List of Publications Mikko K. J. Kaasalainen Refereed Papers In

Total Page:16

File Type:pdf, Size:1020Kb

List of Publications Mikko K. J. Kaasalainen Refereed Papers In List of Publications Mikko K. J. Kaasalainen Refereed papers in international journals 1. M. Kaasalainen, L. Lamberg, K. lumme, and E. Bowell (1992): Interpretation of lightcurves of atmosphereless bodies. I. General theory and new inversion schemes. Astron. Astrophys. 259, 318. 2. M. Kaasalainen, L. Lamberg, and K. Lumme (1992): Interpretation of lightcurves of atmosphere- less bodies. II. Practical aspects of inversion. Astron. Astrophys. 259, 333. 3. M. Kaasalainen and J. Binney (1994): Torus construction in potentials supporting different orbit families. Mon. Not. Roy. Ast. Soc. 268, 1033. 4. M. Kaasalainen (1994): Hamiltonian perturbation theory for numerically constructed phase-space tori. Mon. Not. Roy. Ast. Soc. 268, 1041. 5. M. Kaasalainen and J. Binney (1994): Construction of invariant tori and integrable Hamiltonians, Phys. Rev. Lett. 73, 2377. 6. M. Kaasalainen (1995): Construction of invariant tori around closed orbits. Mon. Not. Roy. Ast. Soc. 275, 162. 7. M. Kaasalainen (1995): Construction of invariant tori in chaotic regions. Phys. Rev. E 52, 1193. 8. M. Kaasalainen, K. Muinonen, and T. Laakso (2001): Shapes and scattering properties of large irregular bodies from photometric data. Optics Express 8, 296 (http://www.opticsexpress.org/). 9. M. Kaasalainen and T. Laakso (2001): Near-integrability as a numerical tool in solar system dynamics. Astron. Astrophys. 368, 706. 10. L. Lamberg and M. Kaasalainen (2001): Numerical solution of the Minkowski problem. J. Comp. Appl. Math. 137, 213. 11. M. Kaasalainen and J. Torppa (2001): Optimization methods for asteroid lightcurve inversion. I. Shape determination. Icarus 153, 24. 12. M. Kaasalainen, J. Torppa, and K. Muinonen (2001): Optimization methods for asteroid lightcurve inversion. II. The complete inverse problem. Icarus 153, 37. 13. M. Kaasalainen (2001): Interpretation of lightcurves of precessing asteroids. Astron. Astrophys. 376, 302. 14. M. Kaasalainen, J. Torppa, and J. Piironen (2002): Binary structures among large asteroids. Astron. Astrophys. 383, L19. 15. M. Kaasalainen, J. Torppa, and J. Piironen (2002): Models of twenty asteroids from photometric data. Icarus 159, 369. 16. S. Kaasalainen, J. Piironen, M. Kaasalainen, A. W. Harris, K. Muinonen, and A. Cellino (2003): Asteroid photometric and polarimetric phase curves: Empirical interpretation. Icarus 161, 34. 17. S. Slivan, R. Binzel, L. da Silva, M. Kaasalainen, M. Lyndaker, and M. Krco (2003): Spin vectors in the Koronis family: Comprehensive results from two independent analyses of 213 rotation lightcurves. Icarus 162, 285. 18. J. Durechˇ and M. Kaasalainen (2003): Photometric signatures of highly nonconvex and binary asteroids. Astron. Astrophys. 404, 709. 1 19. M. Kaasalainen, T. Kwiatkowski, M. Abe, J. Piironen, T. Nakamura, Y. Ohba, B. Dermawan, T. Farnham, F. Colas, S. Lowry, P. Weissman, R. J. Whiteley, D. J. Tholen, S. M. Larson, M. Yoshikawa, I. Toth, and F. P. Velichko (2003): CCD photometry and model of MUSES-C target 25143 1998 SF36. Astron. Astrophys. 405, L29. 