PDF of This Article

Total Page:16

File Type:pdf, Size:1020Kb

PDF of This Article NIWA Water & Atmosphere 11(2) 2003 FRESHWATER FISH Location, location, location! Predicting fish communities in New Zealand streams The waterways pictured opposite represent a Zealand. We selected quantitative data range of typical New Zealand streams. Can (collected using electric fishing) because we we predict the resident fish community from thought the most abundant fish species – and Jody Richardson just a photograph? The results of our recent not those that just occur by chance – should Ian Jowett analysis of data from the New Zealand define a community. Our 1130 sites were freshwater fish database suggest that we can, therefore mainly small and medium-sized but first we need more information, wadeable waterways. We excluded fish particularly about the stream’s location. communities from deep-water and/or still- What is a fish community? water habitats unsuited for electric fishing. We combined the fish data with site A fish community is an assemblage of fish information such as location, stream width species that inhabit a particular area of a and catchment land use. The first stage of the stream or river. Based on 40 years of analysis was to use a computer program to Can you tell accumulated field sampling, we now know classify sites by their fish assemblages into that certain fish species commonly occur which fish biologically sensible groups. We then together whereas others don’t. This is usually examined the results to see whether the communities related to their preferred habitat and, for communities matched our experience and inhabit the diadromous species (that spend a part of their intuitive definitions. streams in the life-cycle at sea), their ability to penetrate inland. For example, open-bed, fast-water Most of the groups identified by computer photographs? species such as torrentfish and bluegill bully analysis were immediately familiar to us. For Read on – and are often found together, but are practically example, upland and lowland fish then try our test! never found with pool-dwelling bush species communities were clearly separated. We such as adult banded kokopu. Thus, we would defined 12 fish communities, though many expect a torrentfish community to inhabit species occurred in several of these. quite different types of waterways from a Environmental information for banded kokopu community. predicting communities But why bother with fish communities? After each site had been assigned to a fish Water management decisions often focus on community, we then used the differences in single valuable or threatened fish species, but the site locations and physical characteristics Teachers: this usually rivers contain a whole community of to develop our models for predicting fish article can be used fish. Knowing what species occur together communities. for NCEA and in what types of waterways can help Achievement Geographic location was the over-riding Standards in managers predict the effects of flow and land factor influencing fish communities. The Biology (1.2, 2.2, management options on the whole 2.5, 2.6, 3.4). See distribution of many of the communities community. This approach not only protects other curriculum depended on whether the fish were connections at individual species and biodiversity, but also diadromous or not, and the ability of the www.niwa.co.nz/ helps identify appropriate restoration and pubs/wa/resources diadromous species to penetrate inland. conservation strategies for a particular Altitude showed the most difference between waterway. communities, closely followed by distance Defining fish communities inland. We used an analysis of the New Zealand Habitat was a less obvious factor but was Freshwater Fish Database (NZFFD) – plus important for some fish species. For example, experience – to describe common fish banded kokopu were typically found in small Jody Richardson and communities and to determine their predict- streams (average width 1.6 m), whereas Ian Jowett are based ability. The NZFFD contains information on torrentfish occurred in wide streams (average at NIWA in Hamilton. freshwater fish from sites throughout New width 10.5 m). 