<<

rotations.nb:11/3/04::13:48:13 1

RotationsandAngularmomentum

Á Intro

Thematerialheremaybefoundin

SakuraiChap3:1-3,(5-6),7,(9-10) MerzbacherChap11,17.

Chapter11ofMerzbacherconcentratesonorbitalangularmomentum.Sakurai,andCh17ofMerzbacherfocuson angularmomentuminrelationtothegroupofrotations.Justaslinearmomentumisrelatedtothegroup, angularmomentumoperatorsaregeneratorsofrotations.Thegoalistopresentthebasicsin5lecturesfocusingon

1.J asthegeneratorofrotations. 2.RepresentationsofSO 3 3.Additionofangularmomentum+ / 4.OrbitalangularmomentumandYlm 's 5.operators.

Á Rotations&SO(3)

ü Rotationsofvectors

Beginwithadiscussionofrotationsappliedtoa3-dimensionalrealvectorspace.Thevectorsaredescribedbythreereal vx ,e.g.v = v .TheofavectorisvT = v , v , v .Thereisaninnerproductdefinedbetweentwo ML y ]\ x y z M ] M vz ] + / T M T ] vectorsbyu ÿ v =Nv ÿ^u = uvcos f,wherefistheanglebetweenthetwovectors.Underatheinnerproduct betweenanytwovectorsispreserved,i.e.thelengthofanyvectorandtheanglebetweenanytwovectorsdoesn't change.Arotationcanbedescribedbya3ä3realorthogonalRwhichoperatesonavectorbytheusualrulesof matrixmultiplication

v'x vx v' = R v and v' , v' , v' = v , v , v RT ML y ]\ ML y ]\ x y z x y z M ] M ] M v'z ] M vz ] + / + / M ]]] M ]]] N ^ N ^ Topreservetheinnerproduct,itisrequirdthatRT ÿ R = 1

u'ÿ v' = uRT ÿ Rv = u1v = u ÿ v

Asanexample,arotationbyfaroundthez-axis(orinthexy-)isgivenby rotations.nb:11/3/04::13:48:13 2

cos f sin f 0 R f = sin f cos f 0 z ML ]\ M ] + / M 0 0 1 ] M ]]] N ^ Thesignconventionsareappropriateforarighthandedcoordinatesystem:putthethumbofrighthandalongz-axis, extendfingersalongx-axis,andcurlfingersindirectionofy-axis.

z

y x

Thedirectionofrotationforfiscounter-clockwisewhenlookingdownfromthe+zdirection,i.e.rotatethex-axisinto they-axis.Similarlytherotationsaroundthexandyaxesare

cos f 0 sin f 1 0 0 R f = 0 1 0 andR f = 0 cos f sin f y ML ]\ x ML ]\ M ] M ] + / M sin f 0 cos f ] + / M 0 sin f cos f ] M ]]] M ]]] N ^ N ^ Thesignofsin finRy isrelatedtothehanded-nessofthecoordinatesystemandthesenseofrotation.For 3-,itisequivalenttotalkaboutrotationsaroundthez-axis,orrotationsinthexy-plane.Inanyother

ofdimensions,thecorrectlanguageistotalkaboutrotationsinthexix j -plane,wherexi definesoneofthecoordinate directionsofthevectorspace.Thus,whilefor3-dimensionsthereare3independentrotations,inN -dimensions,there willbe ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅN N1 independentrotations. + 2 /

ü Directionkets

Tomakethecorrespondencetoquantumstates,justasatranslationwasdefinedbyitsactiononeigenkets,a rotationaroundthealsocanactonpositioneigenketsby è x ' = R x = R x ƒ ? ƒ ? ƒ ? è whereadistinctionhasbeenmadebetweentheR,whichactsonthestate,andtherotationmatrixRwhichacts onthecoordinates.Sincetherotationsdon'tchangethelengthofthevector,itispossibletodefinespherical coordinates,r, q, f,andsphericalpositionkets, x Ø r ≈ n` ,whererdeterminestheradialposition,andn` indicates ` thedirectionfromtheorigin.Therotationsactonlyontheƒ ? ƒ ? ƒn ?degreesoffreedom. è ƒ ? R r ≈ n` = r ≈ R ÿ n` +ƒ ? ƒ ?/ ƒ ? ƒ ? Directionketswillbeusedmoreextensivelyinthediscussionoforbitalangularmomentumandsphericalharmonics, butfornowtheyareusefulforillustratingthesetofrotations.Thesetofalldirectionkets n` canbevisualizedbythe ofa,andtherotationsarethesetofallpossiblewaystoreorientthatsphere.ƒ ? rotations.nb:11/3/04::13:48:13 3

ü OrthognalgroupSO(3)

Thesetofallpossiblerotationsformagroup.Considerthefourproperties:closure,identity,inverseandassociativity. Usingthepictureofrotationsasreorientationsofasphere,onecanconstructvisualizationstoillustrateeachproperty.

Withgreatermathematicalrigor,thesetofallpossiblerotationsformthegroupSO(3),whereOØorthogonal,3Ø3 dimensions,andSØspecial,whichinthiscasemeansthematrixhasadeterminantof1.Therotationsaredescribedby threecontinuous,butbounded,parameters.Fromthematrixofview,a3ä3matrixhasninedegreesoffreedom. T Theconstraintthatthematrixisorthogonal,Ri jR j k = di k yields6conditions,i.e.threefori = k andthreefori ∫ k . Thepropertiesofagroupareobeyed:

closure: ForanytwoorthogonalmatricesR1 andR2 ,theproductR3 = R1R2 ,isalsoorthogonal.Thecombination oftworotationsisalsoarotation. identity: The3 ä3unitmatrixactsasanidentityelementforthegroup. 1R = R 1 = R inverse: EachelementhasaninverseR1 = RT ,RT R = RRT = 1

associativity: R1 R2R3 = R1R2 R3 + / + / UnliketheTranslationgroup,SO(3)isnotabelian,i.e.ingeneralR1R2 ∫ R2R1 .

ThesignificanceoftheS-condition,Det R = 1,isthatreflectionsarenotincludedinthegroup,i.e.forthreedimensions onecannotturnaright-handedobjectintoaleft-handedobjectbydoingarotation.Ifweallowedreflections,e.g.

1 0 0 0 1 0 ML ]\ M ] M 0 0 1 ] M ] N ^ Then,thegroupwouldbeO(3)insteadofSO(3).O(3)iscalled"disconnected"sincenotallelementsofthegroupcan bereachedbyasuccessionofinfinitesimaltransformations.SO(3)isconnected.

TherotationmatricesRarejustone"representation"ofthegroupSO(3).Fortwodifferentrepresentations,therehasto bea1 ¨1mappingoftheelementsofonerepresentationtotheother.Themappinghastopreservethecombinationlaw. ConsidertworepresentationsRandS .Labelarotationbyasubscriptwhichrepresentsthethreeparameterstodefinea

rotation,andidentifyRa ¨ Sa ,IfR3 = R1R2 ,thenwemusthaveS3 = S1S2 topreservethecombinatinlaw.

` ü Fullsetofrotations:+n, f/

Therearetwocommonmethodsforparameterizingrotations.Thefirstistochooseanaxisforrotationandthenperform arotationbyananglebetween0andp.Theaxisofrotationcanbechosenanywhereonthesphere.Whynot0 ¨ 2p? Thenrotationswithpolesonoppositesidesofthespherewouldberedundant.AnexplicitformforR n`, f willbegiven afterdevelopingthelanguageofinfinitesimalrotations. + /

Draw your own picture showing the rotation of a sphere around an off + axis pole. The sphere represents the set of states, n, i.e. the set of direction kets. The rotation reorients the sphere. rotations.nb:11/3/04::13:48:13 4

ü Eulerangles

ThesecondparameterizationistogiveEulerangles.Inthismethodonedescribeswherethe"northpole"movesto underarotation,andtheofthesphereafterthepolehasbeenmoved.Thelocationofthepoleisdetermined byfirstchoosingalongitudebyrotatingaroundthez-axis,thenalatitudebyrotatingaroundthenewy-axis.Finally, theorientationofthesphereisgivenbyafinalrotationaroundthenewz-axis.Pictorially,

Draw more pictures, showing the sequence of rotations to move the pole, and then reorient the sphere around the new pole.

IntheEulerparameterizationtherangeofanglesis

a = 0, 2p , b = 0, p , g = 0, 2p + / + / + / andanarbitraryrotationisgivenby

R a, b, g = Rz' g Ry' b Rz a + / + / + / + / Note thatthez'andy'rotationsarenotdefinedwithrespecttotheoriginalcoordinateaxes,butratherwithrespectto wherethoseaxeshavemovedwiththereorientationofthesphere.Lateritwillbeshownthat

Rz' g Ry' b Rz a = Rz a Ry b Rz g + / + / + / + / + / + / wheretheorderhasbeenreversed,butnowallrotationsareconvenientlydefinedaroundtheaxesoftheoriginal coordinatesystem.

ü Equivalencyofthetwoparameterizations

Thetwoparameterizationsmaynotseemequivalent,buttheyare,ascanbeseenbyapictorialmappingof n`, f to a, b, g .ObservethattherearetwowaystoproducethesamesetofEuleranglesconsistentwiththerestrictionof+ / fto +0, p . / + / This picture didn't make it into the classroom presentation. it's a bit of work

Thetwotechniqueshavedifferentuses.Euleranglestendtobemoreusefulforbuildingupactualrotationmatricesina

calculation.ThisisbecauseRz andRy aregenerallyfairlyeasytoconstructforarepresentation,andthematrix multiplicationisstraightforward.The n`, f notationhasadvantagesinsomeanalyticmanipulations,aswewillsee below. + / rotations.nb:11/3/04::13:48:13 5

ü J asthegeneratorofinfinitesimalrotations.

Inanalogytothediscussionoftranslationsandtimeevolution,itisusefultobuildupthefiniterotationsfrom generatorsofinfinitesimalrotations.Recognizingthatweareeventuallyinterestedinaquantummechanical formulation,itisusefultodevelopthisformalisminawaythatrealizestherotationsasunitaryoperations.Forexample, aninfinitesimalrotationaroundthez-axisisgivenby

Rz d = 1 i d Jz + / whereJz isthegeneratorofinfinitesimalrotationsaroundthez-axis.SinceRisunitary(note:orthogonalmatricesare unitary),J mustbeHermitian.Inthepresentcase,toleadingorderind

1 d 0 0 i 0 R d = d 1 0 orJ = i 0 0 z ML ]\ z ML ]\ M ] M ] + / M 0 0 1 ] M 0 0 0 ] M ]]] M ]]] N ^ N ^ Similarly,forthisrepresentation

0 0 0 0 0 i J = 0 0 i ,J = 0 0 0 x ML ]\ y ML ]\ M ] M ] M 0 i 0 ] M i 0 0 ] M ]]] M ]]] N ^ N ^ Note thatsincethisisstillaclassicaldiscussionIhaven'tputinanyfactorsof.

ü Commutationrelations

Thegeneratorsobeythecommutationrelations

Ji, J j = i ei jkJk # ' whereei jk = 1, if i j k is an even permutation of x y z = 1, if +i j k/is an odd permutation of x+ y z / = 0, if any+ two/ of i j k are equal + / + / asausefulasideei jkelmk = dild jm dimd jl .

