High Temperatures in the Terrestrial Mid-Latitudes During the Early Palaeogene

Total Page:16

File Type:pdf, Size:1020Kb

High Temperatures in the Terrestrial Mid-Latitudes During the Early Palaeogene ARTICLES https://doi.org/10.1038/s41561-018-0199-0 High temperatures in the terrestrial mid-latitudes during the early Palaeogene B. D. A. Naafs1*, M. Rohrssen1,2, G. N. Inglis1, O. Lähteenoja3, S. J. Feakins! !4, M. E. Collinson5, E. M. Kennedy! !6, P. K. Singh7, M. P. Singh7, D. J. Lunt! !8 and R. D. Pancost1 The early Paleogene (56–48!Myr) provides valuable information about the Earth’s climate system in an equilibrium high pCO2 world. High ocean temperatures have been reconstructed for this greenhouse period, but land temperature estimates have been cooler than expected. This mismatch between marine and terrestrial temperatures has been difficult to reconcile. Here we present terrestrial temperature estimates from a newly calibrated branched glycerol dialkyl glycerol tetraether-based palaeo- thermometer in ancient lignites (fossilized peat). Our results suggest early Palaeogene mid-latitude mean annual air tempera- tures of 23–29!°C (with an uncertainty of ± !4.7!°C), 5–10!°C higher than most previous estimates. The identification of archaeal biomarkers in these same lignites, previously observed only in thermophiles and hyperthermophilic settings, support these high temperature estimates. These mid-latitude terrestrial temperature estimates are consistent with reconstructed ocean temperatures and indicate that the terrestrial realm was much warmer during the early Palaeogene than previously thought. he early Palaeogene is characterized by an extended period of but such p values are higher than proxy estimates for the CO2 high atmospheric carbon dioxide (p ) levels1,2. Quantification early Palaeogene1,2. Other models, such as HadCM3L (Hadley CO2 Tof the temperatures during greenhouse climates is needed Centre Coupled Model version 3) and ECHAM (European Centre because (1) they can be used to evaluate climate model simula- Hamburg Model), generally cannot reproduce the warming at p CO2 tions at elevated p (ref. 3), (2) temperature governs diverse levels consistent with the marine proxy estimates3. The apparent CO2 components of climate dynamics (for example, circulation pat- high SST reconstructions have therefore been attributed to proxy terns)4 and feedback mechanisms within the Earth system (for complications, such as a subsurface origin of the lipids used in 5 11 example, weathering) and (3) they influence biogeochemical the TEX86 proxy , variations in early Palaeogene seawater chem- processes (for example, the flux of methane from wetlands into istry compared to modern that especially influences the calcite- the atmosphere)6. Although potentially not continuously as hot as based palaeothermometers12 and/or a seasonal (summer) bias in the relatively short-lived extreme greenhouse events such as the the marine proxies13,14. However, recent model simulations have Palaeocene Eocene Thermal Maximum (PETM), the extended identified potential biases against polar warming in general cir- greenhouse climate state of the early Palaeogene is the focus here. culation models that are tuned to modern conditions15,16 asso- Over the past decade, considerable effort has been made to ciated with the representation of cloud properties, which may reconstruct the early Palaeogene greenhouse climate with a vari- partly explain the model–data discrepancy at mid/high latitudes. ety of calcite-based, leaf physiognomic and organic geochemical The available terrestrial temperature proxies, based mainly proxies. For example, sea surface temperatures (SSTs) have been on leaf physiognomic temperature estimates and the MBT(′ )/ reconstructed with the organic tetraether index of 86 carbon atoms CBT organic mineral soil temperature proxy, based in turn on the 7 (TEX86) proxy , based on the distribution of isoprenoidal glyc- degree of methylation of branched tetraether (MBT) and cycliza- erol dialkyl glycerol tetraethers (isoGDGTs), lipids synthesized by tion of branched tetraethers (CBT) indices of bacterial branched Archaea, in marine sediments. These records indicate SSTs signifi- glycerol dialkyl glycerol tetraethers (brGDGTs), suggest that early cantly higher than modern ones, with SSTs from the southwestern Palaeogene terrestrial temperatures in general were also higher than Pacific at 60° S palaeolatitude above 30 °C (ref. 8). Similarly, calcite- modern10,17,18, but to a lesser degree than indicated by SST recon- based SST proxies, such as the Mg/Ca ratio or clumped isotopic structions. There are very few terrestrial temperature data from the composition of foraminiferal calcite, indicate significantly elevated (sub)tropics, but almost all estimates indicate mean air temperatures SSTs at all latitudes