20. J. Torppa, M. Kaasalainen, T. Michalowski, T. Kwiatkowski, A. Kryszczynska, P. Denchev, and R. Kowalski (2003): Shapes and rotational properties of thirty asteroids from photometric data. Icarus 164, 346. 21. M. Kaasalainen (2003): Unveiling asteroids: international observing project and amateur-profes- sional connection. J. Roy. Ast. Soc. Can. 97, 283 (invited review). 22. M. Kaasalainen, P. Pravec, Yu.N. Krugly, L. Sarounov´a,J.ˇ Torppa, J. Virtanen, S. Kaasalainen, A. Erikson, A. Nathues, J. Durech,ˇ M. Wolf, J.S.V. Lagerros, M. Lindgren, C.-I. Lagerkvist, R. Koff, J. Davies, R. Mann, P. Kuˇsnir´ak,N.M. Gaftonyuk, V.G. Shevchenko, V.G. Chiorny, and I.N. Belskaya (2004): Photometry and models of eight near-Earth asteroids. Icarus 167, 178. 23. D. Vokrouhlick´y,D. Capek,ˇ M. Kaasalainen, and S.J. Ostro (2004): Detectability of YORP rotational slowing of asteroid 25143 Itokawa. Astron. Astrophys. 414, L21. 24. T. Michalowski, T. Kwiatkowski, M. Kaasalainen, W. Pych, A. Kryszczynska, P.A. Dybczyns- ki, F.P. Velichko, A. Erikson, P. Denchev, S. Fauvaud, and Gy.M. Szabo (2004): Photometry and models of selected main-belt asteroids (I): 52 Europa, 115 Thyra, and 382 Dodona. Astron. Astrophys. 416, 353. 25. M. Kaasalainen and P. Tanga (2004): Photocentre offset in ultraprecise astrometry: implications to barycentre determination and asteroid modelling. Astron. Astrophys. 416, 367. 26. S.J. Ostro, L.M. Benner, M. Nolan, C. Magri, J. Giorgini, D. Scheeres, S. Broschart, M. Kaasalainen, D. Vokrouhlick´y,S. Chesley, J.-L. Margot, R. Jurgens, R. Rose, D. Yeomans, S. Suzuki, and E. DeJong (2004): Radar observations of asteroid 25143 Itokawa (1998 SF36). Met. Plan. Sci. 39, 407. 27. M. Kaasalainen (2004): Physical models of large number of asteroids from calibrated photometry sparse in time. Astron. Astrophys. 422, L39. 28. P. Pravec and 19 colleagues, incl. M. Kaasalainen (2005): Tumbling Asteroids. Icarus 173, 108. 29. A. Nathues, S. Mottola, M. Kaasalainen, and G. Neukum (2005): Spectral study of the Eunomia family. I: Eunomia. Icarus 175, 452. 30. S. Kaasalainen, J. Peltoniemi, J. N¨ar¨anen,J. Suomalainen, M. Kaasalainen, and F. Stenman (2005): Small-angle goniometry for backscattering measurements in the broadband spectrum. Ap- plied Optics 44, 1485. 31. S. Kaasalainen, M. Kaasalainen, and J. Piironen (2005): Ground reference for space remote sensing: Laboratory photometry of an asteroid model. Astron. Astrophys. 440, 1177. 32. S.J. Ostro and 12 colleagues, incl. M. Kaasalainen (2005): Radar observations of Itokawa in 2004 and improved shape estimation. Met. Plan. Sci. 40, 1563. 33. T. Michalowski, M. Kaasalainen, A. Marciniak, P. Denchev, T. Kwiatkowski, A. Kryszczynska, R. Hirsch, F.P. Velichko, A. Erikson, Gy.M. Szabo, and R. Kowalski (2005): Photometry and models of selected main-belt asteroids (II): 173 Ino, 376 Geometria, and 451 Patientia. Astron. Astrophys. 443, 329. 34. T.G. Mueller, T. Sekiguchi, M. Kaasalainen, M. Abe, and S. Hasegawa (2005). Thermal infrared observations of the Hayabusa spacecraft target asteroid 25143 Itokawa. Astron. Astrophys. 443, 347. 2 35. M. Kaasalainen and L. Lamberg (2006): Inverse problems of generalized projection operators. Inverse Problems 22, 749. 36. T. Laakso, J. Rantala and M. Kaasalainen (2006): Gravitational scattering by giant planets. Astron. Astrophys. 