Ecological Forecasting Initiative 2019 Conference Speaker & Poster

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Forecasting Initiative 2019 Conference Speaker & Poster Ecological Forecasting Initiative 2019 Conference Speaker & Poster Abstracts May 13-15, 2019 AAAS Headquarters 1200 New York Ave, NW Washington, DC 20005 @eco4cast #efi2019 The Ecological Forecasting Initiative (EFI) is a broad, interdisciplinary effort aimed at promoting the use of forecasts to understand, manage, and conserve ecosystems and the services they provide. The EFI 2019 meeting is aimed at bringing together scientists, agencies, industry, and stakeholders to build a community of practice and advance research, applications, and collaboration around near-term (subdaily to decadal) ecological forecasts. EFI2019 is sponsored by the Alfred P. Sloan Foundation, the Frederick S. Pardee Center for the Study of the Longer-Range Future at Boston University, and the National Science Foundation’s Office of International Science and Engineering. @ecoforecast #efi2019 Speaker Abstracts Session 1: Theory and Synthesis Monday, May 13 9:00 am S1.1: Keynote Ecological forecasting: the role of observations in models David Schimel1 [email protected] 1NASA JPL [abstract] 2 @ecoforecast #efi2019 Session 1: Theory and Synthesis Monday, May 13 9:00 am S1.2: Lightning Talk Understanding the uncertainties in estimating post-fire recovery of biomass using the Ecosystem Demography (EDv2.2) model Karun Pandit1, Hamid Dashti1, Nancy F. Glenn1, Alejandro N. Flores1, Kaitlin C. Maguire2, Douglas J. Shinneman2, Gerald N. Flerchinger3, Aaron W. Fellows3 [email protected] 1Boise State University; 2U.S. Geological Survey; 3ARS Frequent wildfires in the sagebrush-steppe ecosystems in the Western United States lead to heavy biodiversity loss, and changes in vegetation composition. It is debated in literature whether fires are beneficial or not for maintaining sagebrush ecosystems, it is essential that we understand the impact of these fires in terms of recovery time and potential changes in vegetation composition. The objective of this study is to estimate post-fire recovery of vegetation in the Ecosystem Demography (EDv2.2) model and quantify uncertainties by comparing with satellite-derived information. This study builds upon previous work in biomass loss and post-fire recovery from the 2015 Soda Fire in the Great Basin, Western United States. We initialized EDv2.2 with the existing vegetation ecosystem using mean metrics based on a field inventory dataset along with fire disturbance from Landsat 8 data and the 2015 fire. We ran the EDv2.2 model for thirty years to observe changes in above ground biomass and PFT distributions in the study area through the years. We also compared overall biomass growth and its spatial patterns projected by EDv2.2 with relevant indices from satellite data from the year 2019. These included NDVI and GPP derived from the Landsat 8 data and PFT classifications based on AVIRIS-NG data from the study area. Preliminary results from EDv2.2 modeling shows spatial patterns of vegetation regrowth being significantly influenced by precipitation and elevation. We observed that the initially grass-dominated areas post-fire are gradually replaced by the shrub PFT in later years. We also found that the volume of biomass regrowth during initial four years post-fire from EDv2.2 matches well with that derived from Landsat 8 images. 3 @ecoforecast #efi2019 Session 1: Theory and Synthesis Monday, May 13 9:00 am S1.3: Lightning Talk Integrating evolutionary history into forecasts of species assembly Amanda Gallinat1, William D. Pearse1 [email protected] 1Utah State University As climate change alters habitats and species distributions, there is a strong need for predictive tools that describe where species will occur and potentially interact under future conditions. Species’ present-day ecological responses are constrained by their evolutionary history, so our understanding and forecasts of those responses may be improved with the use of phylogeny. Species’ phylogeny reflects their shared biogeography, the processes by which functional traits and environmental sensitivities evolved, and how environmentally constrained different groups of species are. With the overarching goal of integrating evolutionary history into forecasts of species assembly, we have been using novel eco-phylogenetic tools to analyze regional species occurrence data for plants, birds, and mammals collected by the National Ecological