Realisation of Qudits in Coupled Potential Wells Ariel Landau Tel Aviv University

Total Page:16

File Type:pdf, Size:1020Kb

Realisation of Qudits in Coupled Potential Wells Ariel Landau Tel Aviv University Chapman University Chapman University Digital Commons Mathematics, Physics, and Computer Science Science and Technology Faculty Articles and Faculty Articles and Research Research 8-23-2016 Realisation of Qudits in Coupled Potential Wells Ariel Landau Tel Aviv University Yakir Aharonov Chapman University, [email protected] Eliahu Cohen University of Bristol Follow this and additional works at: http://digitalcommons.chapman.edu/scs_articles Part of the Quantum Physics Commons Recommended Citation Landau, A., Aharonov, Y., Cohen, E., 2016. Realization of qudits in coupled potential wells. Int. J. Quantum Inform. 14, 1650029. doi:10.1142/S0219749916500295 This Article is brought to you for free and open access by the Science and Technology Faculty Articles and Research at Chapman University Digital Commons. It has been accepted for inclusion in Mathematics, Physics, and Computer Science Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For more information, please contact [email protected]. Realisation of Qudits in Coupled Potential Wells Comments This is a pre-copy-editing, author-produced PDF of an article accepted for publication in International Journal of Quantum Information, volume 14, in 2016 following peer review. The definitive publisher-authenticated version is available online at DOI: 10.1142/S0219749916500295. Copyright World Scientific This article is available at Chapman University Digital Commons: http://digitalcommons.chapman.edu/scs_articles/383 Realisation of Qudits in Coupled Potential Wells Ariel Landau1, Yakir Aharonov1;2, Eliahu Cohen3 1School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 6997801, Israel 2Schmid College of Science, Chapman University, Orange, CA 92866, USA 3H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, U.K PACS numbers: ABSTRACT to study the analogue 3-state register, the qutrit, and more generally the d-state qudit. Several advantages of using qutrits and qudits rather than qubits have been Quantum computation strongly relies on the realisa- discussed, e.g. in the context of improved fault-tolerance tion, manipulation and control of qubits. A central [3,4] and advantages in cryptography [5,6]. Motivated method for realizing qubits is by creating a double-well by these results we suggest a novel periodic triple-well potential system with a significant gap between the first qutrit system. On the one hand, it is based on the known two eigenvalues and the rest. In this work we first re- control and manipulation principles of the double-well visit the theoretical grounds underlying the double-well qubit, while on the other hand it presents special sym- qubit dynamics, then proceed to suggest novel extensions metries beneficial to the higher dimensional analysis of of these principles to a triple-well qutrit with periodic its evolution and control using the fundamental repre- boundary conditions, followed by a general d-well anal- sentation of SU(3). We further opt for a generalization ysis of qudits. These analyses are based on representa- of these concepts to a general dimension periodic d-well tions of the special unitary groups SU(d) which expose qudit, with a central role played by the respective repre- the systems' symmetry and employ them for performing sentation of SU(d). computations. We conclude with a few notes on coher- ence and scalability of d-well systems. The paper is organized as follows: Sec. 1 reviews the dynamics of a particle in a double-well potential while emphasizing its close relations with a spin-1/2 system. We mostly discuss in this introductory section the meth- ods for control and manipulation of the qubit state with INTRODUCTION the underlying goal of efficient execution of general trans- formations. This simple analysis will be hopefully useful in the rest of the paper which manifests its main contri- The use of quantum mechanical systems for informa- bution. Sec. 2 proposes the extension to a periodic triple- tion processing and computation has been studied ex- well qutrit system, discussing its dynamics and manipu- tensively over the last decades. Models have been well lation with regard to a set of transformations in SU(3). established for using the principles of quantum mechan- Sec. 3 aims to further extend the above ideas in a sys- ics to achieve computational advantages in the form of tem of d > 3 wells, and in particular the corresponding a speedup over classical methods, and to allow efficient evolution of a qudit in the scope of SU(d). Two dif- simulation of physical systems. However, a central chal- ferent topologies are considered for the problem: (i) a lenge on the way to fulfilling these goals continues to lie