Thecommutationrelationsareapropertyofthegroup,notjustaparticularrepresentation.Thecollectionofallthe commutatorrelationsforthegeneratorsissometimescalledthealgebraofthegeneratorsofthegroup,orjustthe algebraofthegroup.

ü Finiterotations

Forrotationsaroundaparticularaxis,itshouldbeclearthatwecanbuildupanarbitraryrotationbyasequenceof infinitesimalrotations,similartotheprocedureforbuildingupafintetranslationasthelimitingproductofalarge numberofinfinitesimals. rotations.nb:11/3/04::13:48:13 6

R f = Lim P Rz f n nض i + / - + s /1 n = Lim 1 i Jz f n nض = ei Jz f+ + s //

Itisnowpossibletogiveaformforanarbitraryrotationinthe n`, f parameterization.Theinfinitesimalrotation ` aroundthen-axisisgivenby + /

R n`, d = 1 i d n` ÿ J + / ThereisnoconcernaboutwhichcomponentofJ isoperatedonfirst,sincetheeffectsofcommutationamongstthe differentgenreatorsshowsupatsecondorderintheinfinitesimald.Thefiniterotationisthengivenby

` R n`, f = ei f nÿJ + /

Á RepresentationsofSO(3)

ü relationbetweenDandR-notational

Rotationscanacttochangeawidevarietyofobjects,e.g.classicalpositionvectors,positioneigenstates x ,operators suchasX ,PorL,angularmomentumstates lm etc.Inprinciple,thenotationRtodenotearotationoperatorcanbeƒ¶? ¹¹¶ ¹¶ ¹¶ usedforalloftheseapplications,ifasufficientlydetaileddefinitionissuppliƒ ? edforthecaseathand.Inpractice,a commonconventionistouseRwhentheobjectinquestionhasthepropertiesofapositionvector,buttouseanotation Dwhenoperatingonangularmomentumstatesorobjectswithsimilarcharacteristics.Forexample,tooperateona classicalvectoruse

x'i = Ri jx j

ortooperateonapositioneigenstate

x' = R x = Ri jx j ƒ ? ƒ ? ƒ ? Incontrast,toperformarotationonastate a whichisanangularmomentumstate a = lm onewouldwrite ƒ ? ƒ ? ƒ ? a' = D R lm « ? + / « ? whereD R isanoperatorthatdependsonorbitalangularmomentuml.OnewouldstillwriteDintheexponentialform + / ` i ` D n, f = e ÅÅÅÅ Jÿn f + / buttheformofthegeneratorswouldbespecifictothesetofstates,orrepresentation,whichistheobjectoftherotation. Thesetofpossiblerepresentationsisquitelarge.Tosimplifythediscussionasmuchaspossible,onedefinesthe irreduciblerepresentationsofSO 3 whichisthesubjectofthenextsection. + / rotations.nb:11/3/04::13:48:13 7

ü Irreduciblerepresentations

ü Casimiroperatorsandmaximalsetofcommutingoperators.

Thefirstitemofbusinessistodetermineamaximalsetofcommutingoperatorsthatcanbesimultaneaously 2 2 diagonalized.ForSO(3)orSU(2)thiswouldbeJ andoneothercomponentofJ ,typicallytakentobeJz .J isan exampleofwhatisknownasaCasimiroperator.Casimiroperatorscommutewithalloperatorswithinthealgebraofthe group.OthergroupsmayhavemorethanoneCasimir.ThenumberofCasimiroperatorsisequaltothe"rank"ofthe group.SO(4)andSU(3)forexamplehavetwoCasimiroperatorsandarerank2.Generally,themostusefulCasimiris 2 2 2 thequadraticoperatorC = i Oi wheretheOi aretheinfinitesimalgeneratorsofthegroup.J issuchaquadratic casimiroperator.Ingroupswithmorethanonecasimiroperator,theyallcommutew½ itheachother.

Inadditiontothecasimiroperators,onecanchooseasetofoperatorsequalinnumbertotherankfromthegroup algebrathatalsocommutewitheachother.ForexampleinSU(3)onecanfindtwogeneratorsthatarediagonal.Soin general,theofamaximalsetofcommutingoperatorswithwhichtodefinetherepresentationsofagroupis twicetherank.

Forcompleteness,

2 2 2 2 J , Jz = Jx + Jy + Jz , Jz 2 2 # ' = #Jx + Jy , Jz '

= #Jx Jx, Jz + 'Jx, Jz Jx + Jy Jy, Jz + Jy, Jz Jy

= i# JxJy '+ J#yJx +'i JyJx +# JxJy ' # ' = 0 + / + /

ü Labelingofstates

2 SinceJ , Jz canbediagonalizedsimultaneously,wecanspecifiythestatesby j, m ,wheremistheeignevaluewhen 2 Jz operatesonthestateandtheoperationofJ yieldsa j ƒ ?

Jz j, m = m j, m 2 J « j, m? = a j« j, m? « ? « ? 2 wheretheeigenvalueofJ isnotyetdetermined.Notethatthelabelingofthestatesisratherarbitrary.InthecaseofJz , itisconvenienttousetheeigenvaluedirectly.Wewillalsotakethestates j, m tobenormalized. ƒ ? ü j-representationsasirreduciblerepresentations

AsJ 2 commuteswithallthegeneratorsofthegroup,italsocommuteswithanyfunctionofthosegenerators,andin particular J 2, D = 0.Aswithothercommutationrelations,thisimpliesthattherotationoperatorsdon'tchangethe eigenvalueof# J 2 ',

2 2 J D jm = DJ jm = Da j jm = a j D jm + ƒ ?/ ƒ ? ƒ ? + ƒ ?/ rotations.nb:11/3/04::13:48:13 8

Ontheotherhand Jz, D ∫ 0,andsotherotationsmixstatesofdifferentm-valuebutnotofdifferent j-value.Inthis casewesaythatallthestatesofagiven# ' j-value,takentogether,formarepresentationofthegroup.Thedimensionof therepresentationisequaltothenumberofdistinctstateswhichmaybechosenforthesame j-value.Inthecase of j-representationswesaythattherepresentationisirreducible,i.e.itisnotpossibletobreaktherepresentationdown intotwosubspacesthatdon'tmixundertheactionofrotations.Thus,theresultofperformingarotationonastate jm isgivenbyalinearcombinationofallstates jm' ƒ ?

j ƒ ? D jm = SDmm' jm' m' ƒ ? ƒ ? j wheretheexactvalueofthecoefficientsDmm' dependsontheparametersdescribingtherotation.

Á Orbitalangularmomentum

Thissectiondevelopsorbitalangularmomentumoperatorsinamanneranalagoustothedevelopmentofmomentumas thegeneratoroftranslations.

ü Directionkets

Beginwiththedirectionkets n` ,or q, f .Theangularbehaviorofaparticleinagivenstate,say b ,isgivenby ` yb q, f = n b .Thisisindirectanalogytothespatialfunctionƒ ? ƒ ? yb x = x b .Insteadofƒq,?f onecanuse ` z =+ cos /qasthepolarcoordinate,andstates; « ? z, f ,sothatyb z, f = n b+. / ; « ? ƒ ? ƒ ? + / ; « ? ü Rotations

Therotationactingonthedirectionketgives n` ' = D a, b, g n` = R a, b, g ÿ n` ,wherehereRisreservedtodenote therotationofvectors,Dtodenotethetransformationofstates,andtherotationislabeledbytheEuleranglesƒ ? + / ƒ ? ƒ + / ? .Thisis analagousto x' = T D x = x + D . ƒ ? + / ƒ ? ƒ ? ü InfinitesimalRotations

ThegeneratorsofRweredefinedaboveas3ä3matricesJx,y,z .Letthecorrespondinggenertorstooperateonstatesbe ` ` ` labeledLx,y,z .Forexample,theyactondirectionketsby n Ø n'  1 idn ÿ L n . ƒ ? ƒ ? + / ƒ ? ü Lasadifferentialoperator

Forspatialtranslations,thedifferentialformofthemomentumoperatorwasuncoveredbyshowingthat  ∑ x p b = i ÅÅÅÅ∑xÅÅÅ x b .ForLz theanalagousrelationis ; ‡ ƒ ? ; « ? `  ∑ ` n Lz b = i ÅÅÅÅ∑fÅÅÅ n b ; ‡ ƒ ?  ∑ ; « ?∑ ` = i x ÅÅÅÅÅÅÅ∑y y ÅÅÅÅÅÅÅ∑x n b ` = xxp, y xypx n0 ;b « ? + / ; « ? Moregenerally,arotationaroundthek -axis(orinthei j-plane)isgivenby ` ` n Lk b = ei jk xip j x jpi n b ; ‡ ƒ ? + / ; « ? rotations.nb:11/3/04::13:48:13 9

AlittleeffortshowsthatthealgebraofthegeneratorsLis

Li, L j = i ei jkLk # ' Thegeneratorscanbewrittenexplicitlyintermsofangularvariablesintheusualcoordinates

 ∑ ∑ Lx Ø i sin f ÅÅÅÅ∑qÅÅÅ cot q cos f ÅÅÅÅ∑fÅÅÅ , ∑ ∑ 0 Ly Ø i cos f ÅÅÅÅÅÅÅ∑q cot q sin f ÅÅÅÅÅÅÅ∑f , ∑ 0 Lz Ø i ÅÅÅÅÅÅÅ∑f

ThesecanbecombinedtoyieldtheCasimiroperatorL2

2 L2 Ø 2 ÅÅÅÅÅÅÅÅÅÅÅÅÅ1 ÅÅÅÅÅÅÅÅÅ∑ + ÅÅÅÅÅÅÅÅÅÅ1 ÅÅÅÅÅÅÅ∑ sin q ÅÅÅÅÅÅÅ∑ sin 2q ∑2f sin q ∑q ∑q , 0 2 ItisnotacoincidencethatL andLz arethedifferentialoperatorsthatarisefromperformingtheseparationof variables.AlthoughIhaven'tprovenitmyself,Isuspectstronglythatthereisanequivalencebetweentheabilityto separatevariablesandtheabilitytofindamaximalsetofcommutingvariables.