Observatory Network (NEON), Forest Inventory & Analysis, Breeding Bird Survey, and Thibault et al. 2011. We contrasted the relative importance of species’ traits, phylogeny, and environmental responses for predicting species occurrences in plants, birds, and mammals. Our preliminary results show that environmental tolerances are strongly conserved in all three groups; in other words, related species share similar environmental sensitivities, which could be leveraged to impute sensitivities for species that lack data. And while functional traits also exhibit phylogenetic signal in all taxa, we find that the signal of environmental tolerances is stronger than that of traits alone. By combining information about species’ evolution, functional traits, and present-day environmental responses, we can produce models that make more powerful predictions about the evolution of species’ niches, and their responses to future environmental change. 4 @ecoforecast #efi2019 Session 1: Theory and Synthesis Monday, May 13 9:00 am S1.4: Lightning Talk Estimating Body Temperature and Thermal Performance at fine spatial and temporal scales Francis Choi1, Tarik Gouiher1, Fernando Lima, Gil Rilov2, Rui Seabra, Brian Helmuth1 [email protected] 1Northeastern University; 2Israel Oceanographic & Limnological Institute The rocky intertidal is one of the most dynamic and thermally variable ecosystems, where the joint influences of solar radiation, temperature and topography can lead to differences of up to 20°C over centimeter scales. However, the ecological importance of this variation in the face of climate change remains poorly understood. Here, we present a novel technique for modelling microhabitat heterogeneity and patterns of thermal physiology among interacting organisms. We used drone photogrammetry to re-create virtual topographic maps at a resolution of 400 cm2, which are then fed as inputs to a heat budget model estimating hourly surface temperature. These body temperature layers are then converted to thermal performance layers for organisms using thermal performance curves, creating physiological “landscapes” that display spatially-explicit patterns of “microrefugia”. Our analyses show how nonlinear interactions between these layers lead to distinct predictions about organismal performance and survivorship from those made using any individual layer alone. For instance, thermal performance layers reveal that microrefugia are variable through time and space, showing how mobile species must continue to migrate between microhabitats in order to maintain optimal performance. This approach provides a method for exploring the role of micro-topographic variability in driving organismal vulnerability to environmental change. 5 @ecoforecast #efi2019 Session 1: Theory and Synthesis Monday, May 13 9:00 am S1.5: Lightning Talk Forecasting Population Impacts of Chronic Wasting Disease Alison Ketz1, Daniel J. Storm2, Michael Samuel1, Robin E. Russell3, Daniel P. Walsh3 [email protected] 1University of Wisconsin, Madison; 2Wisconsin Department of Natural Resources; 3U.S. Geological Survey, National Wildlife Health Center Forecasts of wildlife disease typically focus on predictions of geographic spread, temporal dynamics of disease transmission, and the impact of management actions on epidemiological processes. Forecasting the population impacts of an epidemic are further complicated by species- specific demography, inter-specific interactions of host and pathogen, genetics, and spatial- temporal factors influencing patterns of infection, recruitment, and mortality. Chronic wasting disease (CWD) is a contagious prion disease affecting four species of free-ranging and captive cervids in North America. Geographic detection and distribution of CWD noticeably increased after 2002, although the disease has been present in North America since the 1960s. The prolonged course of infection has led to lengthy epizootics that last for decades, making population effects difficult to determine. We are in development of a model to forecast population effects of CWD on white-tailed deer in Wisconsin. As prevalence and spread continue to accelerate, management actions to mitigate CWD impacts will be challenging, costly, and will likely require changes in how we manage cervid populations. 6 @ecoforecast #efi2019 Session 2: Decision Support Monday, May 13 10:45 am S2.1: Keynote Combining Forecasts Yael Grushka-Cockayne1, Jason Merrick2 [email protected] 1Harvard University, 2Virginia Commonwealth University Early research in forecast aggregation focused on Bayesian approaches that account for forecast accuracy and correlation among forecasts. Other research has examined why in practice such theoretically sound methods are often outperformed by simpler techniques such as the average. In recent years, the wisdom of the crowd literature has encouraged the exploration of alternative heuristics that performed better than even the simple average in some cases. In this talk, we will review alternative methods and consider how they are evaluated. We will provide guidance on when various methods perform well, and how one might use forecast aggregation in practice. 7 @ecoforecast