fully-connected well system featuring a highly symmet- in the realisation of such systems - how to construct a rical solution; (ii) a cyclic linearly-connected well chain, arXiv:1605.04566v2 [quant-ph] 31 Aug 2016 large-scale system, which entails the required quantum featuring a Bloch-state based solution, and essentially of properties and at the same time allows efficient manipu- higher feasibility. lations necessary for performing these tasks. Some of the main techniques for the realisation prob- lem feature the use of a double-well potential system to store and manipulate the qubit. Realisations of a double- well-based qubit have been demonstrated using supercon- ducting circuits (SQUID), which provide efficient control over the qubit transformations and feasible integration with electronic circuitry [1,2]. As an alternative to the qubit, work has been done 2 1. REVISITING THE DOUBLE-WELL projections on the left and right wells, and take initial POTENTIAL conditions of jΨ(t = 0)i = jLi for example, the right-well probability amplitude PR = hRjΨi then oscillates: dP ν Review of States and Dynamics R = sin(!t); (5) dt ~ with a frequency The double-well potential system is a widely consid- ∆E ered tool for producing a 2-level system, due to its energy ! = 01 : (6) separation featuring a pair of lower states well-separated ~ from the rest of the spectrum: In general we use the following criteria to define a double-well system, in either one or higher dimensions: ∆E01 ∆E12: (1) 1. Parity symmetry: the two wells are identical under a discrete symmetry denoted by P , e.g. reflection Eq.1 can be derived by solving the Schr¨odinger about x = 0 for a 1D well PV (x) = V (−x) or about equation for the specific double-well potential form. A a center plane in 3D, PV (x; y; z) = V (x; y; −z)[49]. solution for the simple square-well case is summarized The commutation relation is therefore satisfied: in Appendix A and further detailed in [7]. [H; P ] = 0: (7) The energy gap ∆E01 is related to the tunneling am- 2. The coupling between the two wells is weak enough, plitude, denoted by ν. As denoted for example in [8], this i.e. the barrier is high enough, so that Eq.1 ap- tunneling amplitude can be related to the wavefunction plies. using the WKB approximation These criteria suffice to produce a symmetric and anti- symmetric pair of lower states, j0i and j1i, which serve 2 ~ d s as a 2-level system in the low-energy regime (with am- ν = s ; (2) m dx x=0 plitudes for higher levels negligible, hkjΨi ≈ 0 ; k ≥ 2). where s is the localized wavefunction in the right or left well. The solution can generally be written as [9] ! 2-level operators 2 Z a=2 ν = C · exp − dxp2m(V (x) − E) ; (3) ~ −a=2 for a barrier of width a around the origin[48]. For exam- Setting a reference basis of right and left projections, ple, in the square potential (see Appendix A) we obtain we may write a general two-state symmetric Hamiltonian for ν [9], for the system: 0 1 H = −νσ = −ν ; (8) 2;s x 1 0 p 2~E 2m(V0 − E) 2ap ν = exp − 2m(V0 − E) : (4) with ν the tunneling amplitude (Eq.3), and the basis mV0L ~ vectors 1 0 j "i = ; j #i = (9) The proportion between ν and ∆E01 can be simply 0 1 found in a two-state system analysis, performed in the next section. are localized states in the right/left well, namely jRi; jLi. Solving the time-dependent Schr¨odingerequation, it is apparent that the tunneling implies oscillatory dynam- The Hamiltonian's invariance to a ",# swap manifests ics of the 2-level state. Shall we define jLi and jRi as the parity symmetry defined in Eq.7. Solving for the 3 ∗ energy eigenstates relates the tunneling amplitude with ~ ∗ dΨ dΨ where j(x) = 2mi Ψ dx − Ψ dx , while using the con- the energy gap: tinuity equation in the rightmost equality. E0;1 = ±ν ) ∆E01 = 2ν: (10) The relation of energy, current and position to the qubit operators σx, σy, σz provides physical meaning to Thus, remaining in the low energy regime with signif- the different qubit transformations, explicitly connecting icant amplitudes held only for the states j0i; j1i, we may each one with a corresponding observable. treat the system as equivalent to a spin-1/2 particle, un- 1 der the generating group 2 σi with σi being the Pauli matrices: Dynamics and manipulation 0 1 0 −i 1 0 σ = ; σ = ; σ = : (11) x 1 0 y i 0 z 0 −1 With the Hamiltonian H2;s, the time evolution of the double-well qubit corresponds to precession about the x- The eigenvectors of the simplified Hamiltonian H2;s are axis, equivalent to a spin-1/2 particle in a magnetic field the σx eigenstates: Bx^. 1 1 j0i = p1 = j+i; j1i = p1 = |−i: (12) 2 1 2 −1 In general, the evolution of a state j i = αj0i + βj1i is: i i i Satisfying the P symmetry, the energy states j0i; j1i are − Ht − E0t − E1t j (t)i = e ~ j (0)i = e ~ αj0i + e ~ βj1i symmetric and antisymmetric, respectively, in context i − E0t −i!t of the P operator.