456, 373. 37. F. Marchis, M. Kaasalainen, E. Hom, J. Berthier, J. Enriquez, D. Hestroffer, D. Le Mignant, and I. de Pater (2006): Shape, size and multiplicity of main-belt asteroids. I. Keck adaptive optics survey. Icarus, 185, 39. 38. P.L. Lamy, I. Toth, H.A. Weaver, L. Jorda, M. Kaasalainen, and P.J. Gutierrez (2006): Hubble Space Telescope observations of the nucleus and inner coma of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys., 458, 669. 39. T. Michalowski, M. Kaasalainen, M. Polinska, A. Marciniak, T. Kwiatkowski, A. Kryszczynska, and F.P. Velichko (2006): Photometry and models of selected main belt asteroids. III. 283 Emma, 665 Sabine, and 690 Wratislavia. Astron. Astrophys., 459, 663. 40. J. Durech,ˇ T. Grav, R. Jedicke, M. Kaasalainen and L. Denneau (2006): Asteroid models from Pan-STARRS photometry. Earth, Moon, and Planets, 97, 179. 41. S. Kaasalainen, M. Kaasalainen, T. Mielonen, J. Suomalainen, J. Peltoniemi, and J. N¨ar¨anen (2006): Optical properties of snow in hotspot region. Journal of Glaciology, 52, 574. 42. P. Lamy, B. Davidsson, O. Groussin, P. Gutierrez, L. Jorda, M. Kaasalainen, S. Lowry and I. Toth (2007): A portrait of the nucleus of comet 67P/Churyumov-Gerasimenko. Space Science Reviews, 128, 23. 43. J. Durech,ˇ M. Kaasalainen, and 40 colleagues (2007): Physical models of ten asteroids from an observers' collaboration network. Astron. Astrophys., 465, 331. 44. M. Kaasalainen, J. Durech,ˇ B. Warner, Yu. Krugly, and N. Gaftonyuk (2007): Acceleration of the rotation of asteroid 1862 Apollo by radiation torques. Nature, 446, 420. [Together with: Nature Advance Online Publication 7 March 2007, Supplementary Information, News and Views (W. Bottke, Nature, 446, 382), Nature Podcast 8 March 2007 (www.nature.com/nature/podcast)] 45. A. Marciniak, T. Michalowski, M. Kaasalainen, J. Durech,ˇ M. Polinska, T. Kwiatkowski, A. Kryszczynska, R. Hirsch, K. Kaminski, M. Fagas, F. Colas, S. Fauvaud, G. Santacana, R. Behrend, and R. Roy (2007): Photometry and models of selected main belt asteroids. IV. 184 Dejopeja, 276 Adelheid, 556 Phyllis. Astron. Astrophys., 473, 633. 46. A. Marciniak, T. Michalowski, M. Kaasalainen, A. Kryszczynska, T. Kwiatkowski, R. Hirsch, K. Kaminski, M. Fagas, M. Polinska, F.P. Velichko, M.J. Michalowski, C. Snodgrass, R. Behrend, and L. Bernasconi (2008): Photometry and models of selected main belt asteroids. V. 73 Klytia, 377 Campania, and 378 Holmia. Astron. Astrophys., 478, 559. 47. P. Descamps, F. Marchis, J. Pollock, J. Berthier, F. Vachier, M. Birlan, M. Kaasalainen, A. Harris, M. Wong, W. Romanishin, E. Cooper, K. Kettner, P. Wiggins, A. Kryszczynska, M. Polinska, J. Colliac, A. Devyatkin, I. Versetchagina, and D. Gorshanov (2008): New determination of the size and bulk density of the binary asteroid 22 Kalliope from observations of mutual eclipses. Icarus, 196, 578. 48. F. Marchis, P. Descamps, M. Baek, A. Harris, M. Kaasalainen, J. Berthier, D. Hestroffer, and F. Vachier (2008): Main-belt binary asteroid systems with circular orbits. Icarus, 196, 97. 49. M. Kaasalainen and S. Kaasalainen (2008): Aperture size effects on backscatter intensity mea- surements in Earth and space remote sensing. J.Opt.Soc.Am. A, 25, 1142. 