during the early Palaeogene9. Together, the SST below 22 °C during the early Palaeogene at all latitudes (Fig. 1a). records indicate ocean temperatures significantly higher than mod- These terrestrial temperature estimates are more consistent with ern ones with most estimates from between 60° S and 50° N above climate model simulations10, but considerably lower than SST esti- 22 °C (Fig. 1). mates, which presents a conundrum. To understand this greenhouse Some climate models, such as CCSM3 (Community Climate climate state, independent early Palaeogene temperature estimates System Model version 3), can (partly) reproduce these elevated are needed to test whether temperatures on land were as high as temperatures using 16 times (16 ) the modern-day p levels10, suggested by marine proxies or as low as indicated by most climate × CO2 1Organic Geochemistry Unit, School of Chemistry, School of Earth Sciences, and Cabot Institute, University of Bristol, Bristol, UK. 2Department of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, MI, USA. 3School of Life Sciences, Arizona State University, Tempe, AZ, USA. 4Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA. 5Department of Earth Sciences, Royal Holloway University of London, Egham, UK. 6Department of Paleontology, GNS Science, Lower Hutt, New Zealand. 7Coal and Organic Petrology Lab, Department of Geology, Banaras Hindu University, Varanasi, Uttar Pradesh, India. 8School of Geographical Sciences and Cabot Institute, University of Bristol, Bristol, UK. *e-mail: [email protected] NATURE GEOSCIENCE | www.nature.com/naturegeoscience ARTICLES NATURE GEOSCIENCE 9 MAATpeat K&D calibr. CLAMP Other leaf physiognomy MBT /CBT Palaeosol Mammal 18O Modern MAAT ′ δ 8 a 32 7 Maximum MAATpeat 28 0% 6 24 1% ) C 5 20 Peat pH ° ( 5% 16 4 12 8 3 10% Temperature 4 12 ) 2 0 5 T- 0510 15 20 25 30 8 G –4 D MAAT (°C) 4 G so i in lignites (% 0 Fig. 2 | isoGDGT in modern peats. Maximum relative abundance of 90° S 60° S 30° S 0 30° N60° N90° N isoGDGT-5 in modern peats plotted against in situ peat pH22 and MAAT22. b 44 Vertical bars reflect the range in pH reported for each peat. The shaded MAATpeat TEX86 40 18 area indicates tropical ombrotrophic peats characterized by an isoGDGT-5 Mg/Ca δ O Δ47 36 Modern SST abundance > 1%. ) 32 Maximum MAATpeat 28 22 24 of modern peats (MAATpeat) was recently developed . This proxy 20 has a calibration error of ± 4.7 °C and reaches saturation at 29.1 °C. 16 It is important that in peat settings, MAATpeat is unlikely to record Temperature (°C 12 12 ) seasonal temperatures, because in peats the brGDGT pool is domi- 5 8 T- nated by bacterial production at a depth below the water table 8 G 4 D where seasonal temperature fluctuations are muted and converge 4 G 22 so to MAATs . As with all palaeothermometers, we assume that the 0 i in lignites (% 0 strong correlation between the degree of methylation of brGDGTs 22 90° S 60° S 30° S 0 30° N60° N90° N and temperature observed in the modern calibration data set was Latitude (°) the same during the early Palaeogene. In addition to Bacteria (that can produce brGDGTs), Archaea Fig. 1 | Early Palaeogene temperature. a, MAATpeat and abundance of also live in peat and their membrane lipids (isoGDGTs) are simi- isoGDGT-5 (bar chart) in early Palaeogene lignites together with published larly preserved in ancient peat and lignite. Here we examined the temperatures using leaf physiognomy (squares), MBT′ /CBT proxy, palaeosol isoGDGT distribution in our previously compiled global database 18 22 proxies and mammalian δ O. b, MAATpeat and abundance of isoGDGT-5 of modern peat . We report isoGDGT-5 (as well as isoGDGT-6 and with published TEX86/BAYSPAR-based (blue circles) and calcite-based 7) in modern mesophilic peats. So far, isoGDGTs with more than SSTs (triangles) for the early Palaeogene. Error bars on the temperature four cyclopentane rings have only been found in hot springs and data reflect the combined spread in data (1$) and calibration uncertainty cultures of (acido) hyperthermophiles23. It has been suggested that (Supplementary Information), and those for isoGDGT-5 reflect 1$ from the the ability to synthesize isoGDGT-5 to 8 is a unique adaptation of average. Supplementary Information gives all data and references. K&D extremophiles and does not occur in mesophilic settings23. However, calibr., Kowalski and Dilcher calibration. our work demonstrates that this biomarker is also present in ombro- trophic (acidic) tropical peats from 20° S–20° N latitudes today. isoGDGT-5 is only present in significant amounts (>1% of total model simulations and many existing terrestrial proxies. For this isoGDGT distribution with 1–5 cyclopentane rings) in tropical and purpose, here we use the distribution of archaeal and bacterial lipids ombrotrophic peats with a pH < 5.1 and MAAT > 19.5 °C (Fig. 2).