14 NIWA Water & Atmosphere 11(2) 2003 Overall, our best predictive model used a Species composition (average %) of the 12 fish communities. Blue numbers combination of five location variables (altitude, highlight up to six of the most abundant fish in each community. distance inland, northing, island, easting), three Fish communities catchment vegetation variables (farming, native, exotic forest), and stream width. Some communities were easier to identify Shortjaw kokopu Banded kokopu Redfin bully Shortfin eel Inanga Torrentfish Crans bully Upland bully Koaro Brown trout Rainbow trout Longfin eel and predict than others. For example, more Fish species Shortfin eel 0.0 4.8 0.9 28.1 8.2 2.3 15.3 5.3 0.0 0.4 0.3 0.0 than half of the koaro, inanga, Crans bully, Longfin eel 26.0 15.1 28.7 14.3 10.2 22.2 18.3 12.6 18.0 11.6 11.3 90.4 upland bully, and rainbow trout communities Torrentfish 0.0 0.0 0.5 4.9 0.0 18.4 1.7 0.3 0.1 0.5 0.1 0.0 Giant kokopu 13.0 1.0 0.0 0.2 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 could be successfully predicted from the Koaro 19.0 3.3 4.8 0.1 0.3 0.7 0.0 8.0 64.7 1.2 2.9 0.0 environmental variables, whereas less than a Dwarf galaxias 0.0 0.3 0.0 0.0 0.0 0.1 0.0 5.3 0.2 0.6 0.0 0.0 fifth of longfin eel and shortjaw kokopu Banded kokopu 0.7 53.3 4.2 0.5 0.4 0.0 0.0 0.0 0.5 0.0 0.1 0.0 Inanga 0.0 9.5 1.9 2.6 52.4 2.0 0.6 0.8 0.3 0.6 0.0 0.0 communities could. The lowland communities Alpine galaxias 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 0.0 0.3 2.1 0.0 characterised by redfin bully, torrentfish and Shortjaw kokopu 17.2 0.0 0.6 0.0 0.1 0.1 0.0 0.1 0.5 0.0 0.0 0.0 Canterbury galaxias 0.0 0.0 0.0 0.0 0.0 0.3 0.0 10.6 0.0 0.3 0.1 0.0 shortfin eel were also difficult to classify Lamprey 0.0 0.2 1.3 4.8 0.1 0.2 0.3 0.4 0.2 0.7 0.0 0.5 consistently. Crans bully 0.0 0.1 0.0 0.0 0.3 0.1 59.9 3.7 0.4 0.7 0.6 0.0 Upland bully 0.0 0.0 0.0 2.4 0.0 3.7 0.0 43.1 0.0 5.9 0.5 0.0 The communities Common bully 0.0 0.2 2.2 7.0 13.8 9.1 0.0 0.5 0.1 1.4 0.8 9.1 Bluegill bully 20.7 0.0 8.7 5.0 0.1 25.0 0.0 0.5 0.6 0.3 0.0 0.0 We generally named the communities after Redfin bully 2.4 11.8 43.8 23.9 13.8 12.6 0.2 1.2 2.4 1.3 0.3 0.0 their dominant fish species. Smelt 0.0 0.0 0.0 4.6 0.1 0.1 3.4 0.3 0.0 0.0 0.0 0.0 Rainbow trout 0.0 0.1 1.2 0.2 0.0 0.4 0.1 0.2 1.2 2.0 74.4 0.0 Banded kokopu, shortjaw kokopu, redfin bully Brook trout 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0 The characteristic species of these three Brown trout 1.0 0.0 1.2 1.4 0.3 2.3 0.2 4.6 11.0 71.0 6.3 0.0 communities were found living together, as well as with longfin eel and koaro. The Plenty, Coromandel, Waikato and Auckland preferred habitat was small bush-covered regions. South Island locations were on the streams. All were associated with native forest west coast, in the Catlins, Otago and Banks (more than 60% of the catchment) and a low peninsulas and Marlborough Sounds. Shortjaw Photos: percentage of farming development (less than kokopu communities were mainly found in A: a tributary of the 22% of the catchment). rivers draining to the south Taranaki Bight, Waikato River near Huntly. The catchment Banded kokopu community streams were the Golden Bay and the Marlborough Sounds. is 100% native bush smallest (1.6 m wide) and had the highest Redfin bully communities were widely and the stream is 1–2 m wide. Although over percentage of pool habitat. Location was scattered but were very rare on the east coast 100 km inland, the site distinctly coastal, but throughout the Bay of of either island. is only 20 m above sea level, and there A B are no barriers to migration. B: a medium-sized, low-gradient river in Northland. The catchment is mostly farmland and the riverbed is mud. This site is 22 km inland with an altitude of 50 m. C: a medium-sized, relatively steep river in North Canterbury. The site is only a few km C D inland at low altitude. The catchment is about 90% farmland.