3 50. J.Durech,ˇ D. Vokrouhlick´y, M. Kaasalainen, P. Weissman, S.C. Lowry, E. Beshore, D. Higgins, Y.N. Krugly, V.G. Shevchenko, N.M. Gaftonyuk, Y.-J. Choi, R. Kowalski, S. Larson, B.D. Warner, T. Michalowski, and K. Kitazato (2008): New photometric observations of asteroids (1862) Apollo and (25143) Itokawa { analysis of YORP effect. Astron. Astrophys., 488, 345. 51. P. Lamy, M. Kaasalainen, S. Lowry, P. Weissman, M. Barucci, J. Carvano, Y.-J. Choi, F. Colas, G. Faury, S. Fornasier, O. Groussin, M. Hicks, L. Jorda, A. Kryszczynska, S. Larson, I. Toth, and B. Warner (2008): Asteroid Steins: II. Multi-telescope visible observations, shape reconstruction and rotational state.
Recommended publications
  • Asteroid Shape and Spin Statistics from Convex Models J
    Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen To cite this version: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen. Asteroid shape and spin statistics from convex models. Icarus, Elsevier, 2008, 198 (1), pp.91. 10.1016/j.icarus.2008.07.014. hal-00499092 HAL Id: hal-00499092 https://hal.archives-ouvertes.fr/hal-00499092 Submitted on 9 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen PII: S0019-1035(08)00283-2 DOI: 10.1016/j.icarus.2008.07.014 Reference: YICAR 8734 To appear in: Icarus Received date: 18 September 2007 Revised date: 3 July 2008 Accepted date: 7 July 2008 Please cite this article as: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen, Asteroid shape and spin statistics from convex models, Icarus (2008), doi: 10.1016/j.icarus.2008.07.014 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • An Anisotropic Distribution of Spin Vectors in Asteroid Families
    Astronomy & Astrophysics manuscript no. families c ESO 2018 August 25, 2018 An anisotropic distribution of spin vectors in asteroid families J. Hanuš1∗, M. Brož1, J. Durechˇ 1, B. D. Warner2, J. Brinsfield3, R. Durkee4, D. Higgins5,R.A.Koff6, J. Oey7, F. Pilcher8, R. Stephens9, L. P. Strabla10, Q. Ulisse10, and R. Girelli10 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovickáchˇ 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 Via Capote Observatory, Thousand Oaks, CA 91320, USA 4 Shed of Science Observatory, 5213 Washburn Ave. S, Minneapolis, MN 55410, USA 5 Hunters Hill Observatory, 7 Mawalan Street, Ngunnawal ACT 2913, Australia 6 980 Antelope Drive West, Bennett, CO 80102, USA 7 Kingsgrove, NSW, Australia 8 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 9 Center for Solar System Studies, 9302 Pittsburgh Ave, Suite 105, Rancho Cucamonga, CA 91730, USA 10 Observatory of Bassano Bresciano, via San Michele 4, Bassano Bresciano (BS), Italy Received x-x-2013 / Accepted x-x-2013 ABSTRACT Context. Current amount of ∼500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method allows us to study not only the spin-vector properties of the whole population of MBAs, but also of several individual collisional families. Aims. We create a data set of 152 asteroids that were identified by the HCM method as members of ten collisional families, among them are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes of the spin axes.
    [Show full text]
  • Asteroid Regolith Weathering: a Large-Scale Observational Investigation
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved.