Recommended publications
  • Engineering the Coupling of Superconducting Qubits
    Engineering the coupling of superconducting qubits Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von M. Sc. Alessandro Ciani aus Penne, Italien Berichter: Prof. Dr. David DiVincenzo Prof. Dr. Fabian Hassler Tag der mündlichen Prüfung: 12 April 2019 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek verfügbar. ii «Considerate la vostra semenza: fatti non foste a viver come bruti, ma per seguir virtute e conoscenza.» Dante Alighieri, "La Divina Commedia", Inferno, Canto XXVI, vv. 118-120. iii Abstract The way to build a scalable and reliable quantum computer that truly exploits the quantum power faces several challenges. Among the various proposals for building a quantum computer, superconducting qubits have rapidly progressed and hold good promises in the near-term future. In particular, the possibility to design the required interactions is one of the most appealing features of this kind of architecture. This thesis deals with some detailed aspects of this problem focusing on architectures based on superconducting transmon-like qubits. After reviewing the basic tools needed for the study of superconducting circuits and the main kinds of superconducting qubits, we move to the analyisis of a possible scheme for realizing direct parity measurement. Parity measurements, or in general stabilizer measurements, are fundamental tools for realizing quantum error correct- ing codes, that are believed to be fundamental for dealing with the problem of de- coherence that affects any physical implementation of a quantum computer. While these measurements are usually done indirectly with the help of ancilla qubits, the scheme that we analyze performs the measurement directly, and requires the engi- neering of a precise matching condition.
    [Show full text]
  • Simulating Quantum Field Theory with a Quantum Computer
    Simulating quantum field theory with a quantum computer John Preskill Lattice 2018 28 July 2018 This talk has two parts (1) Near-term prospects for quantum computing. (2) Opportunities in quantum simulation of quantum field theory. Exascale digital computers will advance our knowledge of QCD, but some challenges will remain, especially concerning real-time evolution and properties of nuclear matter and quark-gluon plasma at nonzero temperature and chemical potential. Digital computers may never be able to address these (and other) problems; quantum computers will solve them eventually, though I’m not sure when. The physics payoff may still be far away, but today’s research can hasten the arrival of a new era in which quantum simulation fuels progress in fundamental physics. Frontiers of Physics short distance long distance complexity Higgs boson Large scale structure “More is different” Neutrino masses Cosmic microwave Many-body entanglement background Supersymmetry Phases of quantum Dark matter matter Quantum gravity Dark energy Quantum computing String theory Gravitational waves Quantum spacetime particle collision molecular chemistry entangled electrons A quantum computer can simulate efficiently any physical process that occurs in Nature. (Maybe. We don’t actually know for sure.) superconductor black hole early universe Two fundamental ideas (1) Quantum complexity Why we think quantum computing is powerful. (2) Quantum error correction Why we think quantum computing is scalable. A complete description of a typical quantum state of just 300 qubits requires more bits than the number of atoms in the visible universe. Why we think quantum computing is powerful We know examples of problems that can be solved efficiently by a quantum computer, where we believe the problems are hard for classical computers.