Recommended publications
  • Wetlands, Biodiversity and the Ramsar Convention
    Wetlands, Biodiversity and the Ramsar Convention Wetlands, Biodiversity and the Ramsar Convention: the role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity edited by A. J. Hails Ramsar Convention Bureau Ministry of Environment and Forest, India 1996 [1997] Published by the Ramsar Convention Bureau, Gland, Switzerland, with the support of: • the General Directorate of Natural Resources and Environment, Ministry of the Walloon Region, Belgium • the Royal Danish Ministry of Foreign Affairs, Denmark • the National Forest and Nature Agency, Ministry of the Environment and Energy, Denmark • the Ministry of Environment and Forests, India • the Swedish Environmental Protection Agency, Sweden Copyright © Ramsar Convention Bureau, 1997. Reproduction of this publication for educational and other non-commercial purposes is authorised without prior perinission from the copyright holder, providing that full acknowledgement is given. Reproduction for resale or other commercial purposes is prohibited without the prior written permission of the copyright holder. The views of the authors expressed in this work do not necessarily reflect those of the Ramsar Convention Bureau or of the Ministry of the Environment of India. Note: the designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of the Ranasar Convention Bureau concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Citation: Halls, A.J. (ed.), 1997. Wetlands, Biodiversity and the Ramsar Convention: The Role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity.
    [Show full text]
  • Freshwater Fish Spawning and Migration Periods
    Freshwater Fish Spawning and Migration Periods Prepared for Ministry for Primary Industries November 2014 Prepared by: Josh Smith For any information regarding this report please contact: Josh Smith Freshwater Fish Technician Freshwater & Estuaries Phone +64 07 8567026 [email protected] National Institute of Water & Atmospheric Research Ltd Gate 10 Silverdale Road Hillcrest, Hamilton 3216 PO Box 11115, Hillcrest Hamilton 3251 New Zealand Phone +64 07 8567026 NIWA CLIENT REPORT No: HAM2014-101 Report date: November 2014 NIWA Project: MPI15202 ISBN 978-0-473-32827-6 © All rights reserved. This publication may not be reproduced or copied in any form without the permission of the copyright owner(s). Such permission is only to be given in accordance with the terms of the client’s contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system. Whilst NIWA has used all reasonable endeavours to ensure that the information contained in this document is accurate, NIWA does not give any express or implied warranty as to the completeness of the information contained herein, or that it will be suitable for any purpose(s) other than those specifically contemplated during the Project or agreed by NIWA and the Client. Contents Executive summary ............................................................................................................... 6 1 Introduction ...............................................................................................................
    [Show full text]
  • Akbaripasandabbas2012phd.Pdf (1.900Mb)
    Habitat use, growth and movement in relation to bioenergetics of drift-feeding stream fish Abbas Akbaripasand A thesis submitted for the degree of Doctor of Philosophy at the University of Otago, Dunedin, New Zealand September 2012 ABSTRACT The distribution and abundance of fish species is influenced by a range of environmental variables. Information on driving factors in that determines fish habitat use, abundance and distribution is crucial for fisheries and restoration management, especially for species in gradual decline. Habitat use may be structured by interactions between multiple factors including food density, predation risk, competitors, energetic requirements and habitat structure. Habitat selection varies with respect to species, stage of life history and time of day, agonistic interactions between conspecifics may also influence habitat use. In this study, I selected three streams draining to Otago Harbour in the South Island, New Zealand; Craigs Creek, Deborah Bay Stream and Sawyers Bay Stream. A gradient in riparian vegetation from sparse (Craigs) to dense (Deborah) was the basis of stream selection and they likely differ in food quantity and quality which may affect fish assemblages. I used banded kokopu (Galaxias fasciatus) as an animal model. The fish represent ideal species to study feeding strategies, growth and movement as they appear to form dominance hierarchies that are stable over long periods of time within stream pools. They are also easy to catch, observe and individually tag. High fish density in Craigs Creek and low food density in Deborah Bay Stream and absence of trout in all streams provides an ideal situation to study the role of social hierarchies and intraspecific competition for food and space on patterns of individual growth, residency and movement.