Recommended publications
  • David Schindler, 5 William H. Schlesinger, 6 Daniel Simberloff, 7
    R EPORTS Forecasting Agriculturally Driven Global Environmental Change David Tilman,1* Joseph Fargione,1 Brian Wolff,1 Carla D’Antonio,2 Andrew Dobson,3 Robert Howarth,4 David Schindler,5 William H. Schlesinger,6 Daniel Simberloff,7 Deborah Swackhamer8 During the next 50 years, which is likely to be the final period of rapid agri- cultural expansion, demand for food by a wealthier and 50% larger global population will be a major driver of global environmental change. Should past dependences of the global environmental impacts of agriculture on human population and consumption continue, 109 hectares of natural ecosystems would be converted to agriculture by 2050. This would be accompanied by 2.4- to 2.7-fold increases in nitrogen- and phosphorus-driven eutrophication of terrestrial, freshwater, and near-shore marine ecosystems, and comparable increases in pesticide use. This eutrophication and habitat destruction would cause unprecedented ecosystem simplification, loss of ecosystem services, and species extinctions. Significant scientific advances and regulatory, technolog- ical, and policy changes are needed to control the environmental impacts of agricultural expansion. During the first 35 years of the Green Revolu- ecosystems by the use and release of limiting tion, global grain production doubled, greatly resources that influence ecosystem functioning reducing food shortages, but at high environ- (nitrogen, phosphorus, and water), release of mental cost (1–5). In addition to its effects on pesticides, and conversion of natural ecosys- greenhouse gases (1, 6, 7), agriculture affects tems to agriculture. These sources of global change may rival climate change in environ- 1Department of Ecology, Evolution and Behavior, Uni- mental and societal impacts (2, 8).
    [Show full text]
  • Profile of Stephen R. Carpenter
    PROFILE Profile of Stephen R. Carpenter hether you are a fisher- man, a kayaker, or just a lover of the outdoors, the sight—and smell—of a Wscummy, algae-covered lake may not be particularly appealing. For Stephen R. Carpenter, who is all of the above as well as a renowned lake ecologist, the problems associated with this algae buildup, or eutrophication, go far deeper than simple aesthetics. ‘‘Eu- trophication is a significant environmen- tal problem that can impact humans on a recreational, economic, and even pub- lic health level,’’ says Carpenter, ‘‘and it’s likely to intensify in the coming decades due to increases in human pop- ulation, demand for more food, land conversion, and fertilizer use.’’ Carpenter, the S. A. Forbes Professor of Zoology and Halverson Professor of Limnology at the University of Wiscon- sin–Madison (Madison, WI), has studied freshwater ecology for over 30 years. Stephen R. Carpenter and algae on Lake Mendota, WI. His multitude of research interests in- clude eutrophication, aquatic food webs, nutrient cycling, and ecological econom- outdoors at an early age. Carpenter was an aquatic systems ecologist, and ics. Beyond his research and teaching, spent most of his youth in Bethesda, that field really captured my imagination.’’ Carpenter also has, among other activi- MD. ‘‘It was a much smaller place back Carpenter performed undergraduate ties, served on numerous National Sci- then,’’ he says. ‘‘Bethesda was at the research for Fisher, who specialized in ence Foundation (NSF) advisory panels, urban fringe of DC. Everything beyond stream ecology, and Carpenter pub- been President of the Ecological Society that was rural.’’ His father, Richard, was lished his first paper on the primary of America (2001–2002), and served as a chemist, so there was always a lot of production of macrophytes (rooted the Chair of the Beijer Institute of Eco- science discussion in the household.