2 ü EigenstatesofL , Lz

2 EigenstatesofangularmomentumcanbechosentobesimultaneouseigenvaluesofJ andJz .Fororbitalangular 2 2 momentumweexpecteigenstatesofL andLz .Suppose,therefore,that b isaneigenstateofLz andL with eigenvaluesmandl l + 1 respectively.Thenlabelingthestateby lm givesƒ ? + / ƒ ? `  ∑ ` ` n Lz lm = i ÅÅÅÅ∑fÅÅÅ n lm = m n lm ; ‡ ƒ ? ; « ? ; « ? Thisisindependentofq,soitisreasonabletoseparatevariablesinboththecoordinatesandthestates

n` = z, f = z ä f

ƒlm? =ƒ l m?ä mƒ ? ƒ ? ƒ ? ƒ ? ƒ ? where m -ketsexistinthe f -space,and l m -ketsexistinthe z or q -space.Thenotation l m suggeststhatforeach ` valueofƒ m? ,thereareasetofstateslabeledbyƒ ? ƒ ? l.Theallowedrangeofƒ ? ƒ ?lisl ¥ m .Theamplitudeƒ ? n lm separatesas well ƒ ‡ ; « ? ` n lm = z l m f m ; « ? ; « ? ; « ? Thedifferentialequationcanthenberewrittenbydividingthroughby z l m , ; « ?  ∑ i ÅÅÅÅ∑fÅÅÅ f m = m f m ; « ? ; « ? andsolved

f m = ÅÅÅÅÅÅÅÅ1ÅÅÅÅÅÅ eimf 2p ; « ? r wherethenormalizationischosensothat rotations.nb:11/3/04::13:48:13 10

m m' = m 1 m' ; « ? = ;m‡ ƒ„ f? f f m' = ; „‡ f+¼ m fƒ ? ;f ‡/mƒ ' ? 2p = ¼ „; f ÅÅÅÅÅÅÅÅ«1 ?e;i m'«m f? 0 2p + / = d¼mm'

2 Similarly,inthez-space, z l m isafunctiononlyofq.InthedifferentialequationforL onecansubstitutethe solutionforLz ; « ?

2 n` L2 lm = 2 ÅÅÅÅÅÅÅÅÅÅÅÅÅ1 ÅÅÅÅÅÅÅÅÅ∑ + ÅÅÅÅÅÅÅÅÅÅ1 ÅÅÅÅÅÅÅ∑ sin q ÅÅÅÅÅÅÅ∑ n` lm sin 2q ∑2f sin q ∑q ∑q ; ‡ ƒ ? , 0 ; « ? or

2 z L2 l = 2 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅm + ÅÅÅÅÅÅÅÅÅÅÅ1 ÅÅÅÅÅÅÅ∑ sin f ÅÅÅÅÅÅÅ∑ z l m sin 2f sin f ∑q ∑q m ; ‡ ƒ ? , 0 ; « ? whichhasforsolutionstheassociatedLegendrepolynomials.

m z l m = clmPl z ; « ? + / Thenormalizationisgivenbytherequirement

ml l m = 1 ; « ? = „ z ml z z l m * m 2 = ¼ „ z c;lm«clm? ;Pl« ?z = c2 ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅl++m !+ // ¼lm 2l+1 +lƒm‡/! + ƒ ‡/ or,withaconventionalchoiceofphase,c = m ÅÅÅÅÅÅÅÅÅÅÅÅÅ2l+1 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅl m ! lm 2 +l+ƒm‡/! + / +ƒ‡/ Combiningthetwoforms,givesthesphericalharmonics

n` lm = Y q, f = m ÅÅÅÅÅÅÅÅÅÅÅÅÅ2l+1 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅl m ! eimfPm cos q lm 4p +l+ƒm‡/! l ; « ? + / + / +ƒ‡/ + / ü andcompleteness

Thereareanumberoforthogonalityandcompletenessrelationsregardingthestates lm andthedirection-kets n` . Startwith ƒ ? ƒ ?

n` n` ' = d n`, n` ' ` ` ;1 =« ?„W'+n' n/' ¼ ƒ ? ; ‡ sothat ` ` ` yb q, f = n „ W' n' n' b ` ` ` + /= ;„W‡ +¼' n nƒ' ?n;' ‡b/ ƒ ? ` ` ` = ¼ sin q;'„« q'„? f; 'd«n,?n' n' b = y¼ b q, f + / ; « ? + / Tomakethelaststepvalid,thed-functionneedstobedefinedas rotations.nb:11/3/04::13:48:13 11

` ` 1 d n, n' = ÅÅÅÅÅÅÅÅsin qÅÅÅ d q' q d f' f = d cos q' cos q d f' f = d z' z d f' f + / + / + / + / + / + / + / Next considerthe lm states ƒ ? 1 = S lm lm lm ƒ ? ; ‡ lm l'm' = m m' ml l' m' = dmm' ml l' m' = dmm'dll' ; « ? ; « ? ; « ? ; « ? Theprojectionoperatorsontothel-subspacearedefinedby

l Pl = S l m ml m=l ƒ ? ; ‡ Foragivenm,onemayalsodefineasumoverl

¶ Pm = S l m ml l=m ƒ ? ; ‡

Infact,eachoftheoperatorsPm = 1sinceintheq-spaceanyofthesets lm q formacompleteset.Thiscanbeseen byconsideringanangularwavefunctionwithadefinedvalueofm = m',ƒ ?

y = f q eim'f = z, f f . + /= S z, f; lm« lm? f lm = S; „W«' z,?f; lm« ?lm z', f' z', f' f lm ¼ ; « ? ; « ? ; « ? im'f' = S „ z'„f' z, f lm ml z' m f' f q' e lm 1¼ ; « ? ; « ? ; « ? + / i m'm f' = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ S „ z' z, f lm ml z' f q' „ f'e 2p lm + / r ¼ ; « ? ; « ? + / ¼ = 2p S „ z' z, f lm ml z' f q' dmm' r lm ¼ ; « ? ; « ? + / = 2p S „ z' z, f lm' m'l z' f q' r l ¼ ; « ? ; « ? + / = 2p S „ z' z l m' m'l z' f q' f m' r l ¼ ; « ? ; « ? + / ; « ? im'f = „ z'S z l m' m'l z' f q' e l à ; « ? ; « ? + / Now, thelastrequiresthat

f q = „ z'S z l m' m'l z' f q' l + / à ; « ? ; « ? + / ¶ whichisonlyvalidforanarbitrary f ifS z l m' m'l z' = z z' ,whichinturnrequiresthatPm' = S l m' m'l = 1. l l=m' ƒ ? ; ‡ Sincethederivationisindependentofm',itfollowsthat; « ? ; « ? Pm; =« 1?foranym.

ü Someidentities(inprogress)

ü (inprogress) rotations.nb:11/3/04::13:48:13 12

ü Eigenvalueproblemusingthealgebraofthegeneratorsforthegroup

Wehavealreadydiscussedtheeigenvalueproblemintermsoforbitalangularmomentum.Thatdiscussionwascouched inthelanguageofsolutionstopartialdifferentialwithboundaryconditions.Inthisdiscussion,we'llderive theeigenstatespectrumalgebraically.ThisdiscussionisgiveninMerzbacher,chapter11.

ü Raisingandlowering(ladder)operatorsJ±

Itisusefultodefinetheraisingandloweringoperators

J≤ = Jx ≤ i Jy

Ingeneral,afterchoosingamaximalsetofcommutingoperators,itispossibletodefinelinearcombinationsofthe remaininggeneratorswhichactaspairsofladderoperators.InthecaseofSO(3)thereisjustonesuchpair.Sincethey arelinearcombinationsofgenerators,onehas

2 J , J≤ = 0. # ' ThecommutatorwithJz isgivenby

Jz, J≤ = Jz, Jx ≤ i Jy

# ' = #Jz, Jx ≤ i J'z, Jy

= #i Jy ≤ i' i J# x '

= ≤J≤ + /

And,

J+, J = Jx + i Jy, Jx i Jy

# ' = i# Jy, Jx Jx, Jy '

= 2+#Jz ' # '/

Similarrelationsholdforothergroups.

ü Effectofladderoperatorsonstates

First,onecanshowthatoperatingonastate j, m withaladderoperatordoesnotchangethevalueof j.Forexample, « ? 2 0 = J , J+ j, m 2 2 # = 'J« J+ ? J+J j, m 2 = +J a j J+ j/, «m ? + / « ? 2 J+ j, m = 0orJ+ j, m isaneigenstateofJ witheigenvaluea j . « ? « ? Next, observethatwhenactingonastate j, m ladderoperatorsacttoraiseorlowerthevalueofm.Forexample, considertheoperationofJ+ « ?

0 = Jz, J+ J+ j, m +# = J'zJ+ / «J+Jz ? J+ j, m = +Jz m 1 J+ j,/m« ? + / « ? rotations.nb:11/3/04::13:48:13 13

Itfollowsthateither

J+ j, m = 0or + J+ « j, m? = c jm j, m + 1 « ? « ? i.e.eitherJ+ annihilatesthestate,orJ+ createsaneigenstatewiththesamevalueof j,butwithaneigenvalueforJz whichisincreasedby1.Similarly,J lowerstheeigenvalueofJz

J j, m = 0or J « j, m? = c jm j, m 1 « ? « ? + Thecoefficientsc jm andc jm areasyetundetermined.

Fromthisdiscussiononemayseethatstartingfromaparticularstate j, m onecangenerateasequenceofstateswith thesameeigenvalueofJ 2 ,andvaluesofmthatdifferbyintegers. « ?

ü Representationsarefinitedimensional

Thenextstepistoshowthatthe j-representationsarefinitedimensional.Consider

2 2 2 2 J Jz = Jx + Jy 1 = ÅÅÅÅ2 J+J + JJ+ 1 † † = ÅÅÅÅ2 +J+J+ + J+J+/ , 0 whereattheend,bothtermsarepositivedefinitesince

† + * + + 2 j, m J+J+ j, m = j, m + 1 c jm c jm j, m + 1 = c jm < ¬ ¬ @ ; « + / « ? « « Itfollowsthat

2 2 2 2 J Jz j, m = a j m j, m > 0or a j m > 0.Sincea j doesnotchangethroughoutthesequence,it followsthatforeach+ / « ? + j-representation/ « ? mhasbothanupperbound+ / mmax andalowerboundmmin .

ü Determinationofa j

Consider

JJ+ = Jx i Jy Jx + i Jy 2 2 += Jx + Jy/ + i Jx, Jy/ 2 2 = J Jz J#z '

so,whenoperatingonthehigheststateoftherepresentation

2 2 JJ+ j, mmax = J Jz Jz j, mmax 2 « = a j ? mmax+ mmax /j,« mmax ? = +0 / « ?

sinceJ+ j, mmax = 0.Itfollowsthata j = mmax mmax + 1 .Similarly,operatingwith « ? + / rotations.nb:11/3/04::13:48:13 14

2 2 J+J j, mmin = J Jz + Jz j, mmin ? 2 ? « = a j m+min + mmin /j,«mmin = +0 / « ?

sinceJ j, mmin = 0.Itfollowsthata j = mmin mmin 1 .Thereisalsotheconstraintthatmmax = mmin + n,wherenis somenon-negativeinteger.Theserelationsfor« ? a+ j ,mmax ,/mmin canonlybesatisfiedifmmin = mmax .This,inturn, impliesthatmmax mmin = 2 mmax = n,or

n mmax = ÅÅ2ÅÅ

Thisgivesthedesiredresult.Themaximumvalueofmisintegerorhalf-integer.Conventionallywelabelthisquantum number j.TherepresentationsofSU(2)arelabeledby j.Theyhavedimension2 j + 1.Thestatesarelabeledbya secondquantumnumberm,whichrunsfrom j to j.Theeigenvalueequationsarethen

Jz j, m = m j, m J 2« j, m? = j «j + 1? j, m « ? + / « ? ü Othermatrixelements

Fromabove

† + * + j 2 j, m J+J+ j, m = j, m + 1 c jm c jm j, m + 1 = c+m ; « « ? ; « + / « ? « « † 2 2 whereas,wecanalsousetherelationJJ+ = J+J+ = J Jz Jz

† 2 2 j, m J+J+ j, m = j, m J Jz Jz j, m < ¬ = j ¬j + 1 @ m; m +«1 « ? = +j m / j + m+ + 1 / + / + / or

+ c jm = j m j + m + 1 r + / + / Similarly

c jm = j + m j m + 1 r + / + / ü Explicitmatrixform

Itisoftenconvenienttoshowtheangularmomentumoperatorsinexplicitmatrixform.Theformofthematrixdepends 2 1 3 ontherepresentation.Forexample,thefigureshowsmatricescorrespondingtoJ forthe j = ÅÅ2ÅÅ , 1, ÅÅ2ÅÅ representations

