Evaluation of MALDI Biotyper for Identification of Taylorella Equigenitalis and Taylorella Asinigenitalis Kristina Lantz Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of MALDI Biotyper for Identification of Taylorella Equigenitalis and Taylorella Asinigenitalis Kristina Lantz Iowa State University Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 Evaluation of MALDI Biotyper for identification of Taylorella equigenitalis and Taylorella asinigenitalis Kristina Lantz Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Microbiology Commons, and the Veterinary Medicine Commons Recommended Citation Lantz, Kristina, "Evaluation of MALDI Biotyper for identification of Taylorella equigenitalis and Taylorella asinigenitalis" (2017). Graduate Theses and Dissertations. 16520. https://lib.dr.iastate.edu/etd/16520 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Evaluation of MALDI Biotyper for identification of Taylorella equigenitalis and Taylorella asinigenitalis by Kristina Lantz A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Veterinary Microbiology Program of Study Committee: Ronald Griffith, Major Professor Steve Carlson Matthew Erdman Timothy Frana The student author and the program of study committee are solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2017 ii TABLE OF CONTENTS Page LIST OF FIGURES ................................................................................................... iii LIST OF TABLES ..................................................................................................... iv ACKNOWLEDGMENTS ......................................................................................... v ABSTRACT………………………………. .............................................................. vi CHAPTER 1 REVIEW OF LITERATURE ........................................................ 1 The genus Taylorella ........................................................................................... 1 MALDI-TOF bacterial identification .................................................................. 12 CHAPTER 2 INTRODUCTION ......................................................................... 22 CHAPTER 3 MATERIALS AND METHODS .................................................... 26 CHAPTER 4 RESULTS ....................................................................................... 36 CHAPTER 5 DISCUSSION ................................................................................. 42 REFERENCES .......................................................................................................... 67 iii LIST OF FIGURES Page Figure 1 Comparison of MALDI scores for all Taylorella organisms vs. day ......... 49 Figure 2 Direct comparison of NECLC and Bruker tube formic acid methods for protein extraction.................................................................................. 49 Figure 3 MALDI score data of Taylorella isolates on Bruker direct transfer and Bruker tube formic acid ...................................................................... 50 Figure 4 Media comparison study ............................................................................ 50 Figure 5 Custom library versus BDAL library ......................................................... 51 Figure 6 Custom library versus abbreviated custom library. ................................... 51 Figure 7 Biotyper 3 phylogenetic tree of all Taylorella MSPs in the custom library 52 Figure 8 Zoomed image of Taylorella phylogenetic tree. ........................................ 52 Figure 9 Phylogenetic tree of T. equigenitalis genomes generated using KSnp. ..... 53 Figure 10 Biotyper 3 phylogenetic tree of T. equigenitalis Eugon MSPs without replicates .................................................................................................... 54 Figure 11 Biotyper 3 phylogenetic tree of T. equigenitalis Eugon replicate MSPs. .. 54 Figure 12 Biotyper 3 phylogenetic tree of T. equigenitalis Eugon MSPs including replicate MSPs. .......................................................................... 55 Figure 13 CCI analysis of CEM 1978 isolates. .......................................................... 56 Figure 14 PCA dendrogram of CEM 1978 isolates. .................................................. 56 Figure 15 CCI analysis of CEM 2008-2010 isolates with 3 unrelated T. equigenitalis isolates. ............................................................................. 57 Figure 16 PCA dendrogram of CEM 2008-2010 isolates plus outliers. .................... 57 iv LIST OF TABLES Page Table 1 Taylorella isolates used for analysis .......................................................... 58 Table 2 Non-Taylorella isolates used for analysis .................................................. 61 Table 3 Extraction methods .................................................................................... 63 Table 4 Media comparison isolates ......................................................................... 63 Table 5 Additional media tested ............................................................................. 64 Table 6 Replicate T. equigenitalis MSPs for phylogenetic tree evaluation ............ 64 Table 7 Paired mean scores by method and media type ......................................... 