    [Show full text]
  • Quantum Machine Learning: Benefits and Practical Examples
    Quantum Machine Learning: Benefits and Practical Examples Frank Phillipson1[0000-0003-4580-7521] 1 TNO, Anna van Buerenplein 1, 2595 DA Den Haag, The Netherlands [email protected] Abstract. A quantum computer that is useful in practice, is expected to be devel- oped in the next few years. An important application is expected to be machine learning, where benefits are expected on run time, capacity and learning effi- ciency. In this paper, these benefits are presented and for each benefit an example application is presented. A quantum hybrid Helmholtz machine use quantum sampling to improve run time, a quantum Hopfield neural network shows an im- proved capacity and a variational quantum circuit based neural network is ex- pected to deliver a higher learning efficiency. Keywords: Quantum Machine Learning, Quantum Computing, Near Future Quantum Applications. 1 Introduction Quantum computers make use of quantum-mechanical phenomena, such as superposi- tion and entanglement, to perform operations on data [1]. Where classical computers require the data to be encoded into binary digits (bits), each of which is always in one of two definite states (0 or 1), quantum computation uses quantum bits, which can be in superpositions of states. These computers would theoretically be able to solve certain problems much more quickly than any classical computer that use even the best cur- rently known algorithms. Examples are integer factorization using Shor's algorithm or the simulation of quantum many-body systems. This benefit is also called ‘quantum supremacy’ [2], which only recently has been claimed for the first time [3]. There are two different quantum computing paradigms.
    [Show full text]
  • A Scanning Transmon Qubit for Strong Coupling Circuit Quantum Electrodynamics
    ARTICLE Received 8 Mar 2013 | Accepted 10 May 2013 | Published 7 Jun 2013 DOI: 10.1038/ncomms2991 A scanning transmon qubit for strong coupling circuit quantum electrodynamics W. E. Shanks1, D. L. Underwood1 & A. A. Houck1 Like a quantum computer designed for a particular class of problems, a quantum simulator enables quantitative modelling of quantum systems that is computationally intractable with a classical computer. Superconducting circuits have recently been investigated as an alternative system in which microwave photons confined to a lattice of coupled resonators act as the particles under study, with qubits coupled to the resonators producing effective photon–photon interactions. Such a system promises insight into the non-equilibrium physics of interacting bosons, but new tools are needed to understand this complex behaviour. Here we demonstrate the operation of a scanning transmon qubit and propose its use as a local probe of photon number within a superconducting resonator lattice. We map the coupling strength of the qubit to a resonator on a separate chip and show that the system reaches the strong coupling regime over a wide scanning area. 1 Department of Electrical Engineering, Princeton University, Olden Street, Princeton 08550, New Jersey, USA. Correspondence and requests for materials should be addressed to W.E.S. (email: [email protected]). NATURE COMMUNICATIONS | 4:1991 | DOI: 10.1038/ncomms2991 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2991 ver the past decade, the study of quantum physics using In this work, we describe a scanning superconducting superconducting circuits has seen rapid advances in qubit and demonstrate its coupling to a superconducting CPWR Osample design and measurement techniques1–3.
    [Show full text]
  • Clustering by Quantum Annealing on the Three–Level Quantum El- Ements Qutrits V
    CLUSTERING BY QUANTUM ANNEALING ON THE THREE–LEVEL QUANTUM EL- EMENTS QUTRITS V. E. Zobov and I. S. Pichkovskiy1 Abstract Clustering is grouping of data by the proximity of some properties. We report on the possibility of increasing the efficiency of clustering of points in a plane using artificial quantum neural networks after the replacement of the two-level neurons called qubits represented by the spins S = 1/2 by the three-level neu- rons called qutrits represented by the spins S = 1. The problem has been solved by the slow adiabatic change of the Hamiltonian in time. The methods for controlling a qutrit system using projection operators have been developed and the numerical simulation has been performed. The Hamiltonians for two well-known cluster- ing methods, one-hot encoding and k-means ++, have been built. The first method has been used to partition a set of six points into three or two clusters and the second method, to partition a set of nine points into three clusters and seven points into four clusters. The simulation has shown that the clustering problem can be ef- fectively solved on qutrits represented by the spins S = 1. The advantages of clustering on qutrits over that on qubits have been demonstrated. In particular, the number of qutrits required to represent N data points is smaller than the number of qubits by a factor of log23NN / log . Since, for qutrits, it is easier to partition the data points into three clusters rather than two ones, the approximate hierarchical procedure of data partition- ing into a larger number of clusters is accelerated.