15 ÅÅÅÅ4ÅÅÅ 0 0 0 2 0 0 ÅÅ3ÅÅ 0 L 0 ÅÅÅÅÅÅÅ15 0 0 \ 2 2 4 2 2 2 2 M 4 ] J j= ÅÅÅÅ1 = , J j=1 = L 0 2 0 \, J j=ÅÅÅÅ3 = M ] 2 L 0 ÅÅÅÅ3 \ M ] 2 M 0 0 ÅÅÅÅÅÅÅ15 0 ] M 4 ] M 0 0 2 ] M 4 ] + / M ] + / M ] + / M ] M ] M 0 0 0 ÅÅÅÅÅÅÅ15 ] N ^ M 4 ] N ^ M ] N ^ rotations.nb:11/3/04::13:48:13 15

Thematricesoperateona 2 j + 1 -dimensionalstatevector,whichdefinesastateofthe j-representationasalinear combinationofthe jm states.Since+ / J 2 isaCasimiroperator,itisdiagonalandproportionaltotheidentitymatrixin 2 eachrepresentation,butwithadifferenteigenvalue.ƒ ? Jz canbesimultaneouslydiagonalizedwithJ ,buthasdifferent 1 3 eigenvaluesforeachstate.ThematrixformforJz forthe j = ÅÅ2ÅÅ , 1, ÅÅ2ÅÅ representationsis

3 ÅÅ2ÅÅ 0 0 0 1 0 0 ÅÅ1ÅÅ 0 L 0 ÅÅÅÅ1 0 0 \  2  M 2 ] Jz j= ÅÅÅÅ1 = , Jz j=1 = L 0 0 0 \, Jz j= ÅÅÅÅ3 = M ] 2 L 0 ÅÅÅÅ1 \ M ] 2 M 0 0 ÅÅÅÅ1 0 ] M 2 ] M 0 0 1 ] M 2 ] + / M ] + / M ] + / M ] M ]] M 0 0 0 ÅÅÅÅ3 ] N ^ M 2 ] N ^ M ] N ^ Theothergenerators,chosentobeeitherJx, Jy orJ+, J ,arenotdiagonalinthebasiswhereJz isdiagonal,butthe + matrixentriesareeasilydeterminedbythec , c coefficientsgivenabove.Forexample,thematrixformforJ+ forthe 1 3 j = ÅÅ2ÅÅ , 1, ÅÅ2ÅÅ representationsis

0 3 0 0 0 2 0 0 1 0r 0 2 0   r ML ]\ J+ 1 = , J+ j=1 = L \, J+ 3 = M ] j= ÅÅÅÅ2 M 0 0 2 ] j= ÅÅÅÅ2 M ] L 0 0 \ M ] M 0 0 0 3 ] + / M ] + / M 0 0r 0 ] + / M ] M ] M r ] N ^ M ] M 0 0 0 0 ] N ^ M ] 1 N i ^ J issimilar,butontheloweroff-diagonal.Jx = ÅÅ2ÅÅ J+ + J ,Jy = ÅÅ2ÅÅ J+ J aredeterminedbyaddingthematrix components,entrybyentry. + / + /

Á Angularmomentumaddition

Supposeonehastwoparticlesanditisknownthatonehasangularmomentum j1 andthesecondhasangular momentum j2 .Itisacommonquestontoask,"Whatarethepossibleangularmomentumstatesforthecombined system.Oritmaybethatoneknowstheorbitalangularmomentumandspinofaparticle,butitisneededtoknowthe totalangularmomentum.Athirdcaseisthatoneknowsthespinoftwoparticles,butwantstoknowthetotalspinfor thesystem.Allthreecasesaremathematicallyequivalent.

Perhapsevenmoreimportantthanformingastatefromtwoangularmomentumdegreesoffreedom,isdeterminingthe resultingangularmomentumwhenoperatingonastatewitha"spherical-tensor"operator,suchasoccurswhen calculatingtheratesandselectionrulesforradiativetransitions.Tensoroperatorswillbeaddressedinthefollowing section,butthealgebraicconceptsareessentiallyidenticletothosedevelopedfortheadditionofangularmomentum presentedhere.

Thenotesbelowconsiderthegeneralcaseofaddingtwoangularmomentumdegreesoffreedom,describedbythe

operatorsJ1 andJ2 . rotations.nb:11/3/04::13:48:13 16

ü Productoftwospaces

Asusual,whentherearetwodegreesoffreedom,onecandescribethefullsetofstatesforasystemasthedirect

productofthestatesforthetwosubspaces.Inthiscase,thestatesoftheJ1 operatoraregivenby j1m1 andthoseof 2 J2 by j2m2 .Where ji describestheeigenstatewithrespecttothecasimiroperatorJi andmi istheeigenvalueof« ? Ji z . 2 2 Thetwooperatorscommutewitheachother« ? J1, J2 = 0,soafullsetofcommutingopertorsis J1 , J2 , J1z, J2z .A stateforthefullsystemisthengivenbythedirectproduct# ' + /

j1m1 j2m2 = j1m1 ≈ j2m2 « ? « ? « ? Ifitisknownthatthefirstparticlehas j1 andthesecond j2 ,thentherearen1 = 2 j1 + 1possiblestatesforthefirst, n2 = 2 j2 + 1possiblestatesforthesecond,andthefullsystemhasn = n1n2 = 2 j1 + 1 2 j2 + 1 possiblestates,with varyingvaluesofm1 andm2 . + / + /

ü totalJ

Itoftenhappensthatoneisinterestedinthetotalangularmomentum.Thetotalangularmomentumoperatorisgivenby

J = J1 + J2 .

wherethevectornatureoftheoperatorshasbeenemphasized.Thestatesoftotalangularmomentumaredefinedbythe 2 operatorsJ andJz

2 2 2 J = J1 + J2 + 2J1 ÿ J2 Jz = J1z + J2z

TherearemanycaseswheretheHamiltonianincludesatermoftheformJ1 ÿ J2 ,forexamplethespin-couplingis proportionaltoL ÿ S .Inthiscasetherelation

1 2 2 2 J1 ÿ J2 = ÅÅ2ÅÅ J J1 + J2 + / isuseful.ItisalsopossibletowriteJ1 ÿ J2 intermsofraisingandloweringoperators

1 J1 ÿ J2 = J1zJ2z + ÅÅ2ÅÅ J1+J2 + J1J2+ + /

ü twoalternativebasissetsforthe j1, j2 representation

2 ThelastrelationmakesitclearthatbecauseJ containspiecesthatraiseandlowerthestatesofJ1z andJ2z ,eigenstates 2 j1m1 j2m2 ,arenotgenerallyeigenstatesofJ .Suchstatesare,however,eigenstatesofJz .Theeffectof ƒJ1+J2 + J1?J2+ istoleavethetotalm = m1 + m2 unchanged,sinceifm1 israisedm2 islowered,andviceversa. + / Itappearsthattherearetwowaysonecandescribetheangularmomentumstatesofthesystem.First,intheJ1zJ2z 2 2 schemeonechooses4commutingoperatorsJ1 , J2 , J1z, and J2z .Inthiscasethestatesarelabeledby j1m1 j2m2 . ƒ ? 2 2 2 Alternatively,intheJ, Jz schemeadifferentsetoffouroperatorsJ , J1 , J2 , and Jz definethestates.Itis 2 2 2 straightforwardtoshowthat J , Ji = Jz, Ji = 0fori = 1, 2.Inthiscasethestatesarelabeledby j m j1 j2 . # ' # ' ƒ ? rotations.nb:11/3/04::13:48:13 17

Thevaluesof j1 and j2 arecommontobothschemes.Accordingly,ifthevaluesof j1 and j2 arewelldefined,itis commontolistthemfirstortoomitthementirely.IntheJ1zJ2z schemeonehas, j1 j2m1m2 ,orusestheshorthand m1, m2 .Corespondingly,intheJ Jz schemeonehas j1 j2 j m or j m . ƒ ? ƒ ? ƒ ? ƒ ? ü definitionofclebschgordoncoefficients

Since j1 and j2 arevalidineitherrepresentation,itfollowsthatthen = 2 j1 + 1 2 j2 + 1 statespresentinthe m1, m2 schememustberearrangedintothesamenumberofstatesinthe+ jm scheme,althoughtheallowedvaluesof/ + / ƒjandm?arestillundetermined.Itfollowsthatthe j1 j2 jm statescanbewrittenaslinearcombinationsofƒ ? j1 j2m1m2 states, « ? ƒ ? j1 j2 jm = S j1 j2m1m2 j1 j2m1m2 j1 j2 jm m1m2

ƒ ? j1ƒ j2 ? ; « ? = S c jm,m1m2 j1 j2m1m2 m1m2 ƒ ? wherethelastlinedefinestheClebsch-Gordoncoefficients.

ü Reduceproductof j1, j2 toirreduciblerepresentationsofJ

Thenextstepistodeterminewhichrepresentationsoftotalangularmomentumarefoundintheproductof j1 ≈ j2 .The keytothisistoconsidera)themultiplicityofstateswithaparticularvalueofm,andb)torealizethatthe representationsof jmustbecomplete,implyingthatallstatesfromm = j to jmustbepresent.

Withoutanylossofgenerality,take j1 ¥ j2 anddefineD j = j1 j2 .Thenthemultiplicityofstateswitheigenvaluem isgivenby

j1 + j2 + 1 m m ¥ D j Nm = 2 j2 + 1 « « « m « § D j « « Thehighestm-statehasm = j1 + j2 .Theincreaseinmultiplicitywithdecreasingmcorrespondstothedifferentwaysin whichJ1 andJ2 canbeappliedtodecreasethetotalm.Theincreasestopswhenmhasbeendecreasedby2 j2 + 1 steps,sincethenumberoftimesJ2 canbeappliedislimited.Themultiplicityholdssteadyuntilasimilarconstraint appliestoJ1 atwhichpointthemultiplicitydecreasesuntilm = j1 + j2 .Themultiplicityissymmetricunder m Ø m. + /

Thehighestm-stateisunique.Sincetherepresentationsmustbecomplete,thehighestm-statemustbeaccompaniedby

asetofstates jm for j = j1 + j2 with 2 j + 1 valuesofm, j < m < j,included.Specifically,therearetwostates withm = j1 +ƒj2 ?1,andoneofthesebelongstothe+ / j = j1 + j2 representation.Theotherheadsarepresentationwith j = j1 + j2 1.Similarly,therearethreestateswithm = j1 + j2 2,oneofwhichheadsanewrepresentationwith j = j1 + j2 2.