65 Table 8 Comparison of custom and commercial BDAL library scores for T. asinigenitalis .......................................................................................... 65 Table 9 Comparison of custom and commercial BDAL library scores for T. equigenitalis ........................................................................................... 65 Table 10 Comparison of custom and abbreviated custom library scores for T. asinigenitalis .......................................................................................... 66 Table 11 Comparison of custom and abbreviated custom library scores for T. equigenitalis ........................................................................................... 66 v ACKNOWLEDGMENTS I would like to thank my major professor Dr. Ronald Griffith and my committee members Dr. Tim Frana, and Dr. Steve Carlson for this opportunity to work with them. I would especially like to thank my committee member Dr. Matt Erdman, whose knowledge and support through the years have played a major role in my professional development. In addition, I would like to thank Dr. Linda Schlater for allowing me the opportunity to work on this project and for her endless depth of knowledge on the history of CEM. Two statisticians assisted me on this project; Chris Tong provided invaluable support with study design, statistics and plotting and Marie Vendettuoli provided feedback on phylogenetic trees, CCI and PCA. I would like to thank the members of my lab, Linda Cox, Maria Munoz, and Keira Stuart, for their patience and willingness to assist with day-to-day matters while I was working on this project. Maria in particular was always there with willing hands and a smile. I would like to thank my family for their support through the years. My parents have always encouraged and supported me, even when it meant I hardly ever made it home to visit them. And finally and most of all, thank you to Nick, who showed endless patience while I was working on this project. vi ABSTRACT Matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI- TOF) has become an increasingly popular method for bacterial identification in recent years. Contagious Equine Metritis is a venereal disease of equids of international significance caused by the gram negative organism, Taylorella equigenitalis. The prescribed test is by bacteriological culture, however, due to the slow-growing and fastidious nature of the bacteria, culture requires specialized media and extended culture time. In addition, differentiation of T. equigenitalis and the closely related Taylorella asinigenitalis from each other and from common contaminants of the equine genital tract is difficult and has required advanced diagnostics with specialized reagents. This study evaluates the use of MALDI-TOF identification for detecting and differentiating individual colonies of T. equigenitalis and T. asinigenitalis directly from culture plates, significantly decreasing the time and cost of diagnosis. The study compared the effects of varying extraction methods, types of culture media and day of culture on the ability to identify these species. This method represents an inexpensive, rapid, and accurate new diagnostic tool for Contagious Equine Metritis diagnosis. 1 CHAPTER I. REVIEW OF LITERATURE The genus Taylorella Taylorella equigenitalis is the causative organism of the equine disease Contagious Equine Metritis (CEM). Along with the only other known member of the genus, Taylorella asinigenitalis, these host adapted bacterial organisms are found only in the genital tract of animals of the family Equidae [1, 2]. Taylorella equigenitalis causes endometritis and reproductive failure in mares. Many mares clear the infection rapidly and completely while others may develop an asymptomatic carrier state in which the bacteria persist on the external genitalia [3]. Antibody response
Recommended publications
  • Molecular Characterization of the Sequences of the 16S-23S Rdna
    BMC Research Notes BioMed Central Short Report Open Access Molecular characterization of the sequences of the 16S-23S rDNA internal spacer region (ISR) from isolates of Taylorella asinigenitalis Akihiro Tazumi1, Shinji Ono1, Tsuyoshi Sekizuka1, John E Moore*2, B Cherie Millar3 and Motoo Matsuda1 Address: 1Laboratory of Molecular Biology, School of Environmental Health Sciences, Azabu University, Fuchinobe 1-17-71, Sagamihara 229- 8501, Japan, 2School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, Northern Ireland, UK and 3Department of Bacteriology, Northern Ireland Public Health Laboratory, Belfast City Hospital, Belfast BT9 7AD, Northern Ireland, UK Email: Akihiro Tazumi - [email protected]; Shinji Ono - [email protected]; Tsuyoshi Sekizuka - [email protected]; JohnEMoore*[email protected]; B Cherie Millar - [email protected]; Motoo Matsuda - [email protected] * Corresponding author Published: 3 March 2009 Received: 22 July 2008 Accepted: 3 March 2009 BMC Research Notes 2009, 2:33 doi:10.1186/1756-0500-2-33 This article is available from: http://www.biomedcentral.com/1756-0500/2/33 © 2008 Matsuda et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Sequence information on the 16S-23S rDNA internal spacer region (ISR) exhibits a large degree of sequence and length variation at both the genus and species levels. A primer pair for the amplification of 16S-23S rDNA ISR generated three amplicons for each of isolates of Taylorella asinigenitalis (UCD-1T, UK-1 and UK-2).