    [Show full text]
  • Model-Free Forecasting Outperforms the Correct Mechanistic Model for Simulated and Experimental Data
    Model-free forecasting outperforms the correct mechanistic model for simulated and experimental data Charles T. Perrettia,1, Stephan B. Munchb, and George Sugiharaa aScripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093; and bFisheries Ecology Division, Southwest Fisheries Science Center, Santa Cruz, CA 95060 Edited by Peter J. Bickel, University of California, Berkeley, CA, and approved January 10, 2013 (received for review September 14, 2012) Accurate predictions of species abundance remain one of the most ARMA time series models have been used extensively in ecology; vexing challenges in ecology. This observation is perhaps unsurpris- recent examples include forecasting quasi-extinction risk (10), ing, because population dynamics are often strongly forced and investigating the effects of climate change on fisheries (11), and highly nonlinear. Recently, however, numerous statistical techni- detecting critical thresholds in ecosystem dynamics (12). SSR ques have been proposed for fitting highly parameterized mecha- methods have been less pervasive in ecology (13, 14), although nistic models to complex time series, potentially providing the they are ubiquitous in many other scientific disciplines for de- machinery necessary for generating useful predictions. Alterna- scribing stochastic nonlinear systems (15). tively, there is a wide variety of comparatively simple model-free Here, we pose a rather conservative challenge and ask whether forecasting methods that could be used to predict abundance. Here a correctly specified mechanistic model, fit with commonly used we pose a rather conservative challenge and ask whether a correctly statistical techniques, can provide better forecasts than simple specified mechanistic model, fit with commonly used statistical tech- niques, can provide better forecasts than simple model-free meth- model-free methods for ecological systems with noisy nonlinear ods for ecological systems with noisy nonlinear dynamics.
    [Show full text]
  • Noaa's Ecological Forecasting
    NOAA’S ECOLOGICAL FORECASTING Ecological forecasts use measurements of the physical and biological environment to predict ecological conditions that can impact natural resources, people, communities, and economies. NOAA aims to deliver accurate, relevant, timely, and reliable ecological forecasts that power the blue economy and build climate resilience. These products and services are made available to coastal resource managers, private industry, and the public. Harmful algal blooms (HABs) Forecasts Hypoxia Forecasts HABs occur in every state and are changing in Hypoxia (low oxygen) has dramatically increased in U.S. frequency, toxicity, and duration. Both toxic and non- coastal systems, with large “dead zones” in Lake Erie, toxic HABs threaten human and marine mammal Chesapeake Bay, and Gulf of Mexico occurring annually. health, drinking water, tourism, commercial and The consequences of such large dead zones include recreational fisheries, and aquaculture. Short-term massive fish kills, loss of fisheries habitat, and economic HAB forecasts predict the intensity, location, and losses in commercially and recreationally valuable fishies. trajectory of blooms, and respiratory health risks of In Lake Erie, hypoxic water reaching the water intake for HABs in some areas. Longer-term forecasts predict cities along the coast can affect water treatment, the severity of HABs for the bloom season in a potentially impacting approximately 2 million residents. particular region. Scenario forecasts are used to test NOAA hypoxia forecasts aim to provide coastal managers the impact of changing environmental conditions, and stakeholders with the information needed to take such as nutrient pollution and climate change, on HAB proactive action to mitigate the impacts of an ongoing occurrence over multi-year time scales.
    [Show full text]
  • Applying Algorithmic Accountability Frameworks with Domain-Specific Codes of Ethics: a Case Study in Ecosystem Forecasting for Shellfish Toxicity in the Gulf of Maine
    Applying Algorithmic Accountability Frameworks with Domain-specific Codes of Ethics: A Case Study in Ecosystem Forecasting for Shellfish Toxicity in the Gulf of Maine Isabella Grasso David Russell Abigail Matthews [email protected] [email protected] [email protected] Clarkson University Clarkson University University of Wisconsin-Madison Potsdam, New York Potsdam, New York Madison, Wisconsin Jeanna Matthews Nicholas R. Record [email protected] [email protected] Clarkson University Bigelow Laboratory for Ocean Potsdam, New York Sciences East Boothbay, Maine ABSTRACT CCS CONCEPTS Ecological forecasts are used to inform decisions that can have · Social and professional topics → Codes of ethics; · Applied significant impacts on the lives of individuals and on the health computing → Environmental sciences; · Human-centered com- of ecosystems. These forecasts, or models, embody the ethics of puting → Walkthrough evaluations; their creators as well as many seemingly arbitrary implementation choices made along the way. They can contain implementation KEYWORDS errors as well as reflect patterns of bias learned when ingesting Algorithmic accountability, ethics, ecology, forecasting datasets derived from past biased decision making. Principles and frameworks for algorithmic accountability allow a wide range of ACM Reference Format: stakeholders to place the results of models and software systems Isabella Grasso, David Russell, Abigail Matthews, Jeanna Matthews, and Nicholas into context. We demonstrate how the combination of algorithmic R. Record. 2020. Applying Algorithmic Accountability Frameworks with accountability frameworks and domain-specific codes of ethics help Domain-specific Codes of Ethics: A Case Study in Ecosystem Forecast- answer calls to uphold fairness and human values, specifically in ing for Shellfish Toxicity in the Gulf of Maine.