    [Show full text]
  • The Minor Planet Bulletin 37 (2010) 45 Classification for 244 Sita
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 37, NUMBER 2, A.D. 2010 APRIL-JUNE 41. LIGHTCURVE AND PHASE CURVE OF 1130 SKULD Robinson (2009) from his data taken in 2002. There is no evidence of any change of (V-R) color with asteroid rotation. Robert K. Buchheim Altimira Observatory As a result of the relatively short period of this lightcurve, every 18 Altimira, Coto de Caza, CA 92679 (USA) night provided at least one minimum and maximum of the [email protected] lightcurve. The phase curve was determined by polling both the maximum and minimum points of each night’s lightcurve. Since (Received: 29 December) The lightcurve period of asteroid 1130 Skuld is confirmed to be P = 4.807 ± 0.002 h. Its phase curve is well-matched by a slope parameter G = 0.25 ±0.01 The 2009 October-November apparition of asteroid 1130 Skuld presented an excellent opportunity to measure its phase curve to very small solar phase angles. I devoted 13 nights over a two- month period to gathering photometric data on the object, over which time the solar phase angle ranged from α = 0.3 deg to α = 17.6 deg. All observations used Altimira Observatory’s 0.28-m Schmidt-Cassegrain telescope (SCT) working at f/6.3, SBIG ST- 8XE NABG CCD camera, and photometric V- and R-band filters. Exposure durations were 3 or 4 minutes with the SNR > 100 in all images, which were reduced with flat and dark frames.
    [Show full text]
  • A Study of Asteroid Pole-Latitude Distribution Based on an Extended
    Astronomy & Astrophysics manuscript no. aa˙2009 c ESO 2018 August 22, 2018 A study of asteroid pole-latitude distribution based on an extended set of shape models derived by the lightcurve inversion method 1 1 1 2 3 4 5 6 7 J. Hanuˇs ∗, J. Durechˇ , M. Broˇz , B. D. Warner , F. Pilcher , R. Stephens , J. Oey , L. Bernasconi , S. Casulli , R. Behrend8, D. Polishook9, T. Henych10, M. Lehk´y11, F. Yoshida12, and T. Ito12 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holeˇsoviˇck´ach 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 4 Goat Mountain Astronomical Research Station, 11355 Mount Johnson Court, Rancho Cucamonga, CA 91737, USA 5 Kingsgrove, NSW, Australia 6 Observatoire des Engarouines, 84570 Mallemort-du-Comtat, France 7 Via M. Rosa, 1, 00012 Colleverde di Guidonia, Rome, Italy 8 Geneva Observatory, CH-1290 Sauverny, Switzerland 9 Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100, Israel 10 Astronomical Institute, Academy of Sciences of the Czech Republic, Friova 1, CZ-25165 Ondejov, Czech Republic 11 Severni 765, CZ-50003 Hradec Kralove, Czech republic 12 National Astronomical Observatory, Osawa 2-21-1, Mitaka, Tokyo 181-8588, Japan Received 17-02-2011 / Accepted 13-04-2011 ABSTRACT Context. In the past decade, more than one hundred asteroid models were derived using the lightcurve inversion method. Measured by the number of derived models, lightcurve inversion has become the leading method for asteroid shape determination.