    [Show full text]
  • Downloaded Skin Zaka Electronic Gmbh, Cologne, Germany)
    Li et al. Microbiome (2021) 9:47 https://doi.org/10.1186/s40168-020-00995-7 RESEARCH Open Access Characterization of the human skin resistome and identification of two microbiota cutotypes Zhiming Li1,2†, Jingjing Xia3,4,5†, Liuyiqi Jiang3†, Yimei Tan4,6†, Yitai An1,2, Xingyu Zhu4,7, Jie Ruan1,2, Zhihua Chen1,2, Hefu Zhen1,2, Yanyun Ma4,7, Zhuye Jie1,2, Liang Xiao1,2, Huanming Yang1,2, Jian Wang1,2, Karsten Kristiansen1,2,8, Xun Xu1,2,9, Li Jin4,10, Chao Nie1,2*, Jean Krutmann4,5,11*, Xiao Liu1,12,13* and Jiucun Wang3,4,10,14* Abstract Background: The human skin microbiota is considered to be essential for skin homeostasis and barrier function. Comprehensive analyses of its function would substantially benefit from a catalog of reference genes derived from metagenomic sequencing. The existing catalog for the human skin microbiome is based on samples from limited individuals from a single cohort on reference genomes, which limits the coverage of global skin microbiome diversity. Results: In the present study, we have used shotgun metagenomics to newly sequence 822 skin samples from Han Chinese, which were subsequently combined with 538 previously sequenced North American samples to construct an integrated Human Skin Microbial Gene Catalog (iHSMGC). The iHSMGC comprised 10,930,638 genes with the detection of 4,879,024 new genes. Characterization of the human skin resistome based on iHSMGC confirmed that skin commensals, such as Staphylococcus spp, are an important reservoir of antibiotic resistance genes (ARGs). Further analyses of skin microbial ARGs detected microbe-specific and skin site-specific ARG signatures.
    [Show full text]
  • Phenotypic and Microbial Influences on Dairy Heifer Fertility and Calf Gut Microbial Development
    Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Animal Science, Dairy Rebecca R. Cockrum Kristy M. Daniels Alan Ealy Katharine F. Knowlton September 17, 2020 Blacksburg, VA Keywords: microbiome, fertility, inoculation Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens ABSTRACT (Academic) Pregnancy loss and calf death can cost dairy producers more than $230 million annually. While methods involving nutrition, climate, and health management to mitigate pregnancy loss and calf death have been developed, one potential influence that has not been well examined is the reproductive microbiome. I hypothesized that the microbiome of the reproductive tract would influence heifer fertility and calf gut microbial development. The objectives of this dissertation were: 1) to examine differences in phenotypes related to reproductive physiology in virgin Holstein heifers based on outcome of first insemination, 2) to characterize the uterine microbiome of virgin Holstein heifers before insemination and examine associations between uterine microbial composition and fertility related phenotypes, insemination outcome, and season of breeding, and 3) to characterize the various maternal and calf fecal microbiomes and predicted metagenomes during peri-partum and post-partum periods and examine the influence of the maternal microbiome on calf gut development during the pre-weaning phase. In the first experiment, virgin Holstein heifers (n = 52) were enrolled over 12 periods, on period per month. On -3 d before insemination, heifers were weighed and the uterus was flushed.