Recommended publications
  • The Bacteriohopanepolyol Inventory of Novel Aerobic Methane Oxidising Bacteria Reveals New Biomarker Signatures of Aerobic Methanotrophy in Marine Systems
    Rush D, Osborne KA, Birgel D, Kappler A, Hirayama H, Peckmann J, Poulton SW, Nickel JC, Mangelsdorf K, Kalyuzhnaya M, Sidgwick FR, Talbot HM. The Bacteriohopanepolyol Inventory of Novel Aerobic Methane Oxidising Bacteria Reveals New Biomarker Signatures of Aerobic Methanotrophy in Marine Systems. PLoS One 2016, 11(11), e0165635. Copyright: © 2016 Rush et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. DOI link to article: http://dx.doi.org/10.1371/journal.pone.0165635 Date deposited: 20/12/2016 This work is licensed under a Creative Commons Attribution 4.0 International License Newcastle University ePrints - eprint.ncl.ac.uk RESEARCH ARTICLE The Bacteriohopanepolyol Inventory of Novel Aerobic Methane Oxidising Bacteria Reveals New Biomarker Signatures of Aerobic Methanotrophy in Marine Systems Darci Rush1☯*, Kate A. Osborne1☯, Daniel Birgel2, Andreas Kappler3,4, Hisako Hirayama5, JoÈ rn Peckmann2,6, Simon W. Poulton7, Julia C. Nickel8, Kai Mangelsdorf8, Marina Kalyuzhnaya9, Frances R. Sidgwick1, Helen M. Talbot1 1 School of Civil Engineering & Geosciences, Newcastle University, Drummond Building, Newcastle upon a11111 Tyne, NE1 7RU, Newcastle-upon-Tyne, United Kingdom, 2 Institute of Geology, University of Hamburg, Hamburg, Germany, 3 Center for Applied Geoscience, University of TuÈbingen, TuÈbingen, Germany, 4 Center for Geomicrobiology, Department
    [Show full text]
  • New Zealand Geothermal Association Presentation, 2013
    The 1000 Project A microbial inventory of geothermal ecosystems New Zealand Geothermal Workshop 20 November 2012 Matthew Stott Craig Cary Melissa Climo Extremophile Research Group Dept. Biological Sciences Dept. Geothermal Sciences GNS Science University of Waikato GNS Science GNS Science Purpose of presentation • Microbiology: – The basics – A microbial world – Microbiology and geothermal systems • Geothermal microbiology – What little we know, and what we know we don’t know • The 1000 Project – A microbial bioinventory of NZ geothermal ecosystems GNS Science Microorganisms: single-celled organisms. Includes: Bacteria, Archaea and some eukaryotes ~ one billion (1 x 109) bacteria per gram of soil (1,000,000,000) ~ seven billion (7 x 109) humans on earth (7,051,000,000) ~ 4-6 x 1030 bacteria on the earth (4,000,000,000,000,000,000,000,000,000,000) This equals roughly half the world’s biomass GNS Science … into context …if we took 1 kg of soil: ~50 billion bacteria and arranged them end-to-end More than enough bacteria to stretch from Hamilton to and Tauranga (~100km) 2 μm (2/1000th of a millimetre) GNS Science …more fun with numbers In a standard Human: # cells in the human body: ~1 x 1013 (10,000,000,000,000) # bacteria in the human body: ~ 1 x 1014 (100,000,000,000,000) 10x more bacterial cells than human cells! (No matter whether you are the Prime Minister, the President, the Queen or the King!) GNS Science Bacteria=Germs=Bad!.... Really? • Bacteria are normally associated with disease But is this fair? • Microbes are EVERYWHERE and involved in practically EVERYTHING you can think of.
