An Improvement of the Quantitative Subspace Theorem Compositio Mathematica, Tome 101, No 3 (1996), P
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
S-Unit Equations and Their Applications J
9 S-UNIT EQUATIONS AND THEIR APPLICATIONS J .-H. Evertse1), K. Gyory2), C. L. Stewart3 >, R. Tijdeman Contents 0. Introduction. 1. Notation and simple observations. 2. The general case: The Main Theorem on S-Unit Equations. 3. Upper bounds in the two variables case. 4. On the proofs of Theorems 1 and 2. 5. The rational case. 6. Applications to sums of products of given primes. 7. Applications to :finitely generated groups. 8. Applications to recurrence sequences of complex numbers. 9. Applications to recurrence sequences of algebraic numbers. 10. Applications to irreducible polynomials and arithmetic graphs. 11. Applications to decomposable form equations. 12. Applications to algebraic number theory. 13. Applications to transcendental number theory. §0. Introduction. This paper gives a survey of the remarkable results on S-unit equa tions and their applications which have been obtained, mainly in the l) Research supported by the Netherlands Organization for the Ad vancement of Pure Research (Z.W.O.) 2 > Research supported in part by the Hungarian National Foundation for Scientific Research Grant 273 3) Research supported in part by Grant A3528 from the Natural Sci ences and Engineering Research Council of Canada S-UNIT EQUATIONS 111 last five years. It is impossible to cover all applications within the scope of this paper, but the wide range of applications illustrates how funda mental these developments are. The developments are still going on and several of the mentioned results are new. In §1 we introduce notation which will be used throughout the pa per. In §§2-5 five theorems on S-unit equations are treated. -
The Many Faces of the Subspace Theorem (After Adamczewski, Bugeaud, Corvaja, Zannier...) Yuri Bilu
The Many Faces of the Subspace Theorem (after Adamczewski, Bugeaud, Corvaja, Zannier...) Yuri Bilu To cite this version: Yuri Bilu. The Many Faces of the Subspace Theorem (after Adamczewski, Bugeaud, Corvaja, Zan- nier...). Séminaire Bourbaki, Exposé 967, 59ème année (2006-2007), 2006, France. pp.1-38. hal- 00403684 HAL Id: hal-00403684 https://hal.archives-ouvertes.fr/hal-00403684 Submitted on 12 Jul 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. S´eminaire Bourbaki Novembre 2006 59`eme ann´ee, 2006-2007, no 967 THE MANY FACES OF THE SUBSPACE THEOREM after Adamczewski, Bugeaud, Corvaja, Zannier. by Yuri F. BILU Table of contents 1. Introduction 1 2. The Subspace Theorem 2 3. Complexity of Algebraic Numbers 6 4. Diophantine Equations with Power Sums 11 5. Integral Points 19 6. Conclusion 30 REFERENCES 31 And we discovered subspace. It gave us our galaxy and it gave us the universe. And we saw other advanced life. And we subdued it or we crushed it. With subspace, our empire would surely know no boundaries. (From The Great War computer game) 1. INTRODUCTION This is not a typical Bourbaki talk. -
The Many Faces of the Subspace Theorem (After Adamczewski
S´eminaire Bourbaki Novembre 2006 59`eme ann´ee, 2006-2007, no 967 THE MANY FACES OF THE SUBSPACE THEOREM after Adamczewski, Bugeaud, Corvaja, Zannier. by Yuri F. BILU Table of contents 1. Introduction 1 2. The Subspace Theorem 2 3. Complexity of Algebraic Numbers 6 4. Diophantine Equations with Power Sums 11 5. Integral Points 19 6. Conclusion 30 REFERENCES 31 And we discovered subspace. It gave us our galaxy and it gave us the universe. And we saw other advanced life. And we subdued it or we crushed it. With subspace, our empire would surely know no boundaries. (From The Great War computer game) 1. INTRODUCTION arXiv:0907.2098v1 [math.NT] 13 Jul 2009 This is not a typical Bourbaki talk. A generic expos´e on this seminar is, normally, a report on a recent seminal achievement, usually involving new technique. The principal character of this talk is the Subspace Theorem of Wolfgang Schmidt, known for almost forty years. All results I am going to talk about rely on this celebrated theorem (more precisely, on the generalization due to Hans Peter Schlickewei). Moreover, in all cases it is by far the most significant ingredient of the proof. Of course, the last remark is not meant to belittle the work of the authors of the results I am going to speak about. Adapting the Subspace Theorem to a concrete problem is often a formidable task, requiring great imagination and ingenuity. During the last decade the Subspace Theorem found several quite unexpected applica- tions, mainly in the Diophantine Analysis and in the Transcendence Theory. -
The Quantitative Subspace Theorem for Number Fields
COMPOSITIO MATHEMATICA HANS PETER SCHLICKEWEI The quantitative subspace theorem for number fields Compositio Mathematica, tome 82, no 3 (1992), p. 245-273 <http://www.numdam.org/item?id=CM_1992__82_3_245_0> © Foundation Compositio Mathematica, 1992, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Compositio Mathematica 82: 245-273,245 1992. (0 1992 Kluwer Academic Publishers. Printed in the Netherlands. The quantitative Subspace Theorem for number fields HANS PETER SCHLICKEWEI Abt. für Mathematik, Universitât Ulm, Oberer Eselsberg, D-7900 Ulm, Germany Received 22 February 1990; accepted 19 September 1991 1. Introduction Roth’s theorem [7] says that given an algebraic number a of degree d 2 and given b > 0 there are only a finite number of rational approximations x y of a Y satisfying It is well known that here the method of proof is ineffective, i.e. the proof does not give bounds for Ixl and |y|. However it does provide bounds for the number of solutions x, y of (1.1) (cf. the papers of Davenport and Roth [4], Bombieri and van der Poorten [1] and Luckhardt [5]). The analogue of (1.1) for n dimensions is Schmidt’s Subspace Theorem [13], [14].