    [Show full text]
  • An Introduction to Quantum Computing
    An Introduction to Quantum Computing CERN Bo Ewald October 17, 2017 Bo Ewald November 5, 2018 TOPICS •Introduction to Quantum Computing • Introduction and Background • Quantum Annealing •Early Applications • Optimization • Machine Learning • Material Science • Cybersecurity • Fiction •Final Thoughts Copyright © D-Wave Systems Inc. 2 Richard Feynman – Proposed Quantum Computer in 1981 1960 1970 1980 1990 2000 2010 2020 Copyright © D-Wave Systems Inc. 3 April 1983 – Richard Feynman’s Talk at Los Alamos Title: Los Alamos Experience Author: Phyllis K Fisher Page 247 Copyright © D-Wave Systems Inc. 4 The “Marriage” Between Technology and Architecture • To design and build any computer, one must select a compatible technology and a system architecture • Technology – the physical devices (IC’s, PCB’s, interconnects, etc) used to implement the hardware • Architecture – the organization and rules that govern how the computer will operate • Digital – CISC (Intel x86), RISC (MIPS, SPARC), Vector (Cray), SIMD (CM-1), Volta (NVIDIA) • Quantum – Gate or Circuit (IBM, Rigetti) Annealing (D-Wave, ARPA QEO) Copyright © D-Wave Systems Inc. 5 Quantum Technology – “qubit” Building Blocks Copyright © D-Wave Systems Inc. 6 Simulation on IBM Quantum Experience (IBM QX) Preparation Rotation by Readout of singlet state 휃1 and 휃2 measurement IBM QX, Yorktown Heights, USA X X-gate: U1 phase-gate: Xȁ0ۧ = ȁ1ۧ U1ȁ0ۧ = ȁ0ۧ, U1ȁ1ۧ = 푒푖휃ȁ1ۧ Xȁ1ۧ = ȁ0ۧ ۧ CNOT gate: C ȁ0 0 ۧ = ȁ0 0 Hadamard gate: 01 1 0 1 0 H C01ȁ0110ۧ = ȁ1110ۧ Hȁ0ۧ = ȁ0ۧ + ȁ1ۧ / 2 C01ȁ1100ۧ = ȁ1100ۧ + Hȁ1ۧ = ȁ0ۧ − ȁ1ۧ / 2 C01ȁ1110ۧ = ȁ0110ۧ 7 Simulated Annealing on Digital Computers 1950 1960 1970 1980 1990 2000 2010 Copyright © D-Wave Systems Inc.
    [Show full text]
  • Using Machine Learning for Quantum Annealing Accuracy Prediction
    algorithms Article Using Machine Learning for Quantum Annealing Accuracy Prediction Aaron Barbosa 1, Elijah Pelofske 1, Georg Hahn 2,* and Hristo N. Djidjev 1,3 1 CCS-3 Information Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; [email protected] (A.B.); [email protected] (E.P.); [email protected] (H.N.D.) 2 T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA 3 Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria * Correspondence: [email protected] Abstract: Quantum annealers, such as the device built by D-Wave Systems, Inc., offer a way to compute solutions of NP-hard problems that can be expressed in Ising or quadratic unconstrained binary optimization (QUBO) form. Although such solutions are typically of very high quality, problem instances are usually not solved to optimality due to imperfections of the current generations quantum annealers. In this contribution, we aim to understand some of the factors contributing to the hardness of a problem instance, and to use machine learning models to predict the accuracy of the D-Wave 2000Q annealer for solving specific problems. We focus on the maximum clique problem, a classic NP-hard problem with important applications in network analysis, bioinformatics, and computational chemistry. By training a machine learning classification model on basic problem characteristics such as the number of edges in the graph, or annealing parameters, such as the D-Wave’s chain strength, we are able to rank certain features in the order of their contribution to the solution hardness, and present a simple decision tree which allows to predict whether a problem Citation: Barbosa, A.; Pelofske, E.; will be solvable to optimality with the D-Wave 2000Q.