Alltoldthisprocedureresultsincompleterepresentationswith j1 + j2 ¥ j ¥ j1 j2 .Thetotalnumberofstatesinthese representationsis rotations.nb:11/3/04::13:48:13 18

j= j1+ j2 N = S 2 j + 1 j= j1 j2

i=2 j2 = S 2 D j + i + 1 i=0 + / i=2 j2 = 2D j + 1 2 j2 + 1 + 2 S i i=0 + / + / = 2D j + 1 2 j2 + 1 + 2 j2 2 j2 + 1 = +2 j1 j2/ ++ 1 + 2/j2 +2 j2/++ 1 / = +2+j1 + 1 /2 j2 + 1 / + / + / + / whichisequaltothenumberofstatesintheproductrepresentation j1 j2m1m2 . ƒ ? ü ProcedureforcalculatingCGcoeffs

ItremainstofindtheClebsch-Gordoncoefficients.Thisisdoneiterativelybyrepeateduseoftheoperator

J = J1 + J2 .Theprocessbeginswiththeobservationthatthereisonlyonestatewithmaximaltotalm,anditbelongs totherepresentation j = j1 + j2 ,

j1, j2, j = j1 + j2, m = j1 + j2 = j1, j2,m1 = j1, m2 = j2 ƒ ? ƒ ? ProceedingwiththeapplicationofJ

J j1, j2, j = j1 + j2, m = j1 + j2 = J1 + J2 j1, j2,m1 = j1, m2 = j2 c j1+ƒ j2, j1+ j2 j1, j2, j = j1 + j2, m =?j1 + +j2 1 =/ ƒ ? cƒj1, j1 j1, j2,m1 = j1 1, m2 = j2 +?c j2, j2 j1, j2,m1 = j1, m2 = j2 1 ƒ ? ƒ ? wherethe c jm = j + m j m + 1 weredefinedabove.Dividingthroughbyc j1+ j2, j1+ j2 ,weobtainthesecond r highestm-stateofthe+ j =/j+1 + j2 representation,/

c c j1, j1 j2, j2 j1, j2, j = j1 + j2, m = j1 + j2 1 = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅc j1, j2,m1 = j1 1, m2 = j2 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅc j1, j2,m1 = j1, m2 = j2 1 j1+ j2, j1+ j2 j1+ j2, j1+ j2 ƒ ? ƒ ? ƒ ? ComparingtothedefinitionoftheCGcoefficient,forthecase j = j1 + j2, m = j1 + j2 1, m1 = j1 1, m2 = j2

c j1 j2 j1, j1 j1 c = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ andsimilarly j1+ j2, j1+ j21; j11, j2 c j + j , j + j j1+ j2 1 2 1 2  c j1 j2 j2, j2 j2 c = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ j1+ j2, j1+ j21; j1, j21 c j + j , j + j j1+ j2 1 2 1 2 

Inresponsetoaquestioninclass,if j1 5 j2 the j = jmax representationispredominatelycomposedofthelargerofthe j1 and j2 representations.AtleastinthiscaseitisclearthattheCGcoefficientsarenormalizedsothat

j1 j2 2 S c jm;m1,mm1 m1 ƒ ‡

Theotherm = j1 + j2 1state,whichplaystheroleoftheheadofthe j = j1 + j2 1representationisgivenby

j1, j2, j = j1 + j2 1, m = j1 + j2 1 = c c j2, j2 j1, j1 ƒ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅc j1, j2,m1 = j1 1,?m2 = j2 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅc j1, j2,m1 = j1, m2 = j2 1 j1+ j2, j1+ j2 j1+ j2, j1+ j2 ƒ ? ƒ ? rotations.nb:11/3/04::13:48:13 19

andisexplicitlyorthogonaltothe j = j1 + j2 state.

ThisprocedurecannowberepeatedapplyingJ tothetwostatesabovetofilloutthe j = j1 + j2 and j = j1 + j2 1 representations.Athirdstatemaybeconstructed,orthogonaltothefirsttwo,whichwillheadthe j = j1 + j2 2 representation.Itmayappearabitawkwardtocreatetheneworthogonalstate,butonecanusethefollowing construction.Supposeonehasann-dimensionalvectorspacespannedbyanorthonormalbasis i ,andn 1linear th combinationsofthesewhichareorthogonalandnormalized,whichcanbelabeledbyindex a =« S? ai i .Thenann i statecanbeaddedtothea-basiswhichwillbeorthogonaltotheothersbyconstruction ƒ ? ƒ ?

i1i2…in 1 2 n1 an = e ai1 ai2 …ain1 in ƒ ? ƒ ? ü Exampleoftwospin1/2reps

1 Asanexplicitexampleofangularmomentumaddition,considerthecaseofaddingtwospinsofs1 = s2 = ÅÅ2ÅÅ .Sinces1 ands2 arespecifiedI'lladopttheshorternotationwheretheyaresuppressed.

sm sm = m1m2 m1m2 ƒ ? ƒ ? Inthem1m2 -basistherearefourstates

1 1 1 1 1 1 1 1 ÅÅ2ÅÅ , ÅÅ2ÅÅ , ÅÅ2ÅÅ , ÅÅ2ÅÅ , ÅÅ2ÅÅ , ÅÅ2ÅÅ , and ÅÅ2ÅÅ , ÅÅ2ÅÅ « @ « @ « @ « @ Inthes -basistherearerepresentationsextendingfromsmax = s1 + s2 tosmin = s1 s2 .Inthiscase,therearejusttwo representationssmax = 1andsmin = 0.Thehighestm-statehasm = 1andbelongstothehighests-representations = 1

1 1 11 sm = ÅÅÅÅ ÅÅÅÅ 2 2 m1m2 ƒ ? „ @

ActingwithS = S1 + S2 onbothsidesgivesthealgebraic

1 1 S 11 sm = S1 + S2 ÅÅÅÅ , ÅÅÅÅ 2 2 m1m2 ƒ ? 1 „1 @ 1 1 + 1 1 / 1 1 c11 10 sm = c ÅÅÅÅ ÅÅÅÅ ÅÅÅÅ2 , ÅÅÅÅ2 + c ÅÅÅÅ ÅÅÅÅ ÅÅÅÅ2 , ÅÅÅÅ2 2 2 m1m2 2 2 m m ƒ ? „ @ „ A 1 2 1 1 1 1 2 10 sm = ÅÅÅÅ2 , ÅÅÅÅ2 + ÅÅÅÅ2 , ÅÅÅÅ2 m1m2 m1m2 r ƒ ? „ @ „ @ 1 1 1 1 1 1 10 sm = ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅ , ÅÅÅÅ + ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅ , ÅÅÅÅ 2 2 2 m m 2 2 2 ƒ ? r „ A 1 2 r „ Am1m2 1 1 ÅÅÅÅ2 ÅÅÅÅ2 10 sm = S c10;m m m1, m2 m 1 2 ƒ ? 1 ƒ B whereinthethirdline,theresultcsm = s + m s m + 1 hasbeenused.Ingeneral,itisnotedthatforthehighest r m-statec j j = 2 j .Inthelastline,thesumover+ / +m-statesdefinestheClebsch-Gordoncoefficients.Evidently/ r 1 1 1 1 ÅÅÅÅ2 ÅÅÅÅ2 1 ÅÅÅÅ2 ÅÅÅÅ2 1 c 1 1 = ÅÅÅÅ andc 1 1 = ÅÅÅÅ 10; ÅÅÅÅ , ÅÅÅÅ 2 10; ÅÅÅÅ ,ÅÅÅÅ 2 2 2  2 2 

ThisresultcouldhavebeenwrittendownfromthegeneralresultabovefortheCGcoefficientsofthem = j1 + j2 1 stateofthe j = j1 + j2 representation.

Havingdeterminedthe 10 sm state,itremainstodeterminetheorthogonalm = 0linearcombination,whichinthiscase is ƒ ? rotations.nb:11/3/04::13:48:13 20

1 1 1 1 1 1 00 sm = ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅ , ÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅ , ÅÅÅÅ 2 2 2 m1m2 2 2 2 m1m2 ƒ ? r ƒ ? r ƒ ? ThisresultaslodefinestheCGcoefficients

1 1 1 1 ÅÅÅÅ2 ÅÅÅÅ2 1 ÅÅÅÅ2 ÅÅÅÅ2 1 c 1 1 = ÅÅÅÅ andc 1 1 = ÅÅÅÅ 00; ÅÅÅÅ , ÅÅÅÅ 2 10; ÅÅÅÅ , ÅÅÅÅ 2 2 2  2 2  Note thatthereisanarbitrarinesstowhichoftheseCGcoefficientsgetstheminussign.

ThenextstepistoapplyS againtodeterminethem = jmax 2states.

1 1 1 1 1 1 S 10 sm = S1 + S2 ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅ , ÅÅÅÅ + S1 + S2 ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅ , ÅÅÅÅ 2 2 2 m1m2 2 2 2 m1m2 r r ƒ ? + 1 / ƒ 1 ? 1 + 1 / ƒ 1 1? c10 1, 1 sm = ÅÅÅÅÅÅÅÅÅÅ 0 + c 1 1 ÅÅÅÅ , ÅÅÅÅ + ÅÅÅÅÅÅÅÅÅÅ c 1 1 ÅÅÅÅ , ÅÅÅÅ + 0 2 ÅÅÅÅ2 ÅÅÅÅ2 2 2 m1m2 2 ÅÅÅÅ2 ÅÅÅÅ2 2 2 m1m2 r r ƒ ? 1 , 1 1ƒ ?1 0 1 1 , ƒ ? 0 2 1, 1 sm = ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅ , ÅÅÅÅ + ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅ , ÅÅÅÅ 2 2 2 m1m2 2 2 2 m1m2 r r r 1, ƒ1 =? ÅÅÅÅ1 , ÅÅÅÅ1ƒ ? ƒ ? sm 2 2 m1m2 ƒ ? ƒ ? whichmakessense,sincethelowestm-stateshouldalsobedefineduniquely.

Asacheck,applyingS tothe 00 sm state

1 1ƒ ?1 1 1 1 S 00 sm = S1 + S2 ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅ , ÅÅÅÅ S1 + S2 ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅ , ÅÅÅÅ 2 2 2 m1m2 2 2 2 m1m2 r r ƒ 1? + 1/ 1 ƒ ? 1 + 1 / 1 ƒ ? 0 = ÅÅÅÅÅÅÅÅÅÅ 0 + c 1 1 ÅÅÅÅ , ÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅ c 1 1 ÅÅÅÅ , ÅÅÅÅ + 0 2 ÅÅÅÅ2 ÅÅÅÅ2 2 2 m1m2 2 ÅÅÅÅ2 ÅÅÅÅ2 2 2 m1m2 r r 0 = ÅÅÅÅÅÅÅÅÅÅ1 , ÅÅÅÅ1 , ÅÅÅÅ1 ƒ ÅÅÅÅÅÅÅÅÅÅ1? 0ÅÅÅÅ1 , ÅÅÅÅ1 , =ƒ 0 ? 0 2 2 2 m1m2 2 2 2 m1m2 r ƒ ? r ƒ ? yields thenullstateonbothsides.

