
    Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model Andr´ede Gouv^ea1 and Petr Vogel2 1 Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, 60208, USA 2 Kellogg Radiation Laboratory, Caltech, Pasadena, California, 91125, USA April 1, 2013 Abstract The physics responsible for neutrino masses and lepton mixing remains unknown. More ex- perimental data are needed to constrain and guide possible generalizations of the standard model of particle physics, and reveal the mechanism behind nonzero neutrino masses. Here, the physics associated with searches for the violation of lepton-flavor conservation in charged-lepton processes and the violation of lepton-number conservation in nuclear physics processes is summarized. In the first part, several aspects of charged-lepton flavor violation are discussed, especially its sensitivity to new particles and interactions beyond the standard model of particle physics. The discussion concentrates mostly on rare processes involving muons and electrons. In the second part, the sta- tus of the conservation of total lepton number is discussed. The discussion here concentrates on current and future probes of this apparent law of Nature via searches for neutrinoless double beta decay, which is also the most sensitive probe of the potential Majorana nature of neutrinos. arXiv:1303.4097v2 [hep-ph] 29 Mar 2013 1 1 Introduction In the absence of interactions that lead to nonzero neutrino masses, the Standard Model Lagrangian is invariant under global U(1)e × U(1)µ × U(1)τ rotations of the lepton fields. In other words, if neutrinos are massless, individual lepton-flavor numbers { electron-number, muon-number, and tau-number { are expected to be conserved.
    [Show full text]
  • Accessible Lepton-Number-Violating Models and Negligible Neutrino Masses
    PHYSICAL REVIEW D 100, 075033 (2019) Accessible lepton-number-violating models and negligible neutrino masses † ‡ Andr´e de Gouvêa ,1,* Wei-Chih Huang,2, Johannes König,2, and Manibrata Sen 1,3,§ 1Northwestern University, Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208, USA 2CP3-Origins, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark 3Department of Physics, University of California Berkeley, Berkeley, California 94720, USA (Received 18 July 2019; published 25 October 2019) Lepton-number violation (LNV), in general, implies nonzero Majorana masses for the Standard Model neutrinos. Since neutrino masses are very small, for generic candidate models of the physics responsible for LNV, the rates for almost all experimentally accessible LNV observables—except for neutrinoless double- beta decay—are expected to be exceedingly small. Guided by effective-operator considerations of LNV phenomena, we identify a complete family of models where lepton number is violated but the generated Majorana neutrino masses are tiny, even if the new-physics scale is below 1 TeV. We explore the phenomenology of these models, including charged-lepton flavor-violating phenomena and baryon- number-violating phenomena, identifying scenarios where the allowed rates for μ− → eþ-conversion in nuclei are potentially accessible to next-generation experiments. DOI: 10.1103/PhysRevD.100.075033 I. INTRODUCTION Experimentally, in spite of ambitious ongoing experi- Lepton number and baryon number are, at the classical mental efforts, there is no evidence for the violation of level, accidental global symmetries of the renormalizable lepton-number or baryon-number conservation [5]. There Standard Model (SM) Lagrangian.1 If one allows for are a few different potential explanations for these (neg- generic nonrenormalizable operators consistent with the ative) experimental results, assuming degrees-of-freedom SM gauge symmetries and particle content, lepton number beyond those of the SM exist.