    [Show full text]
  • OCN 401 Biogeochemical Systems
    OCN 401 Biogeochemical Systems (Welcome!) Instructors: Brian Glazer Kathleen Ruttenberg Frank Sansone Chris Measures Textbook: Biogeochemistry, An analysis of Global Change by William H. Schlesinger & Emily S. Bernhardt Course Goals (SLOs) 1. Understand the underlying principles of biogeochemical cycling in aquatic and terrestrial Obj-1 systems. 2. Identify the major global pathways of bioactive elements and human perturbations of these pathways. 3. Develop / improve written and oral communication skills focused on biogeochemical processes. Obj-2 4. Achieve facility using electronic resources. Course Informational Resources 1. Syllabus with important due dates highlighted 2. Course Info Sheet – your ‘go to’ for ‘how to’ 3. Professor Office Hours (by appointment) 4. Writing Assistance. - Manoa Writing Center - Course hand-outs - Meet with professors LECTURES Lectures will generally be given using PowerPoint presentations. As a convenience to students, copies of the PowerPoint slides will generally be handed out in class. However, do not be fooled into thinking that the handouts are a substitute for careful note-taking in class. Much of the useful information in this class will be in the form of classroom discussion of the subject material. Thus, students are expected to attend all lectures and to actively participate in class discussions. GRADING Midterm Exam: 25% Final Exam: 25% Homework & Class Participation: 20% Term Paper & Presentation: 30% The Text Book Biogeochemistry, An analysis of Global Change by William H. Schlesinger & Emily S. Bernhardt • Read chapter before class • Subsections generally begin with an overview, and build from the general to the specific • Almost without exception, very specific examples are given from the literature. • Important to grasp the overview; understand but no need to memorize specific examples (with a few exceptions).
    [Show full text]
  • Microbial Contributions to Coupled Arsenic and Sulfur Cycling in the Acid-Sulfide Hot Spring Champagne Pool, New Zealand
    ORIGINAL RESEARCH ARTICLE published: 04 November 2014 doi: 10.3389/fmicb.2014.00569 Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand Katrin Hug 1*, William A. Maher 2, Matthew B. Stott 3, Frank Krikowa 2, Simon Foster 2 and John W. Moreau 1* 1 Geomicrobiology Laboratory, School of Earth Sciences, University of Melbourne, Melbourne, VIC, Australia 2 Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia 3 Extremophiles Research Group, GNS Science, Wairakei, New Zealand Edited by: Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial Anna-Louise Reysenbach, Portland metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide State University, USA hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Reviewed by: Pool follows reaction paths not yet fully understood with respect to biotic contributions and Kasthuri Venkateswaran, NASA-Jet Propulsion Laboratory, USA coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation Natsuko Hamamura, Ehime from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel University, Japan (55–75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18–25% *Correspondence: total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total Katrin Hug, School of Earth arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. Sciences, University of Melbourne, Corner Swanston and Elgin Street, We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and Parkville, Melbourne, VIC 3010, sulfate as major species in the pool and outflow terrace, respectively.