2 2 2 2 2 1 AnothercheckistoapplyS = S1 + S2 + 2S1 ÿ S2 = S1 + S2 + 2S1zS2z + ÅÅ2ÅÅ S1+S2 + S1S2+ toallfourstates.Forthe tripletstatesS2 = 2,so + /

2 2 1 1 3 3 1 1 1 1 1 1 S1 + S2 + 2S1zS2z + S1+S2 + S1S2+ ÅÅ2ÅÅ ÅÅ2ÅÅ = ÅÅ4ÅÅ + ÅÅ4ÅÅ + 2 ÅÅ2ÅÅ ÅÅ2ÅÅ + 0 + 0 ÅÅ2ÅÅ ÅÅ2ÅÅ = 2 ÅÅ2ÅÅ ÅÅ2ÅÅ 2 2 „ 1 @ 1 3 3 1 1 „ @ „ 1 @ 1 1 1 +S1 + S2 + 2S1zS2z + +S1+S2 + S1S2+// ÅÅÅÅ2 ÅÅÅÅ2 + = ÅÅÅÅ4 + ÅÅÅÅ4 + 2 ÅÅÅÅ2+ ÅÅÅÅ2// + 0 + 0 ÅÅÅÅ2 ÅÅÅÅ2 = 2 ÅÅÅÅ2 ÅÅÅÅ2 + + // „ @ + + / + / + // „ @ „ @ andforthem = 0state

2 2 1 1 1 1 S1 + S2 + 2S1zS2z + S1+S2 + S1S2+ ÅÅ2ÅÅ , ÅÅ2ÅÅ + ÅÅ2ÅÅ , ÅÅ2ÅÅ = 3 3 1 1 1 ,„ 1 @1 „ 1 @0 1 1 1 1 + ÅÅÅÅ4 + ÅÅÅÅ4 2 ÅÅÅÅ2+ ÅÅÅÅ2 + 1 + 0 ÅÅÅÅ2 /,/ ÅÅÅÅ2 + ÅÅÅÅ2 , ÅÅÅÅ2 = 2 ÅÅÅÅ2 , ÅÅÅÅ2 + ÅÅÅÅ2 , ÅÅÅÅ2 + + // ,„ @ „ @0 ,„ @ „ @0 wheretheterm S1+S2 + S1S2+ actstoexchangethetwospins,whichyields(+1)forasymetricstate. + / Forthesingletstate,S2 = 0.Comparingtothe 10 calculation,onlytheexchangetermchangessign,whichresultsin 3 3 1 1 ÅÅ4ÅÅ + ÅÅ4ÅÅ 2 ÅÅ2ÅÅ ÅÅ2ÅÅ 1 + 0 = 0,soeverythingchecks.ƒ ? + + // Afewcomments:Comparingtothediscussionofidenticleparticles,theS = 0stateisantisymmetricandisasinglet, whereastheS = 1statesaresymmetricandformatriplet.Ingeneral,whenaddingangularmomentumforthecase

j1 = j2 ,the jmax representationisasymmetricunderexchangeofm1 ¨ m2 ,the j = jmax 1representaionwillbe anti-symmetric,andthelower jrepresentationsalternateaccordingly. rotations.nb:11/3/04::13:48:13 21

Á Tensoroperators

Thediscussionsofarhasfocussedontheeffectofrotationsonstates.Inapositionbasis,thestatesaretransformedin anobviousway:thecoordinatesdescribingthepositionketaretransformed.However,sincepositionketsarenot typicallyeigenstatesoftheHamiltonian,itistypicaltoconsidertheeigenstatesofangularmomentum,describedbythe quantumnumbers j, m.Underrotationsthequantumnumber jdoesnotchange,butmdoes.Onemaysaythatthesetof stateswiththesame jconstitutesarepresentationconsistingof 2 j + 1 components.Thecomponentsaremixedupby rotations,buttherepresentationsarenot. + /

Asusualinquantummechanics,transformationsmayaffectoperatorsaswellasstates.Forrotations,theoperatorsmay becharactrizedeitherinacoordinaterepresentationorintermsofsphericaltensoroperatorswhichareconveniently describedinthesamelanguageusedforangularmomentumstates.Asphericaltensoroperatorofrankk consistsof 2k + 1 components,eachidentifiedbyanazimuthalnumberq.Therelationbetweenidentifiersforthestatesand operatorsis+ / k ¨ jandq ¨ m.Theuseofk, qispurelyconventionaltocuetheassociationwithanoperatorasopposed toastate.Onemaythinkofactingwithasphericaltensoroperatoronastateas"adding"angularmomentumtothe state,andthealgebraforthisangularmomentumadditionissimilartothatforcombiningtheangularmomentum contentoftwostates,asdescribedabove.Similarly,sphericaltensoroperatorsmaybecombinedtoformnewoperators withdifferentangularmomentumcontent.

Thematerialbelowproceedsintwosteps.Thefirstdiscussespropertiesofrotationsonsimpleoperators:a)ageneral discussionoftheeffectofrotationsonoperators,b)anexplicitapplicationtothebehaviorofrotationsonthemselves

andc)specializingtotheeffectofrotationsonthegeneratorsofrotationsJi leadingtod)amoregeneraldiscussionof vectoroperatorsunderrotations,ande)isolatingthatdiscussiontotheeffectofinfinitesimalrotationsonavector operator.Thenthesecondstepbeginswithf)ageneralizationofvectoroperatorstoadefinitionoftensoroperators,g) theirtransformationsunderinfinitesimalrotations,h)theiradditionproperties,i)theresultofoperatingonstateswith tensoropertors,andculminatingwithj)adiscussionoftheWigner-Eckarttheorem.

ü Generalremarks

Tofocusontheeffectsofrotations,considerthepositionoperatorX = X, Y, Z andthesetofpositionkets x ,which ¹¹¶ maybeusedasabasissettospecifyboththestate a ofasystemandtheoperatorsactingonthosestates.Intermsof+ / ƒ¶? thepositionkets,onemayexpand ƒ ?

a = „ x x x a ¶ ¶ ¶ ƒXi?= ¼„ x xƒ ?x;i x« ? ¶ ¶ ¶ ¼ ƒ ? ; ‡ Inthisformthepositionoperatorisdiagonal,andhasbeenwrittenincomponentform.TheexpectationforXi ina particularstateis

Xi = a Xi a ; ? ; « « ? rotations.nb:11/3/04::13:48:13 22

Atthispointitisimportanttodistinguishtheeffectsofrotationsinthreedistinctscenarios.First,onemayrotatethe states a Ø a' = R a .Thisdoesnotinvolvechangingthepositionbasiskets,butitdoesimplyatransformationof theexpansioncoefficientsƒ ? ƒ ? ƒ ? x a .Second,onemayrotatethepositionoperatorsXi Ø X 'i = Ri jX j = „ x x Ri jx j x . ¶ ¶ ¶ ¶ Again,thisdoesnotinvolveachangeofthebasiskets,merelyadifferentlinearc; « ? ombinationoftheoperators¼ ƒ ? X, Y;, Z‡ . Thenewoperatorsarestilldiagonal,butwithdifferenteigenvalues.Ifoneleavesthestatesunchanged,butrotatesthe+ / operators,thentheexpectationvalueschangeasaclassicalpositionvectorwouldchangeunderrotations

Xi Ø Ri j X j .Third,onemaychangecoordinatesystems.Inthiscase,thestateofthesystem a isunchanged,but ;thebasisketsfordescribingthesystemarechanged:? ; ? „ x x x Ø „ x x' x' ,where x' = Rƒ x? .Notethatthe ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ integrationisstilloverallpositionkets.Inaddition,thepositionoperatorsar¼ ƒ ? < « ¼ ƒ ?ealsotransformedsothat,forexample,the; « ƒ ? ƒ ? x` -directiontransformstothex` -directioninthenewbasis.Achangeofviewershouldnotchangetheexpectationvalue foran,andindeed

Xi = „ x x xi x Ø „ x x' Ri jx j x' ¶ ¶ ¶ ¶ ¶ ¶ ¼ =ƒ ?„ x'; a‡ x' ¼xi ' xƒ ' a? ; ‡ ¶ ¶ ¶ = ¼ „ x ;a ƒx ?xi x;a‡ ? ¶ ¶ ¶ = ¼Xi ; ƒ ? ; ‡ ?

whereinthesecondlineoneusestheequivalanceoftheintegrationvolumes „ x = „ x',andinthethirdlineachange ¶ ¶ ofvariablesfromx Ø x'isperformed.Theresultoftheseconsiderationsisthattheeffectofarotationon¼ ¼ theposition operatorcanbedescribedeitherbyatransformationofthebasisstates,

1 Xi ' = „ x x' xi x' = RXiR ¶ ¶ ¶ ¼ ƒ ? ; ‡ orbyatransformationoftheoperators

Xi ' = „ x x' Ri jx j x' = Ri jX j ¶ ¶ ¶ ¼ ƒ ? ; ‡ SincethesymbolRisusedindifferentfashions(eithertoactonthebasisstatesorinthespaceofoperators)thereis somedangerofconfusion!Fortunately,theD-notationisestablishedtodescribemoregenerallyhowrotationsoperate 1 ondifferentrepesentations,soonemayusethenotationXi ' = DXiD instead.Further,althoughconvenienttousethe positionbasisforpedagogicalpurposes,anycompletesetofbasisketswoulddo,soonemayreplace „ x Ø S .In jm addition,sincerotationsdonotmixstatesfromdifferentrepresentations,theD-operatorscanbechosentobefinite¼ dimensional,soastoapplytoasingleirreduciblerepresentationatatime.

ü Theeffectofrotationsonrotations

Supposeonehasastate a andtworotationsR1 andR2 .Definethestate a1 = R1 a ,andthestate a2 = R2 a1 = R2R1 a ƒ.Inthispicture,? R2 actstorotatethestate a1 .Alternatively,onecouldviewtheactionofƒ ? ƒ ? R2 ƒtobearotationonthesystemwhere? ƒ ? ƒ ? R1 hasoperated,i.e. ƒ ?

R2 R1 a = R1 ' a ' + ƒ ?/ ƒ ? whereR1 'definestheactionoftherotationR1 asviewedfromthecoordinatesystemofR2 ,and a ' = R2 a .Thelatter 1 relationcanalsobewrittenintheinverseform a = R2 a ',andso ƒ ? ƒ ?

1 ƒ ? ƒ ? R2 R1 a = R2 R1R2 a ' ƒ ? ƒ ? rotations.nb:11/3/04::13:48:13 23

Comparingthetworesults,onefindsthattherotationsthemselvestransformas

1 R1 ' = R2 R1R2

ü Alternative

ConsidertheeffectsofarotationR1 onthematrixelement b R a .Inthepicturewherethetransformationis consideredtobeachangeofcoordinatesystem,thematrixelementshouldbeleftunchange; « « ? dbythetransformation. Using'stodenotethetransformedstatesandoperators,anddenotingthetransformingrotationbyR1

b R a fl b' R' a' 1 ; « « ?= b; R«1 R«'R?1 a

; « 1 « ? onefindsR = R1 R'R1 or

1 R' = R1RR1

asabove.

ü ApplicationtoEulerangles.

InthediscussionofEulerangles,itwasstatedthat

Rz' g Ry' b Rz a = Rz a Ry b Rz g + / + / + / + / + / + / wherethe'sindicatedarotationaroundthebodyaxis,forexampleRy' istherotationaroundthey-axisasseenafterthe rotationbyRz a .Giventhetransformationpropertiesofrotations,onemaywrite

+ / 1 Ry' b = Rz a Ry b Rz a + / + / + / + / DefiningthecombinedrotationR a, b = Rz a Ry b

+ / 1 + / + / Rz' g Ry' b Rz a = Rz' g Rz a Ry b Rz a Rz a + / =+ R/z' g+ R/z a R+y /b + / + / + / + /

= Rz'+g/R a+ ,/b + / 1 = R a+ ,/b +Rz g/R a, b R a, b = R+a, b/Rz+g/ + / + / = R+z a R/y b+ R/ z g + / + / + / asadvertised.