    [Show full text]
  • Development of a PCR Test for Rapid Diagnosis of Contagious Equine Metritis
    Development of a PCR Test for Rapid Diagnosis of Contagious Equine Metritis Toru ANZAI, Masashi EGUCHI1), Tsutomu SEKIZAKI1), Masanobu KAMADA, Kohshi YAMAMOTO1) and Toshio OKUDA2) Epizootic Research Station, Equine Research Institute, Japan Racing Association, 1400–4 Shiba, Kokubunji-machi, Shimotsuga-gun, Tochigi 329–0412, 1)National Institute of Animal Health, 3–1–1 Kannondai, Tsukuba, Ibaraki 305-0856, and 2)Hidaka Livestock Hygiene Service Center, Kousei-cho, Shizunai-cho, Shizunai-gun, Hokkaido 056–0005, Japan (Received 24 May 1999/Accepted 20 August 1999) ABSTRACT. In order to establish a rapid diagnostic method for contagious equine metritis (CEM), we developed and evaluated a polymerase chain reaction (PCR) test. Species-specific PCR primer sets were derived from the DNA sequence of a cloned DNA fragment of Taylorella equigenitalis that did not hybridize with the genome of a taxomonically related species, Oligella urethralis. Single step PCR with primer set P1-N2 and two-step semi-nested PCR with primer sets P1-N2 and P2-N2 detected as low as 100 and 10 CFU of the bacteria, respectively. Single-step PCR detected T. equigenitalis from genital swabs of experimentally infected mares with sensitivity comparable to that of bacterial isolation. Furthermore, two-step PCR was more sensitive than the culture method. Upon examination of field samples, 12 out of 3,123 samples were positive by single-step PCR while only 2 were positive by bacterial culture. The 12 PCR- positive samples originated from 5 mares, of which 3 animals were considered to be carriers based on previous bacteriologic and serologic diagnoses for CEM. The PCR test described in this study would provide a specific and highly sensitive tool for the rapid diagnosis of CEM.—KEY WORDS: contagious equine metritis, equine, metritis, polymerase chain reaction, Taylorella equigenitalis.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • A Two-Step Species-Specific 16S Rrna PCR Assay for the Detection Of
    Irish Veterinary Journal Volume 58: 146 - 149, 2005 A two-step species-specific 16S rRNA PCR assay for the detection of Taylorella equigenitalisin horses Thomas C. Buckley1, B. Cherie. Millar2, Claire L. Egan1, Paula Gibson2, Hazel Cosgrove1, Siobhan Stanbridge1, Motoo Matsuda3 and John E. Moore2 1 Irish Equine Centre, Johnstown, Naas, Co Kildare, Republic of Ireland. 2 Northern Ireland Public Health Laboratory, Department of Bacteriology, Belfast City Hospital, Belfast BT9 7AD, Northern Ireland. 3 Laboratory of Molecular Biology, School of Environmental Health Sciences, Azabu University, 1-17-71 Fuchinobe, Sagamihara, 229, Japan. A two-step PCR assay was developed for the molecular detection of Taylorella equigenitalis, Key words a Gram-negative genital bacterial pathogen in horses. Two specific oligonucleotide Horse, Taylorella equigenitalis, primers (TE16SrRNABCHf [25mer] and TE16SrRNABCHr [29mer]) were designed from 16S rRNA, multiple alignments of the 16S rRNA gene loci of several closely related taxa, including T. Contagious equine asinigenitalis. Subsequent enhanced surveillance of 250 Thoroughbred animals failed to metritis, detect the presence of this organism directly from clinical swabs taken from the genital Polymerase chain reaction. tract of mares and stallions. Such a molecular approach offers a sensitive and specific alternative to conventional culture techniques, and has the potential to lead to improved diagnosis and subsequent management of horses involved in breeding programmes. Introduction develop a PCR diagnostic assay specific for T. equigenitalis, based Contagious equine metritis (CEM) caused by Taylor el la equigenitalis on 16S rRNA, in a two-step amplification procedure, thereby is a sexually transmitted disease in horses, generally leading to a loss reducing assay time and hence allowing for more rapid laboratory of fertility in the mare.
    [Show full text]
  • A New Symbiotic Lineage Related to Neisseria and Snodgrassella Arises from the Dynamic and Diverse Microbiomes in Sucking Lice
    bioRxiv preprint doi: https://doi.org/10.1101/867275; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A new symbiotic lineage related to Neisseria and Snodgrassella arises from the dynamic and diverse microbiomes in sucking lice Jana Říhová1, Giampiero Batani1, Sonia M. Rodríguez-Ruano1, Jana Martinů1,2, Eva Nováková1,2 and Václav Hypša1,2 1 Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic 2 Institute of Parasitology, Biology Centre, ASCR, v.v.i., České Budějovice, Czech Republic Author for correspondence: Václav Hypša, Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic, +42 387 776 276, [email protected] Abstract Phylogenetic diversity of symbiotic bacteria in sucking lice suggests that lice have experienced a complex history of symbiont acquisition, loss, and replacement during their evolution. By combining metagenomics and amplicon screening across several populations of two louse genera (Polyplax and Hoplopleura) we describe a novel louse symbiont lineage related to Neisseria and Snodgrassella, and show its' independent origin within dynamic lice microbiomes. While the genomes of these symbionts are highly similar in both lice genera, their respective distributions and status within lice microbiomes indicate that they have different functions and history. In Hoplopleura acanthopus, the Neisseria-related bacterium is a dominant obligate symbiont universally present across several host’s populations, and seems to be replacing a presumably older and more degenerated obligate symbiont.