    [Show full text]
  • Rediscovering the Species in Community-Wide Predictive Modeling
    Ecological Applications, 16(4), 2006, pp. 1449–1460 Ó 2006 by the the Ecological Society of America REDISCOVERING THE SPECIES IN COMMUNITY-WIDE PREDICTIVE MODELING 1,3 2 2 JULIAN D. OLDEN, MICHAEL K. JOY, AND RUSSELL G. DEATH 1Center for Limnology, University of Wisconsin–Madison, 680 N. Park Street, Madison, Wisconsin 53706 USA 2Institute of Natural Resources–Ecology, Massey University, Private Bag 11 222, Palmerston North, New Zealand Abstract. Broadening the scope of conservation efforts to protect entire communities provides several advantages over the current species-specific focus, yet ecologists have been hampered by the fact that predictive modeling of multiple species is not directly amenable to traditional statistical approaches. Perhaps the greatest hurdle in community-wide modeling is that communities are composed of both co-occurring groups of species and species arranged independently along environmental gradients. Therefore, commonly used ‘‘short-cut’’ methods such as the modeling of so-called ‘‘assemblage types’’ are problematic. Our study demonstrates the utility of a multiresponse artificial neural network (MANN) to model entire community membership in an integrative yet species-specific manner. We compare MANN to two traditional approaches used to predict community composition: (1) a species-by-species approach using logistic regression analysis (LOG) and (2) a ‘‘classification-then-modeling’’ approach in which sites are classified into assemblage ‘‘types’’ (here we used two-way indicator species analysis and multiple discriminant analysis [MDA]). For freshwater fish assemblages of the North Island, New Zealand, we found that the MANN outperformed all other methods for predicting community composition based on multiscaled descriptors of the environment.
    [Show full text]
  • Critical Habitat Features of Giant Kokopu, Galaxias Argenteus (Gmelin 1789)
    Critical habitat features of giant kokopu, Galaxias argenteus (Gmelin 1789). A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Zoology in the University of Canterbury by Martin Lee onnett University of Canterbury 2000 CONTENTS SECTION PAGE ABSTRACT 1 1 INTRODUCTION 3 1.1 Historical and biological background 4 1.2 Objectives, aims and approaches 7 2. DISTRIBUTION AND BROAD-SCALE HABITAT 11 PREFERENCES f'ROM THE NEW ZEALAND FRESHWATER FISHERIES DATABASE 2.1 Identifying regions for habitat surveys 12 2.2 Distribution 13 2.3 Abundance 16 2.4 Size 17 2.5 Water type 20 2.6 Stream size 26 2.7 Forest absence/presence and type 27 2.8 Water chemistry 27 2.9 Inland penetration and elevation 29 2.10 Other species associated with giant kokopu 31 2.11 Impact of introduced fish 35 3 HABITAT SURVEYS AND ANALYSIS 37 OF HABITAT FEATURES 3.1 Methods 37 3.1.1 Fish capture 37 3.1.2 Habitat measurements 40 ~ ~ PR 20nO 3.2 Analyses 42 3.2.1 Observations 42 3.2.2 Habitat analysis 43 3.2.3 Discriminant Functions Analysis 46 3.2.4 Logistic regression. 52 4. OBSERVATIONS ON THE USE OF COVER 55 4.1 Experimental structures 55 4.2 Vegetated and open shores 58 5. GIANT KOKOPU DIET 60 6. DISCUSSION AND CONCLUSIONS 67 6.1 Limiting factors 67 6.2 Critical features 69 6.3 Regional differences 72 6.4 Habitat requirements of juvenile giant kokopu 72 6.5 Diet and the importance of cover 73 6.6 Are giant kokopu rare, endangered or vulnerable? 74 6.7 Impact of whitebait harvesting 75 6.8 Impact of commercial eel fishing 76 6.9 Impacts of introduced species 77 6.10 Seasonal patterns and spawning 79 6.11 Conclusions on the conservation and 80 management of giant kokopu.