ü Theeffectofrotationsonthegeneratorsofrotation

ThegeneratorsofrotationsJi constituteathreecomponentvector,withthepropertythatn ÿ J actsasthegeneratorfor rotationsaroundanarbitraryaxisn` .Itseemsreasonablethattheseshouldtransforminamannersimilartotheposition 1 ienÿJ  operators.TodothisconsidertherelationR' = R1RR1 inthecasewhereRisinfinitesimal,R = e 1 ien ÿ J . 1 1 Ontheleft,onehasR' = 1 ien ÿ J 'withJi ' = Ri jJ j ,andontherightR1RR1 = R1 1 ien ÿ J R1 .Equatingthetwo sides,onefindsthesamerelationthatwasobtainedforthepositionvector + / rotations.nb:11/3/04::13:48:13 24

1 Ji ' = R1 i jJ j = D1Ji D1 + / whereontheleft-handsideRmixesthedifferentoperators,andontheright-handsidetheDnotationhasbeenadopted toemphasizethetransformationofthebasisketsusedtodescribethevectorspace.

ToseethedifferenceinthetwodeterminationsofJi ',consideraparticularcomponent,say,the11 componentofJ1 '.On

theleft,J1 '11 ismadeupofthe11 componentsofJ1, J2, and J3 weightedbyR11 , R12 , and R13 respectively.Onthe right,J1 '11 ismadefromalinearcombinationofall9componentsofJ1 ,butthecomponentsofJ2 ,andJ3 arenotused.

ü Vectoroperators

ThebehaviorofX andJ canbegeneralizedtodefineavectoroperatorV asasetofthreeoperatorsVi whichundera rotationtransformas¹¹¶ ¹¶ ¹¹¶

1 Vi Ø V 'i = Ri jV j = RV iR

Itisusefultoconsidertheinfinitesimalformofthisrelation.Ontheleft,

k k Ri jV j = 1 ie n ÿ J i jV j = di j ie n J i j V j + / + / k where J i j = ieki j .Ontheright, + / 1 k k RV iR = 1 ie n ÿ J Vi 1 ie n ÿ J = Vi ie n J , Vi + / + / # ' Note thatinthisequationJ operatesonthecomponentsofanindividualVi asopposedtomixingthecompenentsofV . Equatingthetwo,therequirementforV tobeavectoroperatoristhatthecomponentsofV obeythecommutator relations

k J , Vi = ieki jV j # ' Thegeneralvectoroperatorcanbedefinedbycommutationrelationsinanalogytotheangularmomentumcommutation relations.

ThiscanbecheckedexplicitlyforthecaseoforbitalangularmomentumactingonvectoroperatorsX andP. ¹¹¶ ¹¶

ü Cartesianvectorsvs"sphericalvector"

Onemayrecallthatthedescriptionofangularmomentumstatesissimplifiedbyintroducingtheraisingandlower

operatorsJ≤ ,andthenchoosingJ0, J≤ (asopposedtoJx, Jy, Jz )tobethebasisforthespaceofangularmomentum generators.Asimilarredefinitioncanbemadeforvectoroperators,butbeforeproceeding,itisusefultointroducea

transformationofcartesiancoordinateswhichparallelsthetransformationfromJx, Jy,Jz toJ0, J≤ .

1 Definecoordinatesxq withqtakingthevaluesofq = 1, 0, 1,byx0 = z, x≤ = ÅÅÅÅÅÅÅÅÅÅ x ≤ iy .Idon'thaveanamefor 2 r thesecoordinates.Inanalogytothesphericaltobedefinedbelow,I'mtemptedtocallthesecoordinates+ / "spherical"coordinates,butthatnameisalreadytaken.Sphericalcartesian?Ugh.Inanyevent,thedotproductoftwo

vectorscanberewrittenasu ÿ v = uivi = uqvq .Thenewcoordinatescanbeexpressedasatransformationoftheusual cartesiancoordinates,xq = U xi ,wherethetransformationmatrixis rotations.nb:11/3/04::13:48:13 25

ÅÅÅÅ1ÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅi ÅÅ 0 2 2 r r U = ML 0 0 1 ]\ M ] M 1 i ] M ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅ 0 ] M 2 2 ] M r r ] N ^ ifnÿJ Thenextstepistore-examinethedefiningrelationforrotationsincartesiancoordinatesx'i = Ri jx j = e i jx j . è è 1 First,thenewcoordinatescanbeusedtorewritethegenerator:n ÿ J = nqJ q ,whereJ ≤ = ÅÅÅÅÅÅÅÅÅÅ J≤ isdefinedtoaccount 2 + / r forthedifferenceindefinitionbetweenthenewcoordinatesandtheconventionaldefinitionofJ≤ .Aswritten,the rotationisoperatingontheusualcartesiancoordinates,sothegeneratorsmustbewritteninthatbasisaswell,for example,

0 0 S1 è 1 J ≤ = ÅÅÅÅÅÅÅÅÅÅ 0 0 i 2 ML ]\ r M ] M ≤1 i 0 ] M ]]] N ^ Second,thenewcoordinatescanbeusedastheobjectoftherotations

ifnÿJ x'q = Rqq'xq' = e qq'xq' + / è Againthereisthechoiceofwritingn ÿ J asniJi ornqJ q .Ineithercase,though,J mustbewrittenintheformfor † è è † operatingonxq insteadofxi .FollowingtheusualrulesfortransformingoperatorsJ 'i = UJiU orJ 'q = UJ qU .The J 'havethesameformaswhenoperatingonthe j = 1representation,forexample,

1 0 0 0 1 0 l=1 è 1 l=1 J '0 = J = 0 0 0 ,J '+ = ÅÅÅÅÅÅÅÅÅÅ J+ = 0 0 1 z+ / ML ]\ 2 + / ML ]\ M ] r M ] M 0 0 1 ] M 0 0 0 ] M ] M ] (5/11/04-IamnotsureIdon'thavesome"typos"N ^ stillinthissection)N ^

ü Sphericalvector

Thedefinitionofasphericalvectoroperatorcannowbegivenintermsofthecomponentsofacartesianvector

operator.Specifically,ifVi isavectoroperator,thenthesphericalvectorwithcomponentsV0, V≤ canbedefinedby

V0 = Vz 1 V≤ = ÅÅÅÅÅÅÅÅÅÅ Vx ≤ iVy 2 r + / 1 1 1 Laterthisobjectwillbeidentifiedasarank-1sphericaltensorTq whereq = 1, 0, 1 ,andT0 = V0 ,T≤1 = V≤ . + / ExpressingtheeffectoftherotationonVq byitseffectontheeigenstates

1 m èm RV qR = 1 ie n ÿ J Vq 1 ie n ÿ J = Vq ie n J , Vq + / + / $ ( wheremhasbeenusedtodistinguishthegeneratorfromthesphericalvectorcomponent.Meanwhile,rotatingthe operatorcomponentsyields

m m Rqq'Vq' = 1 ie n ÿ J qq'Vq' = dqq' ie n J qq' Vq' + / + / equatingthetworesults,foreachmonehas, rotations.nb:11/3/04::13:48:13 26

èm èm J , Vq = J qq'Vq'

$ ( èm Ontheleft,theexactformofJ andVq dependontherepresentationuponwhichtheoperatorsact.Ontheright,Vq is èm definedrelativetotherepresentationbutJ qq' isalwaysthe j = 1representationsinceitisactingonavectoroperator. èm ExplicitformsforJ are

1 0 0 0 1 0 0 0 0 è0 è+ è J = 0 0 0 ,J = 0 0 1 ,andJ = 1 0 0 ML ]\ ML ]\ ML ]\ M ] M ] M ] M 0 0 1 ] M 0 0 0 ] M 0 1 0 ] M ]]] M ]]] M ]]] N ^ N ^ N ^ Asanexample,supposeVq istheangularmomentumoperatoritself,andthattheequationisappliedtothe j = 2 èm èm representation.Then,theVq are5ä5matrices,andtheJ inthecommutatorisalso5ä5,buttheJ qq' ontherightis3ä3 tomixthecomponentsofthevectoroperator.

ü Cartesiantensors

i j Onecanformmorecomplicatedtensors.Forexample,T = XiX j isarank-2tensor.Arank- ntensorhasn-indicies, T i1i2…in ,andtransformsunderrotationsas

T i1i2…in Ø T 'i1i2…in = Ri1 j1 Ri2 j2 …Rin jn T j1 j2… jn

Thisrank- ntensorhas3n components.Itmaybereducible,sinceonemightbeabletofindsubsetsofthecomponentsof T whichareunderrotation.

ü Breakcartesianintoirreducibletensors

Forexample,onecanforma9-componentrank-2tensorOi j fromtwovectorsUi and V j

Oi j = UiV j

butthistensorcanbereducedtothreeirreducibletensorsOS, OV , OQ ,knownas,vectorandquadrupoletensors. Theirexplicitconstructionis

S V Q 1 1 S O = di jOi j ,Oi = ei jkO jk ,andOi j = ÅÅÅÅ2 Oi j + O ji ÅÅÅÅ3 O + / Thesethreetensorsareinvariantunderrotations.Intermsoflabels,thereductionofUV canbeexpressedas

V ä V = S + V + Q

S, V, Qhave1,3,and5independentcomponentsrespectively,soonemayexpressthereductionas

3 ä 3 = 1 + 3 + 5

Lastly,onemayidentifyS, V, Qasoperatorsassociatedwithirreduciblerepresenttionsofangularmomentum correspondingto j = 0, 1, 2,respectively.ThenthebreakdownofO = UV canbeunderstoodintermsofanglar momentumaddition

1 ä 1 = 0 + 1 + 2      rotations.nb:11/3/04::13:48:13 27

wherethelabelsare j-values.Thisprovidestherationalforgeneralizingtosphericaltensors.

ü Sphericaltensors

Thesphericalvectorwasdefinedthroughitspropertiesunderrotations.Foraninfinitesimalrotation

m m Rqq'Vq' = 1 ie n ÿ J qq'Vq' = dqq' ie n J qq' Vq' + / + / k k k Correspondingly,asphericaltensorofrank- k isT with 2k + 1 componentsTq .Tq transformsas + / k k k k m k m k T Ø T ' = Rqq'T = 1 ie n ÿ J T = dqq' ie n J qq' T q q q' qq' q' + / q' + / + / wherethelabel k hasbeenaddedtoJ m tomakeexplicitthattherepresentationofJ mustmatchtherankofthetensor. Althoughthetermrank-+ / k isused,itshouldbeunderstoodthatthiscorrespondstoanirreduciblerepresentation- k of angularmomenetum

ü Sphericaltensoroperators

Motivatedbythedefinitionofaspericalvectoroperator,onecandefineasphericaltensoroperatorT k withcomponents k Tq ,bythebehavioroftheoperatorswhentransformedbyarotation.Theexpectationvalueofanoperatorwhenthe systemisinaparticularstateisgivenby

T k = a Tk a q a q ; ? ; « « ? Underrotations,

k k 1 Tq Ø RTq'R

Areasonabledefinitionofasphericaltensoroperatoristhattheexpectationvaluetransformsunderrotationsinthe samewaythataclassicaltensorwould.Thisshouldbetrueforanystateaandthereforeshouldbeapropertyofthe operator,i.e.

k k k Tq Ø Dqq'Tq'