    [Show full text]
  • The Minor Planet Bulletin, It Is a Pleasure to Announce the Appointment of Brian D
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 33, NUMBER 1, A.D. 2006 JANUARY-MARCH 1. LIGHTCURVE AND ROTATION PERIOD Observatory (Observatory code 926) near Nogales, Arizona. The DETERMINATION FOR MINOR PLANET 4006 SANDLER observatory is located at an altitude of 1312 meters and features a 0.81 m F7 Ritchey-Chrétien telescope and a SITe 1024 x 1024 x Matthew T. Vonk 24 micron CCD. Observations were conducted on (UT dates) Daniel J. Kopchinski January 29, February 7, 8, 2005. A total of 37 unfiltered images Amanda R. Pittman with exposure times of 120 seconds were analyzed using Canopus. Stephen Taubel The lightcurve, shown in the figure below, indicates a period of Department of Physics 3.40 ± 0.01 hours and an amplitude of 0.16 magnitude. University of Wisconsin – River Falls 410 South Third Street Acknowledgements River Falls, WI 54022 [email protected] Thanks to Michael Schwartz and Paulo Halvorcem for their great work at Tenagra Observatory. (Received: 25 July) References Minor planet 4006 Sandler was observed during January Schmadel, L. D. (1999). Dictionary of Minor Planet Names. and February of 2005. The synodic period was Springer: Berlin, Germany. 4th Edition. measured and determined to be 3.40 ± 0.01 hours with an amplitude of 0.16 magnitude. Warner, B. D. and Alan Harris, A. (2004) “Potential Lightcurve Targets 2005 January – March”, www.minorplanetobserver.com/ astlc/targets_1q_2005.htm Minor planet 4006 Sandler was discovered by the Russian astronomer Tamara Mikhailovna Smirnova in 1972. (Schmadel, 1999) It orbits the sun with an orbit that varies between 2.058 AU and 2.975 AU which locates it in the heart of the main asteroid belt.
    [Show full text]
  • Do Slivan States Exist in the Flora Family? A
    Do Slivan states exist in the Flora family? A. Kryszczyńska, F. Colas, M. Polińska, R. Hirsch, V. Ivanova, G. Apostolovska, B. Bilkina, F. Velichko, T. Kwiatkowski, P. Kankiewicz, et al. To cite this version: A. Kryszczyńska, F. Colas, M. Polińska, R. Hirsch, V. Ivanova, et al.. Do Slivan states exist in the Flora family?. Astronomy and Astrophysics - A&A, EDP Sciences, 2012, 546, pp.A72. 10.1051/0004- 6361/201219199. hal-03123875 HAL Id: hal-03123875 https://hal.archives-ouvertes.fr/hal-03123875 Submitted on 28 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 546, A72 (2012) Astronomy DOI: 10.1051/0004-6361/201219199 & c ESO 2012 Astrophysics Do Slivan states exist in the Flora family? I. Photometric survey of the Flora region A. Kryszczynska´ 1,F.Colas2,M.Polinska´ 1,R.Hirsch1, V. Ivanova3, G. Apostolovska4, B. Bilkina3, F. P. Velichko5, T. Kwiatkowski1,P.Kankiewicz6,F.Vachier2, V. Umlenski3, T. Michałowski1, A. Marciniak1,A.Maury7, K. Kaminski´ 1, M. Fagas1, W. Dimitrov1, W. Borczyk1, K. Sobkowiak1, J. Lecacheux8,R.Behrend9, A. Klotz10,11, L. Bernasconi12,R.Crippa13, F. Manzini13, R.
    [Show full text]
  • Spin States of Asteroids in the Eos Collisional Family
    Spin states of asteroids in the Eos collisional family J. Hanuša,∗, M. Delbo’b, V. Alí-Lagoac, B. Bolinb, R. Jedicked, J. Durechˇ a, H. Cibulkováa, P. Pravece, P. Kušniráke, R. Behrendf, F. Marchisg, P. Antoninih, L. Arnoldi, M. Audejeanj, M. Bachschmidti, L. Bernasconik, L. Brunettol, S. Casullim, R. Dymockn, N. Esseivao, M. Estebanp, O. Gerteisi, H. de Grootq, H. Gullyi, H. Hamanowar, H. Hamanowar, P. Kraffti, M. Lehkýa, F. Manzinis, J. Michelett, E. Morelleu, J. Oeyv, F. Pilcherw, F. Reignierx, R. Royy, P.A. Salomp, B.D. Warnerz aAstronomical Institute, Faculty of Mathematics and Physics, Charles University, V Holešoviˇckách 2, 18000 Prague, Czech Republic bUniversité Côte d’Azur, OCA, CNRS, Lagrange, France cMax-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, Postfach 1312, 85741 Garching, Germany dInstitute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822, USA eAstronomical Institute, Academy of Sciences