    [Show full text]
  • Predicting the Proteins of Angomonas Deanei, Strigomonas Culicis and Their Respective Endosymbionts Reveals New Aspects of the Trypanosomatidae Family
    Predicting the Proteins of Angomonas deanei, Strigomonas culicis and Their Respective Endosymbionts Reveals New Aspects of the Trypanosomatidae Family Maria Cristina Machado Motta1, Allan Cezar de Azevedo Martins1, Silvana Sant’Anna de Souza1,2, Carolina Moura Costa Catta-Preta1, Rosane Silva2, Cecilia Coimbra Klein3,4,5, Luiz Gonzaga Paula de Almeida3, Oberdan de Lima Cunha3, Luciane Prioli Ciapina3, Marcelo Brocchi6, Ana Cristina Colabardini7, Bruna de Araujo Lima6, Carlos Renato Machado9,Ce´lia Maria de Almeida Soares10, Christian Macagnan Probst11,12, Claudia Beatriz Afonso de Menezes13, Claudia Elizabeth Thompson3, Daniella Castanheira Bartholomeu14, Daniela Fiori Gradia11, Daniela Parada Pavoni12, Edmundo C. Grisard15, Fabiana Fantinatti-Garboggini13, Fabricio Klerynton Marchini12, Gabriela Fla´via Rodrigues-Luiz14, Glauber Wagner15, Gustavo Henrique Goldman7, Juliana Lopes Rangel Fietto16, Maria Carolina Elias17, Maria Helena S. Goldman18, Marie-France Sagot4,5, Maristela Pereira10, Patrı´cia H. Stoco15, Rondon Pessoa de Mendonc¸a-Neto9, Santuza Maria Ribeiro Teixeira9, Talles Eduardo Ferreira Maciel16, Tiago Antoˆ nio de Oliveira Mendes14, Tura´nP.U¨ rme´nyi2, Wanderley de Souza1, Sergio Schenkman19*, Ana Tereza Ribeiro de Vasconcelos3* 1 Laborato´rio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofı´sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil, 2 Laborato´rio de Metabolismo Macromolecular Firmino Torres de Castro, Instituto de Biofı´sica Carlos Chagas Filho,
    [Show full text]
  • Fish Bacterial Flora Identification Via Rapid Cellular Fatty Acid Analysis
    Fish bacterial flora identification via rapid cellular fatty acid analysis Item Type Thesis Authors Morey, Amit Download date 09/10/2021 08:41:29 Link to Item http://hdl.handle.net/11122/4939 FISH BACTERIAL FLORA IDENTIFICATION VIA RAPID CELLULAR FATTY ACID ANALYSIS By Amit Morey /V RECOMMENDED: $ Advisory Committe/ Chair < r Head, Interdisciplinary iProgram in Seafood Science and Nutrition /-■ x ? APPROVED: Dean, SchooLof Fisheries and Ocfcan Sciences de3n of the Graduate School Date FISH BACTERIAL FLORA IDENTIFICATION VIA RAPID CELLULAR FATTY ACID ANALYSIS A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Amit Morey, M.F.Sc. Fairbanks, Alaska h r A Q t ■ ^% 0 /v AlA s ((0 August 2007 ^>c0^b Abstract Seafood quality can be assessed by determining the bacterial load and flora composition, although classical taxonomic methods are time-consuming and subjective to interpretation bias. A two-prong approach was used to assess a commercially available microbial identification system: confirmation of known cultures and fish spoilage experiments to isolate unknowns for identification. Bacterial isolates from the Fishery Industrial Technology Center Culture Collection (FITCCC) and the American Type Culture Collection (ATCC) were used to test the identification ability of the Sherlock Microbial Identification System (MIS). Twelve ATCC and 21 FITCCC strains were identified to species with the exception of Pseudomonas fluorescens and P. putida which could not be distinguished by cellular fatty acid analysis. The bacterial flora changes that occurred in iced Alaska pink salmon ( Oncorhynchus gorbuscha) were determined by the rapid method.