    [Show full text]
  • Baryogen, a Monte Carlo Generator for Sphaleron-Like Transitions in Proton-Proton Collisions
    Prepared for submission to JHEP BaryoGEN, a Monte Carlo Generator for Sphaleron-Like Transitions in Proton-Proton Collisions Cameron Bravo1 and Jay Hauser Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, USA E-mail: [email protected] Abstract: Sphaleron and instanton solutions of the Standard Model provide violation of baryon and lepton numbers and could lead to spectacular events at the LHC or future colliders. Certain models of new physics can also lead to sphaleron-like vacuum transitions. This nonperturbative physics could be relevant to the generation of the matter-antimatter asymmetry of the universe. We have developed BaryoGEN, an event generator that facili- tates the exploration of sphaleron-like transitions in proton-proton collisions with minimal assumptions. BaryoGEN outputs standard Les Houches Event files that can be processed by PYTHIA, and the code is publicly available. We also discuss various approaches to experimental searches for such transitions in proton-proton collisions. arXiv:1805.02786v3 [hep-ph] 21 Jul 2018 1Corresponding author. Contents 1 Introduction1 2 Physics Content2 2.1 Fermionic Content of Transitions2 2.2 Incoming Partons and Cancellations3 2.3 Color Flow5 2.4 Simulation Results6 3 Using the Generator6 4 Conclusions8 1 Introduction The class of solutions of gauge field theories to which the sphaleron belongs were first proposed in 1976 by ’t Hooft [1]. These solutions are nonperturbative, so the cross-sections for processes mediated by the sphaleron cannot be calculated perturbatively, e.g. by using Feynman diagrams. The solutions are high-energy but are unstable and decay immediately. The electroweak (EW) sphaleron was first described in 1984 [2].
    [Show full text]
  • Neutrino CPV Phase and Leptogenesis
    Neutrino CPV phase and Leptogenesis Andrew, Brandon, Erika, Larry, Varuna, Wing The Question How can the CP-violating phase in the neutrino mixing matrix, delta, possibly be related to leptogenesis? Can you make a model where this is transparent and has testable predictions? 2 What is it? ● Experiments have observed an asymmetry in the number of baryons versus anti-baryons in the universe ● Leptogenesis – The process of generating baryogenesis through lepton asymmetry ● This lepton asymmetry is converted into a baryon asymmetry by the sphaleron process ● Leptogenesis is a mechanism that attempts to explain the observed asymmetry – Many different models of Leptogenesis exist – We only consider Leptogenesis with Type I Seesaw 3 Sakharov Conditions Three conditions for dynamically generated baryon asymmetry: I. Baryon (and lepton) Number Violation II. C and CP Symmetry Violation III. Interactions out of Thermal Equilibrium 4 Seesaw Mechanism ● Introduce three right-handed heavy neutrinos, NRi with the following Lagrangian: ● The Majorana mass matrix M is diagonal, the Yukawa matrix may be complex, and the Higgs will give a Majorana mass term to the neutrinos after symmetry breaking ● This gives a mass to the light neutrinos: ● For 0.1 eV light neutrinos and taking λ at the GeV scale, that gives a heavy mass scale of 1010 GeV 5 Seesaw Mechanism ● Self energy diagram N showing flavor change at high energy νf νf’ ● The interaction can be described by: H ● Self energy diagram at low energy νf νf’ with the heavy fields integrated out ● Creates an effective point interaction that can be described by: 6 Seesaw Mechanism ● Relating the high and low energy interactions, we can write the following: ● Where R is orthogonal but may be complex (Casas-Ibarra parametrization); it reshuffles and re-phases the flavors.
    [Show full text]
  • 1 Drawing Feynman Diagrams
    1 Drawing Feynman Diagrams 1. A fermion (quark, lepton, neutrino) is drawn by a straight line with an arrow pointing to the left: f f 2. An antifermion is drawn by a straight line with an arrow pointing to the right: f f 3. A photon or W ±, Z0 boson is drawn by a wavy line: γ W ±;Z0 4. A gluon is drawn by a curled line: g 5. The emission of a photon from a lepton or a quark doesn’t change the fermion: γ l; q l; q But a photon cannot be emitted from a neutrino: γ ν ν 6. The emission of a W ± from a fermion changes the flavour of the fermion in the following way: − − − 2 Q = −1 e µ τ u c t Q = + 3 1 Q = 0 νe νµ ντ d s b Q = − 3 But for quarks, we have an additional mixing between families: u c t d s b This means that when emitting a W ±, an u quark for example will mostly change into a d quark, but it has a small chance to change into a s quark instead, and an even smaller chance to change into a b quark. Similarly, a c will mostly change into a s quark, but has small chances of changing into an u or b. Note that there is no horizontal mixing, i.e. an u never changes into a c quark! In practice, we will limit ourselves to the light quarks (u; d; s): 1 DRAWING FEYNMAN DIAGRAMS 2 u d s Some examples for diagrams emitting a W ±: W − W + e− νe u d And using quark mixing: W + u s To know the sign of the W -boson, we use charge conservation: the sum of the charges at the left hand side must equal the sum of the charges at the right hand side.