    [Show full text]
  • Outstanding Challenges in the Transferability of Ecological Models
    UC Davis UC Davis Previously Published Works Title Outstanding Challenges in the Transferability of Ecological Models. Permalink https://escholarship.org/uc/item/4r97d4np Journal Trends in ecology & evolution, 33(10) ISSN 0169-5347 Authors Yates, Katherine L Bouchet, Phil J Caley, M Julian et al. Publication Date 2018-10-01 DOI 10.1016/j.tree.2018.08.001 Peer reviewed eScholarship.org Powered by the California Digital Library University of California TREE 2418 1–13 Review Outstanding Challenges in the Transferability of Ecological Models 1,2, ,y 3,y 4,5 4,5 Katherine L. Yates , * Phil J. Bouchet, M. Julian Caley, Kerrie Mengersen, 6 1 7 8 9 Christophe F. Randin, Stephen Parnell, Alan H. Fielding, Andrew J. Bamford, Stephen Ban, 10 11 12 13 14 A. Márcia Barbosa, Carsten F. Dormann, Jane Elith, Clare B. Embling, Gary N. Ervin, 15 16 17 18,19 20 Rebecca Fisher, Susan Gould, Roland F. Graf, Edward J. Gregr, Patrick N. Halpin, 21 22 23 24 Risto K. Heikkinen, Stefan Heinänen, Alice R. Jones, Periyadan K. Krishnakumar, 25 26 20,27 28,23 Valentina Lauria, Hector Lozano-Montes, Laura Mannocci, Camille Mellin, 29 30 31 32 Mohsen B. Mesgaran, Elena Moreno-Amat, Sophie Mormede, Emilie Novaczek, 33 20 34 35 Steffen Oppel, Guillermo Ortuño Crespo, A. Townsend Peterson, Giovanni Rapacciuolo, 20 13 36 36,37 38 Jason J. Roberts, Rebecca E. Ross, Kylie L. Scales, David Schoeman, Paul Snelgrove, 39 40 41 12 42,43 Göran Sundblad, Wilfried Thuiller, Leigh G. Torres, Heroen Verbruggen, Lifei Wang, 44 45 46 47,48 Seth Wenger, Mark J.
    [Show full text]
  • July 21, 2020 Theory Working Group Call
    July 21, 2020 Theory Working Group Call Attendees: Amanda Gallinat, Jody Peters, Anna Sjodin, Christy Rollinson, Mike Dietze, Kathryn Wheeler, Glenda Wardle, John Foster, Michael Stemkovski, Abby Lewis Agenda: 1. Peter Adler needs to step down as the Theory Working Group chair. He will continue to provide input and follow discussions, when possible, but does not have the time to join the calls. Does anyone else want to lead/co-lead the group? a. Glenda, Christy, Abby, Amanda are all potential options b. Jody and Mike to follow up with all 4 about options 2. Update from Anna and Gretchen about their forecasting, prediction, and projection vocab analyses. n=106 respondents to the survey a. Figures b. Conceptual Diagram c. Given the survey data/figures, Anna and Gretchen came up with two ideas for forecast definitions, based on interpretation of the survey data. Anna/Gretchen are happy to have them edited, or a new definition created, by the Theory group. i. A forecast is an estimate, and the associated uncertainty of that estimate, about the future state of a system. ii. A forecast is an estimate about the state of a system in the future, or in a different space, and the uncertainty associated with that estimate. d. What is not considered in these definitions or is there something that didn’t come up in the surveys that would be helpful to ecological forecasting. e. Novel conditions may be a way to combine forecasting to future time/space. Is “novel conditions” too vague? No analog could be another option. Out of sample prediction.