ü Definitionoftensoroperatorsbytheircommutationproperties

ByconsideringinfinitesimalrotationsonecandefinethetensoroperatorsintermsofcommutationpropertieswithJ m . k 1 Thus,foraninfinitesimalrotation,theformRTq'R becomes

k 1 k m èm k RTq R Ø Tq ie n J , Tq $ ( k k k m k m k k m SimilarlyD T Ø T ien J qq' T ,whichrequiresknowledgeofJ qq' .Theseoperatorsareknownfromthe qq' q' q + / q' + / actionofJz, J≤ onangularmomentumstatesindifferent/ j-representations,

k 0 k ≤ ≤ J qq' = dqq'qandJ qq' = c dq,q'≤1 + / + / kq

ThedefinitionofatensoroperatorcanthenbespecifiedintermsofhowJz, J≤ actonatensoroperatorthroughthe commutationrelations rotations.nb:11/3/04::13:48:13 28

k k Jz, Tq = qTq k ≤ k #J≤, Tq' = ckq Tq≤1 # ' ≤ S whereckq = k q k ≤ q + 1 ,asforwhentheangularmomentumgeneratorsactonstates j = k, m = q . r + / + / ƒ ? ü Combiningtensoroperators

Justasangularmomentumstatescanbecombinedviatheprocedureforangularmomentumaddition,sphericaltensor operatorscanbecombinedwithasimilaradditionformula.ConsidertwonormalizedtensoroperatorsU k1 , V k2 ,with

k1 k2 k1 k2 componentsUq1 , Vq2 .ThentheproductUq1 Vq2 canbeexpressedasalinearcombinationofobjectswithtensor properties

k1 k2 k1k2 k Uq Vq = Sckq,q q Tq (Eq.1) 1 2 kq 1 2

k k Thereare 2k1 + 1 2k2 + 1 possibleproductsthatcanbeformedfromthecomponentsofU 1 and V 2 .Undertheset ofrotations,thevariouscomponentsof+ / + / U k1 transformintoeachother.SimilarlyforV k2 andtheT k .Itfollowsthatfor k k k1 k2 eachT allcomponentsTq areincludedinthesetofallpossibleUq1 Vq2 products.

ThenextstepistoconsidertheeffectofJz

k1 k2 k1 k2 k1 k2 Jz, Uq1 Vq2 = Uq1 Jz, Vq2 + Jz, Uq1 Vq2

k1 k2 # = q'1 + q2 #Uq1 Vq2' # ' + / or,inthesumoverk, q,itisrequiredthatq = q1 + q2 .Thisinturnimpliesthatthereisamaximumvalueforq,namely qmax = k1 + k2 .Consideringthatthetensoroperatorsmustbecomplete,k alsohasamaximumvalue,kmax = k1 + k2 . kmax k1 k2 TheoperatorTkmax = Uk1 Vk2 istheuniqueq = kmax operator.

Followingthedevelopmentofangularmomentumaddition,thenextstepisrecognizethattherewillbetwooperators

k1 k2 k1 k2 kmax withq = kmax 1builtoutoflinearcombinationsofUq11Vq2 andUq1 Vq21 .OnewillbelongtoT andcanbebuilt withJ .Theotherwillbeanorthogonallinearcombination,andmustbethehighestq-componentofanoperator k 1 T max .TheoperationwithJ ontheleftsideofEq.1abovegives

k1 k2 k1 k2 k1 k2 J, Uk1 Vk2 = Uk1 J, Vk2 + J, Uk1 Vk2 # = c' U k1 # V k2 + c' #U k1 V k2' k1k1 k11 k2 k2k2 k1 k21

whileontheright-handside

J , T k1+k2 = c T k1+k2 k1+k2 k1+k2,k1+k2 k1+k21 # ' or

c c Tk1+k2 = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅk1k1 U k1 V k2 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅk2k2 U k1 V k2 k1+k21 c k11 k2 c k1 k21 k1+k2,k1+k2 k1+k2,k1+k2 rotations.nb:11/3/04::13:48:13 29

Thesecondlinearcombinationwillbeorthogonaltothisone,andwillbecometheheadcomponentoftheT k1+k21 operator.Followingthesameproceduresusedtofndtheirreduciblerepresentationcontentintheproductoftwo

representations j1 j2 ,onecanproceedtorepetitivelyapplyJ tofilloutthelistofcomponentsforthetensoroperators k1 k2 k1k2 intheproductofU V .Sincetheconstructiontechniqueisthesame,thecoefficientsckq,q1q2 areinfactexactly Clebsch-Gordoncoefficients.

ü Normalizationoftensoroperators

Thedefinitionoftensoroperatorshasappropriatelyconcentratedonthebehaviorunderrotations.Assuch,changingthe normalizationorevenmultiplyingbyanarbitraryscalarfunctionofrwillnotaffectthepropertiesunderrotations. Accordingly,ifT k isarank- k tensoroperator,thenT 'k = f r T k isalsoarank- k tensoroperator.Thisfollowsdirectly fromtheobservationthatR f r = f r foranyrotationR.Thereisnothingparticularlywrongwithhavingalarge+ / numberoftensoroperatorsofthesamerank,butitseemssimplertoseparatethetens+ / + / orpropertiesfromthe è k normalization.Accordingly,onecanuniquelydefineanormalizedrank- k tensoroperatorT ,andthenanarbitrary tensoroperatorTk canbewrittenas

è k Tk = f r T + / Foragivenapplication f r maydependonk ,butitdoesnotdependonq,soallcomponentsofT k scaleinthesame way + /

k è k Tq = f r Tq + / Onemaythinkofthisasbeingequivalenttotheseparationofvariablesthatallowsonetowriteawavefunctioninthe form

Ynlm = Rnl r Ylm q, f + / + / Statesaretypicallywrittenintheform nlm wheretheseparationofvariablesisnotexplicit,butitwouldbevalidto useanotation ƒ ?

nlm = nl r lm W ƒ ? ƒ ? ƒ ? wherethesubscriptsindicatethatthetwotermsdependonradialandangulardegreesoffreedom.

Theseparationabovedefinestheconceptofanormalizedtensoroperator,butdoesn'tsaywhatthatnormalization shouldbe.Commonsensesuggeststhatitshouldcorrespondtothenormalizationofstates jm sothatwhencombining operatorsandstatestheresultwillbewelldefinednormalizedstates.ThisisthesubjectoftheWigner-Eckarttheorem.ƒ ?

ü Actingonstateswithtensoroperators

Wehaveseenthatthetensoroperatorscanbecombinedusingthesamerulesasapplyforangularmomentumaddition k ofstates.ItseemsreasonabletoguessthatoperatingwithTq onastate jm willresultinanotherexampleofangular momentumaddition,i.e.operatingonrepresentation jwithanoperatorƒTk willproducestatesinrepresentations? j', with k j < j' < k + jpresentintheproduct. ƒ ‡ rotations.nb:11/3/04::13:48:13 30

k Indeed,considerthesetofstatesthatcanresultfromoperationbyanycomponentqofTq onanystatemof jm .Since thereareqcomponentsandmstates,therearen = qmlinearlyindependentoutcomes.Further,onecanconsiderthesetƒ ? ofallrotationsontheresult.Therotationswillensurethatifonestateofarepresentationispresentintheresult,then allstatesoftherepresentationwillbepresent.Ontheotherhand,therotationswillnotincreasethenumberofpossible combinationsofoperatorsandinitialstates.Simplestatecountingsuggeststhattherepresentationspresentinall k combinationsofTq jm willbeexactlytherepresentationspresentinthecombinationoftworepresentionsk, j. ƒ ? Toseethisexplicity,considertheproduct,

k èk j Tq jm = S cqm, j'm' j'm' j'm' ƒ ? ƒ ? thecoefficientscè arewritteninthesamenotationasClebsch-Gordoncoefficients,buttheyhavenotyetbeenshownto beidenticle.Therearetwoconsiderations:firstwhetherornottheratioofanytwocoefficientscè isthesameasforthe ratioofCGcoefficients,andsecondwhetherornotthemagnitudeofthecoefficientsmatches.Thesecondisaquestion ofnormalization,anditwillbeassumedthatinthesenseoftheprevioussubsection,thetheoperatorT k isnormalized.

OperatingwithJz ,ontheright

èk j èk j Jz S cqm, j'm' j'm' = S m'cqm, j'm' j'm' j'm' j'm' ƒ ? ƒ ? andontheleft

k k k JzTq jm = Jz, Tq + Tq Jz jm k k ƒ =? qT+#q + Tq 'm jm / ƒ ? k = +q + m Tq jm/ ƒ ? èk j =+ S q +/m cƒ qm,?j'm' j'm' j'm' + / ƒ ? Itfollowsthatm' = q + mtermbyterm,andthesumisrestrictedtojustasumoverdifferent j'.

k èk j Tq jm = Scqm, j'm'=q+m j'm' = q + m j' ƒ ? ƒ ?

Similartotheadditionofstates,thehighestm'-stateintheoperator-stateproductisgivenm'max = k + j,andthe

necessityofcompleterepresentationsimpliesthatthehighestrepresentationis j'max = k + j.Thisstateisproduced k uniquelybyTk j j = j + k, j + k .Similarly,therewillbetwostatesproducedwithm' = k + j 1,bythe k k combinationsTkƒ 1? j jƒorTk j j ?1 .Onelinearcombinationofthesestateswillbeamemberofthe j'max representationandtheotherwillheadarepresentationwithƒ ? ƒ ? j' = j'max 1.Theexactlinearcombinationsaredetermined byoperatingwithJ ontheright

k JTk j j = J j + k, j + k = c j+k, j+k j + k, j + k 1 ƒ ? ƒ ? ƒ ? andontheleft

k k k JTk j j = J, Tk + Tk J j j k k ƒ =? ckk+#Tk1 j' j + c j jT/k ƒ j,?j 1 ƒ ? ƒ ? Combiningtheresults, rotations.nb:11/3/04::13:48:14 31

c j j k ckk k j + k, j + k 1 = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ T j, j 1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ T j j c j+k, j+k k c j+k, j+k k1 ƒ ? ƒ ? ƒ ? Onceagain,thisprocessisreplicatingthearithmeticofangularmomentumadditionofstates,withthesame Clebsch-Gordoncoefficients.The ~ overthec-coefficientsin

k k j Tq jm = dm',q+mScqm, j'm' j'm' j' ƒ ? ƒ ? hasbeenremoved.

ü Wigner-Eckhardttheorem

Havingdemonstratedtheequivalancetoangularmomentumaddition,theW-Etheoremcanbestated.Thematrix elementforatensoroperator,actingbetweentwostatesofknownangularmomentumisgivenby

k k j k n' j'm' Tq n jm = cqm, j'm' n' j' T n j ; « « ? ; «« «« ? wherethec-coefficientsareClebsch-Gordoncoefficientsthatknowabouttheangularmomentumvariablesbutare independentofthenormalizationorradialdegreesoffreedom.The"double-barred"or"reduced"matrixelement containsinformationabouttheradialdependenceoftheoperatorandthestates,and/oranyotherdegreesoffreedom whicharenotpartoftheangularmomentumdiscussion.Inthenotationofnormalizationdiscussionabove,anarbitrary tensoroperatorcanbeexpressedastheproductofascalarfunctionandanormalizedoperator

k è k Tq = f r Tq + / andso

k è k n' j'm' Tq n jm = n' j'm' f r T q n jm è k ; =« j«'m' T?

ü Someexamples

mselectionrules jselectionrules 101010=0 rotations.nb:11/3/04::13:48:14 32

ü stuff