    [Show full text]
  • Balancing Asymmetric Dark Matter with Baryon Asymmetry by Sphaleron Transitions †
    Proceeding Paper Balancing Asymmetric Dark Matter with Baryon Asymmetry by Sphaleron Transitions † Arnab Chaudhuri 1,* and Maxim Khlopov 2,3,4 1 Department of Physics and Astronomy, Novosibirsk State University, Novosibirsk, 630090 Novosibirsk Oblast, Russia 2 Institute of Physics, Southern Federal University, 344006 Rostov on Don, Russia; [email protected] 3 Astroparticule et Cosmologie, Université de Paris, CNRS, F-75013 Paris, France 4 National Research Nuclear University “MEPHI” (Moscow State Engineering Physics Institute), 115409 Moscow, Russia * Correspondence: [email protected] † Presented at the 1st Electronic Conference on Universe, 22–28 February 2021; Available online: https://ecu2021.sciforum.net/. Abstract: The effect of the electroweak sphaleron transition in balance between baryon excess and and the excess of stable quarks of 4th generation is studied in this paper. Considering the non-violation of SU(2) symmetry and the conservation of electroweak and new charges and quantum numbers of the new family, it makes possible sphaleron transitions between baryons, leptons and 4th family of leptons and quarks. In this paper, we have tried to established a possible definite relationship between the value and sign of the 4th family excess relative to baryon asymmetry. If U-type quarks are the lightest quarks of the 4th family and sphaleron transitions provide excessive U¯ antiquarks, asymmetric dark matter in the form of dark atom bound state of (U¯ U¯ U¯ ) with primordial He nuclei is balanced with baryon asymmetry. Keywords: electroweak phase transition; 4th generation; early universe Citation: Chaudhuri, A.; Khlopov, M. Balancing Asymmetric Dark Matter with Baryon Asymmetry by 1. Introduction Sphaleron Transitions.
    [Show full text]
  • Neutrino Vs Antineutrino Lepton Number Splitting
    Introduction to Elementary Particle Physics. Note 18 Page 1 of 5 Neutrino vs antineutrino Neutrino is a neutral particle—a legitimate question: are neutrino and anti-neutrino the same particle? Compare: photon is its own antiparticle, π0 is its own antiparticle, neutron and antineutron are different particles. Dirac neutrino : If the answer is different , neutrino is to be called Dirac neutrino Majorana neutrino : If the answer is the same , neutrino is to be called Majorana neutrino 1959 Davis and Harmer conducted an experiment to see whether there is a reaction ν + n → p + e - could occur. The reaction and technique they used, ν + 37 Cl e- + 37 Ar, was proposed by B. Pontecorvo in 1946. The result was negative 1… Lepton number However, this was not unexpected: 1953 Konopinski and Mahmoud introduced a notion of lepton number L that must be conserved in reactions : • electron, muon, neutrino have L = +1 • anti-electron, anti-muon, anti-neutrino have L = –1 This new ad hoc law would explain many facts: • decay of neutron with anti-neutrino is OK: n → p e -ν L=0 → L = 1 + (–1) = 0 • pion decays with single neutrino or anti-neutrino is OK π → µ-ν L=0 → L = 1 + (–1) = 0 • but no pion decays into a muon and photon π- → µ- γ, which would require: L= 0 → L = 1 + 0 = 1 • no decays of muon with one neutrino µ- → e - ν, which would require: L= 1 → L = 1 ± 1 = 0 or 2 • no processes searched for by Davis and Harmer, which would require: L= (–1)+0 → L = 0 + 1 = 1 But why there are no decays µµµ →→→ e γγγ ? 2 Splitting lepton numbers 1959 Bruno Pontecorvo
    [Show full text]