    [Show full text]
  • The Ecological Forecast Horizon, and Examples of Its Uses and Determinants
    bioRxiv preprint doi: https://doi.org/10.1101/013441; this version posted March 29, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The Ecological Forecast Horizon, and examples of its uses and determinants 1,2 2 Petchey, Owen L. [email protected] Pontarp, Mikael1,10 [email protected] 1 4 Massie, Thomas M. [email protected] Kéfi, Sonia3 [email protected] 1 6 Ozgul, Arpat [email protected] Weilenmann, Maja1 [email protected] 1 8 Palamara, Gian Marco [email protected] Altermatt, Florian1,2 [email protected] 4 10 Matthews, Blake [email protected] Levine, Jonathan M.5 [email protected] 6 12 Childs, Dylan Z. [email protected] McGill, Brian J.7 [email protected] 8 14 Schaepman, Michael E. [email protected] Schmid, Bernhard1 [email protected] 2,5 16 Spaak, Piet [email protected] Beckerman, Andrew P.6 [email protected] 1 18 Pennekamp, Frank [email protected] Pearse, Ian S.9 [email protected] 20 1 University of Zurich, Institute of Evolutionary Biology and Environmental Studies, Zurich, 22 Switzerland 2 Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic 24 Ecology, Dübendorf, Switzerland 3 Institut des Sciences de l’Evolution, Université de Montpellier, CNRS, IRD, EPHE, CC065,
    [Show full text]
  • Ecosystem Science Capabilities Required to Support NOAA's
    Ecosystem Science Capabilities Required to Support NOAA’s Mission in the Year 2020 S. A. Murawski and G. C. Matlock (editors) U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service – National Ocean Service NOAA Technical Memorandum NMFS-F/SPO-74 July 2006 Ecosystem Science Capabilities Required to Support NOAA’s Mission in the Year 2020 S. A. Murawski and G. C. Matlock (editors) NOAA Technical Memorandum NMFS-F/SPO-74 July 2006 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Oceanic and Atmospheric Administration Vice Admiral Conrad C. Lautenbacher, Jr., USN (Ret.) Under Secretary for Oceans and Atmosphere National Marine Fisheries Service Dr. William T. Hogarth, Assistant Administrator for Fisheries National Ocean Service John H. Dunnigan – Assistant Administrator for Ocean Service Suggested Citations: Murawski, S.A., and G.C. Matlock (editors). 2006. Ecosystem Science Capabilities Required to Support NOAA’s Mission in the Year 2020. U.S. Dep. Commerce, NOAA Tech. Memo. NMFS-F/SPO-74, 97 p. Individual sections: Carter, G., P. Restrepo, J. Hameedi, P. Ortner, C. Sellinger, J. Stein, and T. Beechie, 2006. Freshwater Issues. pp. 29-39. In: S.A. Murawski and G.C. Matlock (editors). Ecosystem Science Capabilities Required to Support NOAA’s Mission in the Year 2020. U.S. Dep. Commerce, NOAA Tech. Memo. NMFS-F/SPO-74, 97 p. A copy of the report may be obtained from: National Marine Fisheries Service Office of Science and Technology 1315 East-West Highway, 12th Floor Silver Spring, Maryland 20910 or National Ocean Service National Centers for Coastal Ocean Science 1305 East West Highway, Room 8110 Silver Spring, Maryland 20910 Or Online at: http://spo.nmfs.noaa.gov/tm/ Overview: Commission on Ocean Policy’s report Ecosystem Science Capabilities (USCOP, 2004), and the Required to Support NOAA’s Administration’s response to that report in the U.S.