    [Show full text]
  • Pollution of the Aquatic Biosphere by Arsenic and Other Elements in the Taupo Volcanic Zone
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. ~.. University IVlassey Library . & Pacific Collection New Z eaI an d Pollution of the Aquatic Biosphere by Arsenic and other Elements in the Taupo Volcanic Zone A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biology at Massey University Brett Harvey Robinson 1994 MASSEY UNIVERSITY 11111111111111111111111111111 1095010577 Massey University Library New Zealand & Pacific Collection Abstract An introduction to the Tau po Volcanic Zone and probable sources of polluting elements entering the aquatic environment is followed by a description of collection and treatment of samples used in this study. The construction of a hydride generation apparatus for use with an atomic absorption spectrophotometer for the determination of arsenic and other hydride forming elements is described. Flame emission, flame atomic absorption and inductively coupled plasma emission spectroscopy (I.C.P.-E.S.) were used for the determination of other elements. Determinations of arsenic and other elements were made on some geothermal waters of the area. It was found that these waters contribute large (relative to background levels) amounts of arsenic, boron and alkali metals to the aquatic environment. Some terrestrial vegetation surrounding hot pools at Lake Rotokawa and the Champagne Pool at Waiotapu was found to have high arsenic concentrations. Arsenic determinations made on the waters of the Waikato River and some lakes of the Taupo Volcanic Zone revealed that water from the Waikato River between Lake Aratiatia and Whakamaru as well as Lakes Rotokawa, Rotomahana and Rotoehu was above the World Health Organisation limit for arsenic in drinking water (0.05 µglmL) at the time of sampling.
    [Show full text]
  • Mountain NZGW 2001
    Proceedings 23rd NZ Geothermal Workshop 2001 BIOMINERALIZATION IN NEW ZEALAND GEOTHERMAL AREAS B.W. MOUNTAIN1, L.G. BENNING2, D.J. GRAHAM1 1Institute of Geological and Nuclear Sciences, Wairakei Research Centre, Taupo, New Zealand 2School of Earth Sciences, University of Leeds SUMMARY – Several experiments are currently underway to investigate the role of bacteria in the formation of unique textures in sinter deposits at New Zealand geothermal areas,. Preliminary results are presented from three areas: Wairakei, Rotokawa, and Waiotapu. In the Main Drain at Wairakei, thermophilic filamentous bacteria are growing at ~62oC at a rapid pace and are progressively sheathed or replaced by amorphous silica, building large 3-D fan-shaped structures. Siliceous microstromatolites at Rotokawa, located in the outwash from hot springs (60 – 85oC), grow at a much slower rate maintaining a level just above the water surface. Growth is initiated on protruding pumice stones and wood fragments. At Champagne Pool, Waiotapu, siliceous microstromatolites grow on native sulphur accumulated around the pool edge or on protruding parts of the pool bottom. Their rate of growth (0.02 – 0.03 mm day-1) and size is greater than at Rotokawa. Orange precipitates in the pool, previously identified as flocculated antimony rich sulphides and sulphur, appear to be entirely biomediated. It is not known whether the bacteria are actively metabolising sulphur or antimony or whether biomineralization is passive. These biomineralization effects strongly increase surface areas for potential metal – mineral – microbe interactions and thus effect metal distributions in sinter deposits. 1. INTRODUCTION early results from three of the seven geothermal areas where experiments are currently underway.
    [Show full text]
  • Microbial Biogeography of 925 Geothermal Springs in New Zealand
    ARTICLE DOI: 10.1038/s41467-018-05020-y OPEN Microbial biogeography of 925 geothermal springs in New Zealand Jean F. Power 1,2, Carlo R. Carere1,3, Charles K. Lee2, Georgia L.J. Wakerley2, David W. Evans1, Mathew Button4, Duncan White5, Melissa D. Climo5,6, Annika M. Hinze4, Xochitl C. Morgan7, Ian R. McDonald2, S. Craig Cary2 & Matthew B. Stott 1,6 Geothermal springs are model ecosystems to investigate microbial biogeography as 1234567890():,; they represent discrete, relatively homogenous habitats, are distributed across multiple geographical scales, span broad geochemical gradients, and have reduced metazoan inter- actions. Here, we report the largest known consolidated study of geothermal ecosystems to determine factors that influence biogeographical patterns. We measured bacterial and archaeal community composition, 46 physicochemical parameters, and metadata from 925 geothermal springs across New Zealand (13.9–100.6 °C and pH < 1–9.7). We determined that diversity is primarily influenced by pH at temperatures <70 °C; with temperature only having a significant effect for values >70 °C. Further, community dissimilarity increases with geographic distance, with niche selection driving assembly at a localised scale. Surprisingly, two genera (Venenivibrio and Acidithiobacillus) dominated in both average relative abundance (11.2% and 11.1%, respectively) and prevalence (74.2% and 62.9%, respectively). These findings provide an unprecedented insight into ecological behaviour in geothermal springs, and a foundation to improve the characterisation of microbial biogeographical processes. 1 Geomicrobiology Research Group, Department of Geothermal Sciences, GNS Science, Taupō 3384, New Zealand. 2 Thermophile Research Unit, School of Science, University of Waikato, Hamilton 3240, New Zealand. 3 Department of Chemical and Process Engineering, University of Canterbury, Christchurch 8140, New Zealand.