  • Introduction to Flavour Physics
    Introduction to flavour physics Y. Grossman Cornell University, Ithaca, NY 14853, USA Abstract In this set of lectures we cover the very basics of flavour physics. The lec- tures are aimed to be an entry point to the subject of flavour physics. A lot of problems are provided in the hope of making the manuscript a self-study guide. 1 Welcome statement My plan for these lectures is to introduce you to the very basics of flavour physics. After the lectures I hope you will have enough knowledge and, more importantly, enough curiosity, and you will go on and learn more about the subject. These are lecture notes and are not meant to be a review. In the lectures, I try to talk about the basic ideas, hoping to give a clear picture of the physics. Thus many details are omitted, implicit assumptions are made, and no references are given. Yet details are important: after you go over the current lecture notes once or twice, I hope you will feel the need for more. Then it will be the time to turn to the many reviews [1–10] and books [11, 12] on the subject. I try to include many homework problems for the reader to solve, much more than what I gave in the actual lectures. If you would like to learn the material, I think that the problems provided are the way to start. They force you to fully understand the issues and apply your knowledge to new situations. The problems are given at the end of each section.
    [Show full text]
  • Lecture 5: Quarks & Leptons, Mesons & Baryons
    Physics 3: Particle Physics Lecture 5: Quarks & Leptons, Mesons & Baryons February 25th 2008 Leptons • Quantum Numbers Quarks • Quantum Numbers • Isospin • Quark Model and a little History • Baryons, Mesons and colour charge 1 Leptons − − − • Six leptons: e µ τ νe νµ ντ + + + • Six anti-leptons: e µ τ νe̅ νµ̅ ντ̅ • Four quantum numbers used to characterise leptons: • Electron number, Le, muon number, Lµ, tau number Lτ • Total Lepton number: L= Le + Lµ + Lτ • Le, Lµ, Lτ & L are conserved in all interactions Lepton Le Lµ Lτ Q(e) electron e− +1 0 0 1 Think of Le, Lµ and Lτ like − muon µ− 0 +1 0 1 electric charge: − tau τ − 0 0 +1 1 They have to be conserved − • electron neutrino νe +1 0 0 0 at every vertex. muon neutrino νµ 0 +1 0 0 • They are conserved in every tau neutrino ντ 0 0 +1 0 decay and scattering anti-electron e+ 1 0 0 +1 anti-muon µ+ −0 1 0 +1 anti-tau τ + 0 −0 1 +1 Parity: intrinsic quantum number. − electron anti-neutrino ν¯e 1 0 0 0 π=+1 for lepton − muon anti-neutrino ν¯µ 0 1 0 0 π=−1 for anti-leptons tau anti-neutrino ν¯ 0 −0 1 0 τ − 2 Introduction to Quarks • Six quarks: d u s c t b Parity: intrinsic quantum number • Six anti-quarks: d ̅ u ̅ s ̅ c ̅ t ̅ b̅ π=+1 for quarks π=−1 for anti-quarks • Lots of quantum numbers used to describe quarks: • Baryon Number, B - (total number of quarks)/3 • B=+1/3 for quarks, B=−1/3 for anti-quarks • Strangness: S, Charm: C, Bottomness: B, Topness: T - number of s, c, b, t • S=N(s)̅ −N(s) C=N(c)−N(c)̅ B=N(b)̅ −N(b) T=N( t )−N( t )̅ • Isospin: I, IZ - describe up and down quarks B conserved in all Quark I I S C B T Q(e) • Z interactions down d 1/2 1/2 0 0 0 0 1/3 up u 1/2 −1/2 0 0 0 0 +2− /3 • S, C, B, T conserved in strange s 0 0 1 0 0 0 1/3 strong and charm c 0 0 −0 +1 0 0 +2− /3 electromagnetic bottom b 0 0 0 0 1 0 1/3 • I, IZ conserved in strong top t 0 0 0 0 −0 +1 +2− /3 interactions only 3 Much Ado about Isospin • Isospin was introduced as a quantum number before it was known that hadrons are composed of quarks.