    [Show full text]
  • Upper Mangatawhiri Shortjaw Kokopu Survey – 2011
    Upper Mangatawhiri Shortjaw Kokopu Survey – 2011 March 2012 Technical Report 2012/002 Auckland Council Technical Report 2012/002, March 2012 ISSN 2230-4525 (Print) ISSN 2230-4533 (Online) ISBN 978-1-927169-46-9 (Print) ISBN 978-1-927169-47-6 (PDF) ISBN 978-1-877416-58-3 Reviewed by: Approved for Auckland Council publication by: Name: Graham Surrey Name: Grant Barnes Position: Scientist - Freshwater Position: Manager, RIMU Organisation: Auckland Council Organisation: Auckland Council Date: 28 March 2012 Date: 20 April 2012 Recommended Citation: Smith, J.; Baker, C.; Bartels, B.; Franklin, P. (2012). Upper Mangatawhiri Shortjaw Kokopu Survey – 2011. Prepared by NIWA for Auckland Council. Auckland Council Technical Report 2012/002 © 2012 Auckland Council This publication is provided strictly subject to Auckland Council's (AC) copyright and other intellectual property rights (if any) in the publication. Users of the publication may only access, reproduce and use the publication, in a secure digital medium or hard copy, for responsible genuine non-commercial purposes relating to personal, public service or educational purposes, provided that the publication is only ever accurately reproduced and proper attribution of its source, publication date and authorship is attached to any use or reproduction. This publication must not be used in any way for any commercial purpose without the prior written consent of AC. AC does not give any warranty whatsoever, including without limitation, as to the availability, accuracy, completeness, currency or reliability of the information or data (including third party data) made available via the publication and expressly disclaim (to the maximum extent permitted in law) all liability for any damage or loss resulting from your use of, or reliance on the publication or the information and data provided via the publication.
    [Show full text]
  • Environmental Assessment
    ENVIRONMENTAL ASSESSMENT DOI: 10.1007/s00267-004-0208-5 Spatial Modeling and Habitat Quantification for Two Diadromous Fish in New Zealand Streams: A GIS-Based Approach with Application for Conservation Management HANS S. EIKAAS* low-intensity land uses (e.g., sheep grazing or forested), Department of Geography whereas intensive land uses (e.g., mixed sheep and cattle University of Canterbury farming) and lack of riparian forest cover impacted nega- Private Bag 4800 tively on occurrence at sampled sites. Also, if forests were Christchurch, New Zealand positioned predominantly in lowland areas, banded kokopu occurrence declined with increasing distance to stream ANDREW D. KLISKEY mouth. Koaro occurrence was positively influenced by Department of Biological Sciences catchment forest cover, high stream altitudes, and areas of University of Alaska–Anchorage no farming activity or mixed land uses. Intensive land 3211 Providence Drive uses, distance to stream mouth, and presence of banded Anchorage, Alaska, 99508, USA kokopu negatively influenced koaro occupancy of stream ANGUS R. MCINTOSH reaches. Banded kokopu and koaro presence was pre- Schoolof BiologicalSciences dicted in 86.0% and 83.7% agreement, respectively, with University of Canterbury field observations. We used the models to quantify the Private Bag 4800 amount of stream reaches that would be of good, moder- Christchurch, New Zealand ate, and poor quality, based on the probability of occur- rences of the fish being greater than 0.75, between 0.75 We developed logistic regression models from data on and 0.5, or less than 0.5, respectively. Hindcasting using biotic and abiotic variables for 172 sites on Banks Penin- historicaldata on vegetation cover undertaken for one sula, New Zealand, to predict the probability of occurrence catchment, Pigeon Bay, showed they would have occupied of two diadromous fish, banded kokopu (Galaxias fascia- most of the waterway before anthropogenic modification.