    [Show full text]
  • Habitat Characteristics of Geothermally Influenced Waters in the Waikato
    HABITAT CHARACTERISTICS OF GEOTHERMALLY INFLUENCED WATERS IN THE WAIKATO MARK I. STEVENS1, ASHLEY D. CODY2 AND IAN D. HOGG1 1Centre for Biodiversity and Ecology Research Department of Biological Sciences School of Science and Technology The University of Waikato Private Bag 3105 Hamilton, New Zealand Telephone 64-7-838 4139 Facsimile 64-7-838 4324 Email: [email protected] 2Geothermal and Geological Consultant 10 McDowell Street, Rotorua Email: [email protected] CBER Consultancy Report Number 25 Prepared for Environment Waikato, Hamilton June 2003 TABLE OF CONTENTS REPORT CONTEXT AND OVERVIEW .......................................................... 5 GEOTHERMAL SITES ....................................................................................... 8 1. ATIAMURI ................................................................................................... 8 1.1 Whangapoa Springs ............................................................................... 8 1.2 Matapan Road Springs ........................................................................ 13 1.3 Ohakuri Road Springs ......................................................................... 13 2. HOROHORO SPRINGS ............................................................................. 14 2.1 Horohoro Springs ................................................................................ 14 3. MOKAI ........................................................................................................ 18 3.1 Mulberry Road, Waipapa Stream ...................................................
    [Show full text]
  • Earth Science Chapter 4
    Chapter 4 Earth Chemistry Chapter Outlinene 1 ● Matter Properties of Matter Atomic Structure Atomic Number Atomic Mass The Periodic Table of Elements Valence Electrons and Periodic Properties 2 ● Combinations of Atoms Chemical Formulas Chemical Equations Chemical Bonds Mixtures Why It Matters NewN Zealand’sZ l d’ geothermalth l ChampagneCh Pool is steaming hot, at 74 °C. Its water contains dissolved elements, such as gold, silver, mercury, and arsenic. In fact, the entire Earth is made of chemical elements. Understanding the chemical structure of elements and molecules will help you understand the properties of the substances that make up Earth. 84 Chapter 4 hhq10sena_chmcho.inddq10sena_chmcho.indd 8844 PDF 8/1/08 10:14:48 AM Inquiry Lab 20 min Classifying Matter Mat Examine each of the six solids provided by your teacher, and record your observations. Consider properties such as mass, shininess, color, texture, size, and hardness. Determine whether the solids are made up of only one component, or two or more different components. Add each solid to a beaker with water, and observe how it behaves. Based on your observations, classify the solids into two or three groups. Questions to Get You Started 1. Some properties help you distinguish one solid from another, and some do not. Explain which properties are the most and least helpful for developing a classification system. 2. How did you decide on your classification system? Explain your reasoning. 3. Compare your classification system with another group’s classification system. Explain the similarities and differences. 85 hhq10sena_chmcho.inddq10sena_chmcho.indd 8855 PDF 8/1/08 10:14:59 AM These reading tools will help you learn the material in this chapter.