of the Czech Republic, Friˇcova 1, CZ-25165 Ondˇrejov, Czech Republic fGeneva Observatory, CH-1290 Sauverny, Switzerland gSETI Institute, Carl Sagan Center, 189 Bernado Avenue, Mountain View CA 94043, USA hObservatoire des Hauts Patys, F-84410 Bédoin, France iAix Marseille Université, CNRS, OHP (Observatoire de Haute Provence), Institut Pythéas (UMS 3470) 04870 Saint-Michel-l’Observatoire, France jObservatoire de Chinon, Mairie de Chinon, 37500 Chinon, France kObservatoire des Engarouines, 1606 chemin de Rigoy, F-84570 Malemort-du-Comtat, France lLe Florian, Villa 4, 880 chemin de Ribac-Estagnol,
    [Show full text]
  • The Minor Planet Bulletin Is Open to Papers on All Aspects of 6500 Kodaira (F) 9 25.5 14.8 + 5 0 Minor Planet Study
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 32, NUMBER 3, A.D. 2005 JULY-SEPTEMBER 45. 120 LACHESIS – A VERY SLOW ROTATOR were light-time corrected. Aspect data are listed in Table I, which also shows the (small) percentage of the lightcurve observed each Colin Bembrick night, due to the long period. Period analysis was carried out Mt Tarana Observatory using the “AVE” software (Barbera, 2004). Initial results indicated PO Box 1537, Bathurst, NSW, Australia a period close to 1.95 days and many trial phase stacks further [email protected] refined this to 1.910 days. The composite light curve is shown in Figure 1, where the assumption has been made that the two Bill Allen maxima are of approximately equal brightness. The arbitrary zero Vintage Lane Observatory phase maximum is at JD 2453077.240. 83 Vintage Lane, RD3, Blenheim, New Zealand Due to the long period, even nine nights of observations over two (Received: 17 January Revised: 12 May) weeks (less than 8 rotations) have not enabled us to cover the full phase curve. The period of 45.84 hours is the best fit to the current Minor planet 120 Lachesis appears to belong to the data. Further refinement of the period will require (probably) a group of slow rotators, with a synodic period of 45.84 ± combined effort by multiple observers – preferably at several 0.07 hours. The amplitude of the lightcurve at this longitudes. Asteroids of this size commonly have rotation rates of opposition was just over 0.2 magnitudes.
    [Show full text]
  • The Minor Planet Bulletin Semi-Major Axis of 2.317 AU, Eccentricity 0.197, Inclination 7.09 (Warner Et Al., 2018)
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 45, NUMBER 3, A.D. 2018 JULY-SEPTEMBER 215. LIGHTCURVE ANALYSIS FOR TWO NEAR-EARTH 320ʺ/min during the close approach. The eclipse was observed, ASTEROIDS ECLIPSED BY EARTH’S SHADOW within minutes of the original prediction. Preliminary rotational and eclipse lightcurves were made available soon after the close Peter Birtwhistle approach (Birtwhistle, 2012; Birtwhistle, 2013; Miles, 2013) but it Great Shefford Observatory should be noted that a possible low amplitude 8.7 h period (Miles, Phlox Cottage, Wantage Road 2013) has been discounted in this analysis. Great Shefford, Berkshire, RG17 7DA United Kingdom Several other near-Earth asteroids are known to have been [email protected] eclipsed by the Earth’s shadow, e.g. 2008 TC3 and 2014 AA (both before impacting Earth), 2012 KT42, and 2016 VA (this paper) (Received 2018 March18) but internet searches have not found any eclipse lightcurves. The asteroid lightcurve database (LCDB; Warner et al., 2009) lists a Photometry was obtained from Great Shefford reference to an unpublished result for 2012 XE54 by Pollock Observatory of near-Earth asteroids 2012 XE54 in 2012 (2013) without lightcurve details, but these have been provided on and 2016 VA in 2016 during close approaches. A request and give the rotation period as 0.02780 ± 0.00002 h, superfast rotation period has been determined for 2012 amplitude 0.33 mag derived from 101 points over a period of 30 XE54 and H-G magnitude system coefficients have been minutes for epoch 2012 Dec 10.2 UT at phase angle 19.5°, estimated for 2016 VA.