    [Show full text]
  • Neutrino Masses-How to Add Them to the Standard Model
    he Oscillating Neutrino The Oscillating Neutrino of spatial coordinates) has the property of interchanging the two states eR and eL. Neutrino Masses What about the neutrino? The right-handed neutrino has never been observed, How to add them to the Standard Model and it is not known whether that particle state and the left-handed antineutrino c exist. In the Standard Model, the field ne , which would create those states, is not Stuart Raby and Richard Slansky included. Instead, the neutrino is associated with only two types of ripples (particle states) and is defined by a single field ne: n annihilates a left-handed electron neutrino n or creates a right-handed he Standard Model includes a set of particles—the quarks and leptons e eL electron antineutrino n . —and their interactions. The quarks and leptons are spin-1/2 particles, or weR fermions. They fall into three families that differ only in the masses of the T The left-handed electron neutrino has fermion number N = +1, and the right- member particles. The origin of those masses is one of the greatest unsolved handed electron antineutrino has fermion number N = 21. This description of the mysteries of particle physics. The greatest success of the Standard Model is the neutrino is not invariant under the parity operation. Parity interchanges left-handed description of the forces of nature in terms of local symmetries. The three families and right-handed particles, but we just said that, in the Standard Model, the right- of quarks and leptons transform identically under these local symmetries, and thus handed neutrino does not exist.
    [Show full text]
  • Arxiv:1806.08204V2 [Hep-Ph] 7 Nov 2018
    DO-TH 18/12 CP3-Origins-2018-022 DNRF90 Scalar Dark Matter, GUT baryogenesis and Radiative neutrino mass Wei-Chih Huang∗ CP3-Origins, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark , Fakult¨atf¨urPhysik, Technische Universit¨atDortmund, 44221 Dortmund, Germany Heinrich P¨asy and Sinan Zeißnerz Fakult¨atf¨urPhysik, Technische Universit¨atDortmund, 44221 Dortmund, Germany Abstract We investigate an interesting correlation among dark matter phenomenology, neutrino mass generation and GUT baryogenesis, based on the scotogenic model. The model contains additional right-handed neutrinos N and a second Higgs doublet Φ, both of which are odd under an imposed Z2 symmetry. The neutral component of Φ, i.e. the lightest of the Z2-odd particles, is the dark matter candidate. Due to a Yukawa coupling involving Φ, N and the Standard Model leptons, the lepton asymmetry is converted into the dark matter asymmetry so that a non-vanishing B L − asymmetry can arise from (B L)-conserving GUT baryogenesis, leading to a nonzero baryon − asymmetry after the sphalerons decouple. On the other hand, Φ can also generate neutrino masses radiatively. In other words, the existence of Φ as the dark matter candidate resuscitates GUT baryogenesis and realizes neutrino masses. arXiv:1806.08204v2 [hep-ph] 7 Nov 2018 ∗Electronic address: [email protected] yElectronic address: [email protected] zElectronic address: [email protected] 1 I. INTRODUCTION The origin of the observed baryon asymmetry can not be accounted for within the Standard Model (SM) and is one of the unresolved issues in particle physics and cosmology.
    [Show full text]