    [Show full text]
  • Zoo Keeper Information
    ZOO KEEPER INFORMATION Auckland Zoo and its role in Conservation and Captive Breeding Programmes Revised by Kirsty Chalmers Registrar 2006 CONTENTS Introduction 3 Auckland Zoo vision, mission and strategic intent 4 The role of modern zoos 5 Issues with captive breeding programmes 6 Overcoming captive breeding problems 7 Assessing degrees of risk 8 IUCN threatened species categories 10 Trade in endangered species 12 CITES 12 The World Zoo and Aquarium Conservation Strategy 13 International Species Information System (ISIS) 15 Animal Records Keeping System (ARKS) 15 Auckland Zoo’s records 17 Identification of animals 17 What should go on daily reports? 18 Zoological Information Management System (ZIMS) 19 Studbooks and SPARKS 20 Species co-ordinators and taxon advisory groups 20 ARAZPA 21 Australasian Species Management Program (ASMP) 21 Animal transfers 22 Some useful acronyms 24 Some useful references 25 Appendices 26 Zoo Keeper Information 2006 2 INTRODUCTION The intention of this manual is to give a basic overview of the general operating environment of zoos, and some of Auckland Zoo’s internal procedures and external relationships, in particular those that have an impact on species management and husbandry. The manual is designed to be of benefit to all keepers, to offer a better understanding of the importance of captive animal husbandry and species management on a national and international level. Zoo Keeper Information 2006 3 AUCKLAND ZOO VISION Auckland Zoo will be globally acknowledged as an outstanding, progressive zoological park. AUCKLAND ZOO MISSION To focus the Zoo’s resources to benefit conservation and provide exciting visitor experiences which inspire and empower people to take positive action for wildlife and the environment.
    [Show full text]
  • Aspects of the Phylogeny, Biogeography and Taxonomy of Galaxioid Fishes
    Aspects of the phylogeny, biogeography and taxonomy of galaxioid fishes Jonathan Michael Waters, BSc. (Hons.) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy, / 2- Oo ( 01 f University of Tasmania (August, 1996) Paragalaxias dissim1/is (Regan); illustrated by David Crook Statements I declare that this thesis contains no material which has been accepted for the award of any other degree or diploma in any tertiary institution and, to the best of my knowledge and belief, this thesis contains no material previously published o:r written by another person, except where due reference is made in the text. This thesis is not to be made available for loan or copying for two years following the date this statement is signed. Following that time the thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. Signed Summary This study used two distinct methods to infer phylogenetic relationships of members of the Galaxioidea. The first approach involved direct sequencing of mitochondrial DNA to produce a molecular phylogeny. Secondly, a thorough osteological study of the galaxiines was the basis of a cladistic analysis to produce a morphological phylogeny. Phylogenetic analysis of 303 base pairs of mitochondrial cytochrome b _supported the monophyly of Neochanna, Paragalaxias and Galaxiella. This gene also reinforced recognised groups such as Galaxias truttaceus-G. auratus and G. fasciatus-G. argenteus. In a previously unrecognised grouping, Galaxias olidus and G. parvus were united as a sister clade to Paragalaxias. In addition, Nesogalaxias neocaledonicus and G. paucispondylus were included in a clade containing G.
    [Show full text]
  • New Zealand Large Galaxiid Recovery Plan, 2003-13
    Frontispiece. Top—Banded kokopu (Galaxias fasciatus). Close up of head and pectoral fins of large adult from the side. Maori: kokopu. Mid left—Shortjaw kokopu (Galaxias postvectis). Side view of head and pectoral fins showing undershot lower jaw. Maori: kokopu. Mid right—Giant kokopu (Galaxias argenteus). Close-up of head, mouth, eye and sensory pores. Maori: kokopu. Bottom—Giant kokopu (Galaxias argenteus). Side view of an adult. Maori: kokopu. All images are © Angus McIntosh, Natural Sciences Image Library. New Zealand large galaxiid recovery plan, 2003–13 Shortjaw kokopu, giant kokopu, banded kokopu, and koaro THREATENED SPECIES RECOVERY PLAN 55 Published by Science & Technical Publishing Department of Conservation PO Box 10-420 Wellington, New Zealand Cover: Koaro (Galaxias brevipinnis). Close-up side view of the head of a large adult. Photo: © Angus McIntosh, Natural Sciences Image Library. © June 2005, New Zealand Department of Conservation ISSN 1170–3806 ISBN 0–478–22693–4 This report was written for the Biodiversity Recovery Unit, Department of Conservation, Wellington. It was prepared for publication by Science & Technical Publishing; editing by Sue Hallas and layout by Ian Mackenzie. Publication was approved by the Chief Scientist (Research, Development & Improvement Division), Department of Conservation, Wellington, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. When printing, recycled paper is used wherever possible. Contents Abstract 5 1. Introduction 6 2. Past and present distribution and population size 7 2.1 Shortjaw kokopu 7 2.2 Giant kokopu 7 2.3 Banded kokopu 7 2.4 Koaro 11 3. Cause of decline and threats 11 4.