    [Show full text]
  • Survival of Taylorellae in the Environmental Amoeba Acanthamoeba Castellanii Julie Allombert, Anne Vianney, Claire Laugier, Sandrine Petry, Laurent Hébert
    Survival of taylorellae in the environmental amoeba Acanthamoeba castellanii Julie Allombert, Anne Vianney, Claire Laugier, Sandrine Petry, Laurent Hébert To cite this version: Julie Allombert, Anne Vianney, Claire Laugier, Sandrine Petry, Laurent Hébert. Survival of taylorellae in the environmental amoeba Acanthamoeba castellanii. BMC Microbiology, BioMed Central, 2014, 14 (1), pp.69. 10.1186/1471-2180-14-69. inserm-00980498 HAL Id: inserm-00980498 https://www.hal.inserm.fr/inserm-00980498 Submitted on 18 Apr 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Allombert et al. BMC Microbiology 2014, 14:69 http://www.biomedcentral.com/1471-2180/14/69 RESEARCHARTICLE Open Access Survival of taylorellae in the environmental amoeba Acanthamoeba castellanii Julie Allombert1,2,3,4,5, Anne Vianney1,2,3,4,5, Claire Laugier6, Sandrine Petry6* and Laurent Hébert6 Abstract Background: Taylorella equigenitalis is the causative agent of contagious equine metritis, a sexually-transmitted infection of Equidae characterised in infected mares by abundant mucopurulent vaginal discharge and a variable degree of vaginitis, cervicitis or endometritis, usually resulting in temporary infertility. The second species of the Taylorella genus, Taylorella asinigenitalis, is considered non-pathogenic, although mares experimentally infected with this bacterium can develop clinical signs of endometritis.
    [Show full text]
  • Assessing the Temporal Dynamics of the Lower Urinary Tract Microbiota and the Effects of Lifestyle
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 2019 Assessing the Temporal Dynamics of the Lower Urinary Tract Microbiota and the Effects of Lifestyle Travis Kyle Price Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Microbiology Commons Recommended Citation Price, Travis Kyle, "Assessing the Temporal Dynamics of the Lower Urinary Tract Microbiota and the Effects of Lifestyle" (2019). Dissertations. 3367. https://ecommons.luc.edu/luc_diss/3367 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 2019 Travis Kyle Price LOYOLA UNIVERSITY CHICAGO ASSESSING THE TEMPORAL DYNAMICS OF THE LOWER URINARY TRACT MICROBIOTA AND THE EFFECTS OF LIFESTYLE A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY PROGRAM IN MICROBIOLOGY AND IMMUNOLOGY BY TRAVIS KYLE PRICE CHICAGO, IL MAY 2019 i Copyright by Travis Kyle Price, 2019 All Rights Reserved ii ACKNOWLEDGMENTS I would like to thank everyone that made this thesis possible. First and foremost, I want to thank Dr. Alan Wolfe. I could not have asked for a better mentor. I don’t think there will ever be another period of my life where I grow as a scientist, as a professional, or as a person more than I did under your mentorship.
    [Show full text]
  • Genome of Ca. Pandoraea Novymonadis, an Endosymbiotic Bacterium of the Trypanosomatid Novymonas Esmeraldas
    fmicb-08-01940 September 30, 2017 Time: 16:0 # 1 ORIGINAL RESEARCH published: 04 October 2017 doi: 10.3389/fmicb.2017.01940 Genome of Ca. Pandoraea novymonadis, an Endosymbiotic Bacterium of the Trypanosomatid Novymonas esmeraldas Alexei Y. Kostygov1,2†, Anzhelika Butenko1,3†, Anna Nenarokova3,4, Daria Tashyreva3, Pavel Flegontov1,3,5, Julius Lukeš3,4 and Vyacheslav Yurchenko1,3,6* 1 Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia, 2 Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia, 3 Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceskéˇ Budejovice,ˇ Czechia, 4 Faculty of Sciences, University of South Bohemia, Ceskéˇ Budejovice,ˇ Czechia, 5 Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia, 6 Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czechia We have sequenced, annotated, and analyzed the genome of Ca. Pandoraea novymonadis, a recently described bacterial endosymbiont of the trypanosomatid Novymonas esmeraldas. When compared with genomes of its free-living relatives, it Edited by: has all the hallmarks of the endosymbionts’ genomes, such as significantly reduced João Marcelo Pereira Alves, University of São Paulo, Brazil size, extensive gene loss, low GC content, numerous gene rearrangements, and Reviewed by: low codon usage bias. In addition, Ca. P. novymonadis lacks mobile elements, Zhao-Rong Lun, has a strikingly low number of pseudogenes, and almost all genes are single Sun Yat-sen University, China Vera Tai, copied. This suggests that it already passed the intensive period of host adaptation, University of Western Ontario, Canada which still can be observed in the genome of Polynucleobacter necessarius, a *Correspondence: certainly recent endosymbiont.
    [Show full text]