    [Show full text]
  • Overfishing Or Environmental Change: Establishing the Frequency of Changes
    Overfishing or environmental change: Establishing the frequency of changes in productivity of marine fish stocks Katyana A. Vert-pre A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2013 Committee: Ray Hilborn Andre E. Punt Timothy E. Essington Program Authorized to Offer Degree: School of Aquatic and Fishery Sciences © _Copyright 2013 Katyana A. Vert-pre University of Washington Abstract Overfishing or environmental change: Establishing the frequency of changes in productivity of marine fish stocks Katyana A. Vert-pre Chair of the Supervisory Committee: Professor Ray Hilborn Professor School of Aquatic and Fishery Sciences The relative importance of environmental conditions and stock abundance in determining the productivity of fish stocks has been a subject of an on-going debate. The controversy can be formulated as four competing hypotheses: 1) productivity is driven by fishing pressure, which affects abundance, subsequent recruitment; 2) productivity is regime- driven, with periods of good and bad productivity unrelated to abundance; 3) productivity is random from year to year and unrelated to abundance and is temporally uncorrelated; and 4) both stock abundance and regimes of good and bad conditions interact to affect productivity. The goals of this study are (1) to evaluate the support for each of these hypotheses by examining the productivity of marine species using a large number of stocks, and (2) to evaluate the same hypotheses with respect to recruitment. This project uses historic data from about 230 assessments from the RAM Legacy Database. Each of the four hypotheses will be formulated as alternative models, and the support for the hypotheses evaluated using model selection via AICc and AICc weights.
    [Show full text]
  • Ecological Forecasts to Inform Near-Term Management of Threats to Biodiversity
    Received: 29 March 2020 | Accepted: 1 June 2020 DOI: 10.1111/gcb.15272 PRIMARY RESEARCH ARTICLE Ecological forecasts to inform near-term management of threats to biodiversity Ayesha I. T. Tulloch1 | Valerie Hagger2 | Aaron C. Greenville1 1School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Abstract Australia Ecosystems are being altered by rapid and interacting changes in natural processes and 2 School of Biological Sciences, The anthropogenic threats to biodiversity. Uncertainty in historical, current and future ef- University of Queensland, St. Lucia, Qld, Australia fectiveness of actions hampers decisions about how to mitigate changes to prevent bio- diversity loss and species extinctions. Research in resource management, agriculture and Correspondence Ayesha I. T. Tulloch, Desert Ecology health indicates that forecasts predicting the effects of near-term or seasonal environ- Research Group, Heydon-Laurence Building mental conditions on management greatly improve outcomes. Such forecasts help re- A08, School of Life and Environmental Sciences, University of Sydney, Sydney, solve uncertainties about when and how to operationalize management. We reviewed NSW 2006, Australia. the scientific literature on environmental management to investigate whether near-term Email: [email protected] forecasts are developed to inform biodiversity decisions in Australia, a nation with one of Funding information the highest recent extinction rates across the globe. We found that forecasts focused on Australian Research Council, Grant/Award Number: DE170100599; Ecological Society economic objectives (e.g. fisheries management) predict on significantly shorter timelines of Australia; Commonwealth Scientific and and answer a broader range of management questions than forecasts focused on biodi- Industrial Research Organisation versity conservation.
    [Show full text]
  • Bayesian Forecasting Using Models of Ecological Diffusion
    Ecology Letters, (2017) doi: 10.1111/ele.12763 LETTER When mechanism matters: Bayesian forecasting using models of ecological diffusion Abstract Trevor J. Hefley,1* Mevin B. Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal pro- Hooten,2 Robin E. Russell,3 cesses such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling pro- Daniel P. Walsh3 and vides a framework to make statistical inference and probabilistic forecasts, using mechanistic James A. Powell4 ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phe- nomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting. Keywords Agent-based model, Bayesian analysis, boosted regression trees, dispersal, generalised additive model, invasion, partial differential equation, prediction, spatial confounding. Ecology Letters (2017) (Gneiting & Katzfuss 2014; Raftery 2016). Hierarchical mod- INTRODUCTION elling is a framework to specify uncertainties associated with Mathematical models that are specified as differential equa- ecological systems (Cressie et al. 2009) and Bayesian inference tions play an essential role in describing and understanding provides a coherent means for making probabilistic forecasts ecological processes.
    [Show full text]