    [Show full text]
  • The Parasite Release Hypothesis and the Success of Invasive Fish in New Zealand
    http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. The parasite release hypothesis and the success of invasive fish in New Zealand A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Biological Science at The University of Waikato by Keshi Zhang The University of Waikato 2012 Abstract Non-indigenous species are commonly released from their native enemies, including parasites, when they are introduced into new geographical areas. This has been referred to as the enemy release hypothesis and more strictly as the parasite release hypothesis. The loss of parasites is commonly inferred to explain the invasiveness of non-indigenous species. I examined parasite release in New Zealand non-indigenous freshwater fishes. A literature review was undertaken in order to collate lists of the known parasite fauna of 20 New Zealand non-indigenous freshwater fish species.
    [Show full text]
  • The Living Planet Index (Lpi) for Migratory Freshwater Fish Technical Report
    THE LIVING PLANET INDEX (LPI) FOR MIGRATORY FRESHWATER FISH LIVING PLANET INDEX TECHNICAL1 REPORT LIVING PLANET INDEXTECHNICAL REPORT ACKNOWLEDGEMENTS We are very grateful to a number of individuals and organisations who have worked with the LPD and/or shared their data. A full list of all partners and collaborators can be found on the LPI website. 2 INDEX TABLE OF CONTENTS Stefanie Deinet1, Kate Scott-Gatty1, Hannah Rotton1, PREFERRED CITATION 2 1 1 Deinet, S., Scott-Gatty, K., Rotton, H., Twardek, W. M., William M. Twardek , Valentina Marconi , Louise McRae , 5 GLOSSARY Lee J. Baumgartner3, Kerry Brink4, Julie E. Claussen5, Marconi, V., McRae, L., Baumgartner, L. J., Brink, K., Steven J. Cooke2, William Darwall6, Britas Klemens Claussen, J. E., Cooke, S. J., Darwall, W., Eriksson, B. K., Garcia Eriksson7, Carlos Garcia de Leaniz8, Zeb Hogan9, Joshua de Leaniz, C., Hogan, Z., Royte, J., Silva, L. G. M., Thieme, 6 SUMMARY 10 11, 12 13 M. L., Tickner, D., Waldman, J., Wanningen, H., Weyl, O. L. Royte , Luiz G. M. Silva , Michele L. Thieme , David Tickner14, John Waldman15, 16, Herman Wanningen4, Olaf F., Berkhuysen, A. (2020) The Living Planet Index (LPI) for 8 INTRODUCTION L. F. Weyl17, 18 , and Arjan Berkhuysen4 migratory freshwater fish - Technical Report. World Fish Migration Foundation, The Netherlands. 1 Indicators & Assessments Unit, Institute of Zoology, Zoological Society 11 RESULTS AND DISCUSSION of London, United Kingdom Edited by Mark van Heukelum 11 Data set 2 Fish Ecology and Conservation Physiology Laboratory, Department of Design Shapeshifter.nl Biology and Institute of Environmental Science, Carleton University, Drawings Jeroen Helmer 12 Global trend Ottawa, ON, Canada 15 Tropical and temperate zones 3 Institute for Land, Water and Society, Charles Sturt University, Albury, Photography We gratefully acknowledge all of the 17 Regions New South Wales, Australia photographers who gave us permission 20 Migration categories 4 World Fish Migration Foundation, The Netherlands to use their photographic material.
    [Show full text]