Rotations and Angular Momentum

Rotations and Angular Momentum

rotations.nb:11/3/04::13:48:13 1 RotationsandAngularmomentum Á Intro Thematerialheremaybefoundin SakuraiChap3:1-3,(5-6),7,(9-10) MerzbacherChap11,17. Chapter11ofMerzbacherconcentratesonorbitalangularmomentum.Sakurai,andCh17ofMerzbacherfocuson angularmomentuminrelationtothegroupofrotations.Justaslinearmomentumisrelatedtothetranslationgroup, angularmomentumoperatorsaregeneratorsofrotations.Thegoalistopresentthebasicsin5lecturesfocusingon 1.J asthegeneratorofrotations. 2.RepresentationsofSO 3 3.Additionofangularmomentum+ / 4.OrbitalangularmomentumandYlm ' s 5.Tensoroperators. Á Rotations&SO(3) ü Rotationsofvectors Beginwithadiscussionofrotationsappliedtoa3-dimensionalrealvectorspace.Thevectorsaredescribedbythreereal vx numbers,e.g.v = v .ThetransposeofavectorisvT = v , v , v .Thereisaninnerproductdefinedbetweentwo ML y ]\ x y z M ] M vz ] + / T M T ] vectorsbyu ÿ v =Nv ÿ^u = uv cos f,wherefistheanglebetweenthetwovectors.Underarotationtheinnerproduct betweenanytwovectorsispreserved,i.e.thelengthofanyvectorandtheanglebetweenanytwovectorsdoesn't change.Arotationcanbedescribedbya3ä3realorthogonalmatrixRwhichoperatesonavectorbytheusualrulesof matrixmultiplication v'x vx v' = R v and v' , v' , v' = v , v , v RT ML y ]\ ML y ]\ x y z x y z M ] M ] M v'z ] M vz ] + / + / M ]]] M ]]] N ^ N ^ Topreservetheinnerproduct,itisrequirdthatRT ÿ R = 1 u'ÿ v' = uRT ÿ Rv = u1v = u ÿ v Asanexample,arotationbyfaroundthez-axis(orinthexy-plane)isgivenby rotations.nb:11/3/04::13:48:13 2 cos f -sin f 0 R f = sin f cos f 0 z ML ]\ M ] + / M 0 0 1 ] M ]]] N ^ Thesignconventionsareappropriateforarighthandedcoordinatesystem:putthethumbofrighthandalongz-axis, extendfingersalongx-axis,andcurlfingersindirectionofy-axis. z y x Thedirectionofrotationforfiscounter-clockwisewhenlookingdownfromthe+zdirection,i.e.rotatethex-axisinto they-axis.Similarlytherotationsaroundthexandyaxesare cos f 0 sin f 1 0 0 R f = 0 1 0 andR f = 0 cos f -sin f y ML ]\ x ML ]\ M ] M ] + / M -sin f 0 cos f ] + / M 0 sin f cos f ] M ]]] M ]]] N ^ N ^ Thesignofsin finRy isrelatedtothehanded-nessofthecoordinatesystemandthesenseofrotation.For 3-dimensions,itisequivalenttotalkaboutrotationsaroundthez-axis,orrotationsinthexy-plane.Inanyothernumber ofdimensions,thecorrectlanguageistotalkaboutrotationsinthexi x j -plane,wherexi definesoneofthecoordinate directionsofthevectorspace.Thus,whilefor3-dimensionsthereare3independentrotations,inN -dimensions,there willbe ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅN N-1 independentrotations. + 2 / ü Directionkets Tomakethecorrespondencetoquantumstates,justasatranslationwasdefinedbyitsactiononpositioneigenkets,a rotationaroundtheoriginalsocanactonpositioneigenketsby è x ' = R x = R x ? ? ? è whereadistinctionhasbeenmadebetweentheoperatorR,whichactsonthestate,andtherotationmatrixRwhichacts onthecoordinates.Sincetherotationsdon'tchangethelengthofthevector,itispossibletodefinespherical coordinates,r, q, f,andsphericalpositionkets, x Ø r ≈ n` ,whererdeterminestheradialposition,andn` indicates ` thedirectionfromtheorigin.Therotationsactonlyonthe ? ? n ?degreesoffreedom. è ? R r ≈ n` = r ≈ R ÿ n` + ? ?