An Improvement of the Quantitative Subspace Theorem Compositio Mathematica, Tome 101, No 3 (1996), P
COMPOSITIO MATHEMATICA JAN-HENDRIK EVERTSE An improvement of the quantitative subspace theorem Compositio Mathematica, tome 101, no 3 (1996), p. 225-311 <http://www.numdam.org/item?id=CM_1996__101_3_225_0> © Foundation Compositio Mathematica, 1996, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Compositio Mathematica 101: 225-311, 1996. 225 © 1996 Kluwer Academic Publishers. Printed in the Netherlands. An improvement of the quantitative Subspace theorem JAN-HENDRIK EVERTSE University of Leiden, Department of Mathematics and Computer Science, P.O. Box 9512, 2300 RA Leiden, The Netherlands, email: evertsewi.leidenuniv.nl Received November 9, 1994; accepted in final form February 8, 1995 1. Introduction Let n be an integer and li , ... , l n linearly independent linear forms in n variables with (real or complex) algebraic coefficients. For x = (Xl, ... , X n) C 7n put In 1972, W. M. Schmidt [ 17] proved his famous Subspace theorem: for every 6 > 0, there are finitely many proper linear subspaces Tl , ... , Tt of Qn such that the set of solutions of the inequality is contained in Tl U... U Tt. In 1989, Schmidt managed to prove the following quantitative version of his Subspace theorem. Suppose that each of the above linear forms li has height H(li) H defined below and that the field generated by the coefficients of Il, ..
[Show full text]