    [Show full text]
  • Insight Into the Evolution of Microbial Metabolism from the Deep- 2 Branching Bacterium, Thermovibrio Ammonificans 3 4 5 Donato Giovannelli1,2,3,4*, Stefan M
    1 Insight into the evolution of microbial metabolism from the deep- 2 branching bacterium, Thermovibrio ammonificans 3 4 5 Donato Giovannelli1,2,3,4*, Stefan M. Sievert5, Michael Hügler6, Stephanie Markert7, Dörte Becher8, 6 Thomas Schweder 8, and Costantino Vetriani1,9* 7 8 9 1Institute of Earth, Ocean and Atmospheric Sciences, Rutgers University, New Brunswick, NJ 08901, 10 USA 11 2Institute of Marine Science, National Research Council of Italy, ISMAR-CNR, 60100, Ancona, Italy 12 3Program in Interdisciplinary Studies, Institute for Advanced Studies, Princeton, NJ 08540, USA 13 4Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8551, Japan 14 5Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 15 6DVGW-Technologiezentrum Wasser (TZW), Karlsruhe, Germany 16 7Pharmaceutical Biotechnology, Institute of Pharmacy, Ernst-Moritz-Arndt-University Greifswald, 17 17487 Greifswald, Germany 18 8Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany 19 9Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA 20 21 *Correspondence to: 22 Costantino Vetriani 23 Department of Biochemistry and Microbiology 24 and Institute of Earth, Ocean and Atmospheric Sciences 25 Rutgers University 26 71 Dudley Rd 27 New Brunswick, NJ 08901, USA 28 +1 (848) 932-3379 29 [email protected] 30 31 Donato Giovannelli 32 Institute of Earth, Ocean and Atmospheric Sciences 33 Rutgers University 34 71 Dudley Rd 35 New Brunswick, NJ 08901, USA 36 +1 (848) 932-3378 37 [email protected] 38 39 40 Abstract 41 Anaerobic thermophiles inhabit relic environments that resemble the early Earth. However, the 42 lineage of these modern organisms co-evolved with our planet.
    [Show full text]
  • Manner of Antimony Claire Hansell Surveys the Uses, Past and Present, for Antimony, Including an Unusual Method for ‘Recycling’ It
    in your element All manner of antimony Claire Hansell surveys the uses, past and present, for antimony, including an unusual method for ‘recycling’ it. raversing the periodic table, there One of the major current uses for are few elements whose chemical element 51 is the incorporation of antimony symbols are not derived from their full trioxide as a flame retardant into plastics T 4 (English) name. Most are from the handful and other materials . Alloying antimony of metals known since antiquity. Whilst iron, with other metals has also long been gold or silver might spring immediately to used as a tactic to improve hardness mind, antimony is also part of this venerable and tensile strength; when Gutenberg ‘old world’ of elements. Its symbol Sb comes invented the printing press in the 1400s, from the Latin stibnum, which also lends its the metal type blocks were made from a name to the mineral in which antimony is lead–tin–antimony alloy. Today similar most commonly found: stibnite (Sb2S3), used alloys are used for the plates in lead–acid by Ancient Egyptians as an eye cosmetic batteries. Elemental antimony is also owing to its rich black colour. considered to be a promising anode Ancient Greek and Latin authors material for high-energy density lithium referred to it using variants of the name Orange deposits of antimony pentasulfide (Sb2S5) ion batteries, owing to its high theoretical stibium, so where did ‘antimony’, the at Champagne Pool, Rotorua, New Zealand. capacity when lithiated to Li3Sb. medieval term that has stuck until the © Robert Harding World Imagery / Alamy With the ever-increasing interest in present day, come from? A popular, but more efficient semiconducting materials to most likely fanciful, etymology is that further miniaturize transistors in integrated it is derived from the French antimoine Antimony is poisonous by inhalation circuits, doping non-metals with antimony meaning anti-monk.
    [Show full text]
  • Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China
    RESEARCH ARTICLE Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China Zhou Jiang1,2, Ping Li1*, Dawei Jiang1, Xinyue Dai1,2, Rui Zhang1, Yanhong Wang1, Yanxin Wang1,2* 1 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People's Republic of China, 2 School of Environmental Studies, China University of Geosciences, Wuhan, People's Republic of China * [email protected] (PL); [email protected] (YXW) Abstract Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Teng- OPEN ACCESS chong geothermal area, a representative acid sulfate hot spring with low chloride, was cho- sen to study arsenic geochemistry and microbial community structure using Illumina MiSeq Citation: Jiang Z, Li P, Jiang D, Dai X, Zhang R, Wang Y, et al. (2016) Microbial Community Structure sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired paral- and Arsenic Biogeochemistry in an Acid Vapor- lel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Formed Spring in Tengchong Geothermal Area, Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73– China. PLoS ONE 11(1): e0146331. doi:10.1371/ journal.pone.0146331 0.86). Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumu- lated in downstream sediments with concentrations up to 16.44 g/kg and appeared to signif- Editor: John M. Senko, The University of Akron, UNITED STATES icantly constrain their microbial community diversity.
    [Show full text]