/ ? ? Directionketswillbeusedmoreextensivelyinthediscussionoforbitalangularmomentumandsphericalharmonics, butfornowtheyareusefulforillustratingthesetofrotations.Thesetofalldirectionkets n` canbevisualizedbythe surfaceofasphere,andtherotationsarethesetofallpossiblewaystoreorientthatsphere. ? rotations.nb:11/3/04::13:48:13 3 ü OrthognalgroupSO(3) Thesetofallpossiblerotationsformagroup.Considerthefourproperties:closure,identity,inverseandassociativity. Usingthepictureofrotationsasreorientationsofasphere,onecanconstructvisualizationstoillustrateeachproperty. Withgreatermathematicalrigor,thesetofallpossiblerotationsformthegroupSO(3),whereOØorthogonal,3Ø3 dimensions,andSØspecial,whichinthiscasemeansthematrixhasadeterminantof1.Therotationsaredescribedby threecontinuous,butbounded,parameters.Fromthematrixpointofview,a3ä3matrixhasninedegreesoffreedom. T Theconstraintthatthematrixisorthogonal,Ri j R j k = di k yields6conditions,i.e.threefori = k andthreefori ∫ k . Thepropertiesofagroupareobeyed: closure: ForanytwoorthogonalmatricesR1 andR2 ,theproductR3 = R1 R2 ,isalsoorthogonal.Thecombination oftworotationsisalsoarotation. identity: The3 ä3unitmatrixactsasanidentityelementforthegroup. 1 R = R 1 = R inverse: EachelementhasaninverseR-1 = RT ,RT R = RRT = 1 associativity: R1 R2 R3 = R1 R2 R3 + / + / UnliketheTranslationgroup,SO(3)isnotabelian,i.e.ingeneralR1 R2 ∫ R2 R1 . ThesignificanceoftheS-condition,Det R = 1,isthatreflectionsarenotincludedinthegroup,i.e.forthreedimensions onecannotturnaright-handedobjectintoaleft-handedobjectbydoingarotation.Ifweallowedreflections,e.g. -1 0 0 0 -1 0 ML ]\ M ] M 0 0 -1 ] M ] N ^ Then,thegroupwouldbeO(3)insteadofSO(3).O(3)iscalled"disconnected"sincenotallelementsofthegroupcan bereachedbyasuccessionofinfinitesimaltransformations.SO(3)isconnected. TherotationmatricesRarejustone"representation"ofthegroupSO(3).Fortwodifferentrepresentations,therehasto bea1 ¨1mappingoftheelementsofonerepresentationtotheother.Themappinghastopreservethecombinationlaw. ConsidertworepresentationsRandS .Labelarotationbyasubscriptwhichrepresentsthethreeparameterstodefinea rotation,andidentifyRa ¨ Sa ,IfR3 = R1 R2 ,thenwemusthaveS3 = S1 S2 topreservethecombinatinlaw. ` ü Fullsetofrotations:+n, f/ Therearetwocommonmethodsforparameterizingrotations.Thefirstistochooseanaxisforrotationandthenperform arotationbyananglebetween0andp.Theaxisofrotationcanbechosenanywhereonthesphere.Whynot0 ¨ 2 p? Thenrotationswithpolesonoppositesidesofthespherewouldberedundant.AnexplicitformforR n`, f willbegiven afterdevelopingthelanguageofinfinitesimalrotations. + / Draw your own picture showing the rotation of a sphere around an off + axis pole. The sphere represents the set of states, n, i.e. the set of direction kets. The rotation reorients the sphere. rotations.nb:11/3/04::13:48:13 4 ü Eulerangles ThesecondparameterizationistogiveEulerangles.Inthismethodonedescribeswherethe"northpole"movesto underarotation,andtheorientationofthesphereafterthepolehasbeenmoved.Thelocationofthepoleisdetermined byfirstchoosingalongitudebyrotatingaroundthez-axis,thenalatitudebyrotatingaroundthenewy-axis.Finally, theorientationofthesphereisgivenbyafinalrotationaroundthenewz-axis.Pictorially, Draw more pictures, showing the sequence of rotations to move the pole, and then reorient the sphere around the new pole. IntheEulerparameterizationtherangeofanglesis a = 0, 2 p , b = 0, p , g = 0, 2 p + / + / + / andanarbitraryrotationisgivenby R a, b, g = Rz' g Ry' b Rz a + / + / + / + / Note thatthez'andy'rotationsarenotdefinedwithrespecttotheoriginalcoordinateaxes,butratherwithrespectto wherethoseaxeshavemovedwiththereorientationofthesphere.Lateritwillbeshownthat Rz' g Ry' b Rz a = Rz a Ry b Rz g + / + / + / + / + / + / wheretheorderhasbeenreversed,butnowallrotationsareconvenientlydefinedaroundtheaxesoftheoriginal coordinatesystem. ü Equivalencyofthetwoparameterizations Thetwoparameterizationsmaynotseemequivalent,buttheyare,ascanbeseenbyapictorialmappingof n`, f to a, b, g .ObservethattherearetwowaystoproducethesamesetofEuleranglesconsistentwiththerestrictionof+ / fto +0, p . / + / This picture didn't make it into the classroom presentation. it's a bit of work Thetwotechniqueshavedifferentuses.Euleranglestendtobemoreusefulforbuildingupactualrotationmatricesina calculation.ThisisbecauseRz andRy aregenerallyfairlyeasytoconstructforarepresentation,andthematrix multiplicationisstraightforward.The n`, f notationhasadvantagesinsomeanalyticmanipulations,aswewillsee below. + / rotations.nb:11/3/04::13:48:13 5 ü J asthegeneratorofinfinitesimalrotations. Inanalogytothediscussionoftranslationsandtimeevolution,itisusefultobuildupthefiniterotationsfrom generatorsofinfinitesimalrotations.Recognizingthatweareeventuallyinterestedinaquantummechanical formulation,itisusefultodevelopthisformalisminawaythatrealizestherotationsasunitaryoperations.Forexample, aninfinitesimalrotationaroundthez-axisisgivenby Rz d = 1 - i d Jz + / whereJz isthegeneratorofinfinitesimalrotationsaroundthez-axis.SinceRisunitary(note:orthogonalmatricesare unitary),J mustbeHermitian.Inthepresentcase,toleadingorderind 1 -d 0 0 -i 0 R d = d 1 0 orJ = i 0 0 z ML ]\ z ML ]\ M ] M ] + / M 0 0 1 ] M 0 0 0 ] M ]]] M ]]] N ^ N ^ Similarly,forthisrepresentation 0 0 0 0 0 i J = 0 0 -i ,J = 0 0 0 x ML ]\ y ML ]\ M ] M ] M 0 i 0 ] M -i 0 0 ] M ]]] M ]]] N ^ N ^ Note thatsincethisisstillaclassicaldiscussionIhaven'tputinanyfactorsof. ü Commutationrelations Thegeneratorsobeythecommutationrelations Ji, J j = i ei jk Jk # ' whereei jk = 1, if i j k is an even permutation of x y z = -1, if +i j k/is an odd permutation of x+ y z / = 0, if any+ two/ of i j k are equal + / + / asausefulasideei jk elmk = dil d jm - dim d jl . Thecommutationrelationsareapropertyofthegroup,notjustaparticularrepresentation.Thecollectionofallthe commutatorrelationsforthegeneratorsissometimescalledthealgebraofthegeneratorsofthegroup,orjustthe algebraofthegroup. ü Finiterotations Forrotationsaroundaparticularaxis,itshouldbeclearthatwecanbuildupanarbitraryrotationbyasequenceof infinitesimalrotations,similartotheprocedureforbuildingupafintetranslationasthelimitingproductofalarge numberofinfinitesimals. rotations.nb:11/3/04::13:48:13 6 R f = Lim P Rz f n nض i + / - + s /1 n = Lim 1 - i Jz f n nض = e-i Jz f+ + s // Itisnowpossibletogiveaformforanarbitraryrotationinthe n`, f parameterization.Theinfinitesimalrotation ` aroundthen-axisisgivenby + / R n`, d = 1 - i d n` ÿ J + / ThereisnoconcernaboutwhichcomponentofJ isoperatedonfirst,sincetheeffectsofcommutationamongstthe

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    32 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us