    [Show full text]
  • The Minor Planet Bulletin Lost a Friend on Agreement with That Reported by Ivanova Et Al
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 33, NUMBER 3, A.D. 2006 JULY-SEPTEMBER 49. LIGHTCURVE ANALYSIS FOR 19848 YEUNGCHUCHIU Kwong W. Yeung Desert Eagle Observatory P.O. Box 105 Benson, AZ 85602 [email protected] (Received: 19 Feb) The lightcurve for asteroid 19848 Yeungchuchiu was measured using images taken in November 2005. The lightcurve was found to have a synodic period of 3.450±0.002h and amplitude of 0.70±0.03m. Asteroid 19848 Yeungchuchiu was discovered in 2000 Oct. by the author at Desert Beaver Observatory, AZ, while it was about one degree away from Jupiter. It is named in honor of my father, The amplitude of 0.7 magnitude indicates that the long axis is Yeung Chu Chiu, who is a businessman in Hong Kong. I hoped to about 2 times that of the shorter axis, as seen from the line of sight learn the art of photometry by studying the lightcurve of 19848 as at that particular moment. Since both the maxima and minima my first solo project. have similar “height”, it’s likely that the rotational axis was almost perpendicular to the line of sight. Using a remote 0.46m f/2.8 reflector and Apogee AP9E CCD camera located in New Mexico Skies (MPC code H07), images of Many amateurs may have the misconception that photometry is a the asteroid were obtained on the nights of 2005 Nov. 20 and 21. very difficult science. After this learning exercise I found that, at Exposures were 240 seconds.
    [Show full text]
  • Cumulative Index to Volumes 1-45
    The Minor Planet Bulletin Cumulative Index 1 Table of Contents Tedesco, E. F. “Determination of the Index to Volume 1 (1974) Absolute Magnitude and Phase Index to Volume 1 (1974) ..................... 1 Coefficient of Minor Planet 887 Alinda” Index to Volume 2 (1975) ..................... 1 Chapman, C. R. “The Impossibility of 25-27. Index to Volume 3 (1976) ..................... 1 Observing Asteroid Surfaces” 17. Index to Volume 4 (1977) ..................... 2 Tedesco, E. F. “On the Brightnesses of Index to Volume 5 (1978) ..................... 2 Dunham, D. W. (Letter regarding 1 Ceres Asteroids” 3-9. Index to Volume 6 (1979) ..................... 3 occultation) 35. Index to Volume 7 (1980) ..................... 3 Wallentine, D. and Porter, A. Index to Volume 8 (1981) ..................... 3 Hodgson, R. G. “Useful Work on Minor “Opportunities for Visual Photometry of Index to Volume 9 (1982) ..................... 4 Planets” 1-4. Selected Minor Planets, April - June Index to Volume 10 (1983) ................... 4 1975” 31-33. Index to Volume 11 (1984) ................... 4 Hodgson, R. G. “Implications of Recent Index to Volume 12 (1985) ................... 4 Diameter and Mass Determinations of Welch, D., Binzel, R., and Patterson, J. Comprehensive Index to Volumes 1-12 5 Ceres” 24-28. “The Rotation Period of 18 Melpomene” Index to Volume 13 (1986) ................... 5 20-21. Hodgson, R. G. “Minor Planet Work for Index to Volume 14 (1987) ................... 5 Smaller Observatories” 30-35. Index to Volume 15 (1988) ................... 6 Index to Volume 3 (1976) Index to Volume 16 (1989) ................... 6 Hodgson, R. G. “Observations of 887 Index to Volume 17 (1990) ................... 6 Alinda” 36-37. Chapman, C. R. “Close Approach Index to Volume 18 (1991) ..................
    [Show full text]