    [Show full text]
  • Control of the Geometric Phase in Two Open Qubit–Cavity Systems Linked by a Waveguide
    entropy Article Control of the Geometric Phase in Two Open Qubit–Cavity Systems Linked by a Waveguide Abdel-Baset A. Mohamed 1,2 and Ibtisam Masmali 3,* 1 Department of Mathematics, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Aflaj 710-11912, Saudi Arabia; [email protected] 2 Faculty of Science, Assiut University, Assiut 71516, Egypt 3 Department of Mathematics, Faculty of Science, Jazan University, Gizan 82785, Saudi Arabia * Correspondence: [email protected] Received: 28 November 2019; Accepted: 8 January 2020; Published: 10 January 2020 Abstract: We explore the geometric phase in a system of two non-interacting qubits embedded in two separated open cavities linked via an optical fiber and leaking photons to the external environment. The dynamical behavior of the generated geometric phase is investigated under the physical parameter effects of the coupling constants of both the qubit–cavity and the fiber–cavity interactions, the resonance/off-resonance qubit–field interactions, and the cavity dissipations. It is found that these the physical parameters lead to generating, disappearing and controlling the number and the shape (instantaneous/rectangular) of the geometric phase oscillations. Keywords: geometric phase; cavity damping; optical fiber 1. Introduction The mathematical manipulations of the open quantum systems, of the qubit–field interactions, depend on the ability of solving the master-damping [1] and intrinsic-decoherence [2] equations, analytically/numerically. To remedy the problems of these manipulations, the quantum phenomena of the open systems were studied for limited physical circumstances [3–7]. The quantum geometric phase is a basic intrinsic feature in quantum mechanics that is used as the basis of quantum computation [8].
    [Show full text]
  • Thermally Assisted Quantum Annealing of a 16-Qubit Problem
    ARTICLE Received 29 Jan 2013 | Accepted 23 Apr 2013 | Published 21 May 2013 DOI: 10.1038/ncomms2920 Thermally assisted quantum annealing of a 16-qubit problem N. G. Dickson1, M. W. Johnson1, M. H. Amin1,2, R. Harris1, F. Altomare1, A. J. Berkley1, P. Bunyk1, J. Cai1, E. M. Chapple1, P. Chavez1, F. Cioata1, T. Cirip1, P. deBuen1, M. Drew-Brook1, C. Enderud1, S. Gildert1, F. Hamze1, J. P. Hilton1, E. Hoskinson1, K. Karimi1, E. Ladizinsky1, N. Ladizinsky1, T. Lanting1, T. Mahon1, R. Neufeld1,T.Oh1, I. Perminov1, C. Petroff1, A. Przybysz1, C. Rich1, P. Spear1, A. Tcaciuc1, M. C. Thom1, E. Tolkacheva1, S. Uchaikin1, J. Wang1, A. B. Wilson1, Z. Merali3 &G.Rose1 Efforts to develop useful quantum computers have been blocked primarily by environmental noise. Quantum annealing is a scheme of quantum computation that is predicted to be more robust against noise, because despite the thermal environment mixing the system’s state in the energy basis, the system partially retains coherence in the computational basis, and hence is able to establish well-defined eigenstates. Here we examine the environment’s effect on quantum annealing using 16 qubits of a superconducting quantum processor. For a problem instance with an isolated small-gap anticrossing between the lowest two energy levels, we experimentally demonstrate that, even with annealing times eight orders of magnitude longer than the predicted single-qubit decoherence time, the probabilities of performing a successful computation are similar to those expected for a fully coherent system. Moreover, for the problem studied, we show that quantum annealing can take advantage of a thermal environment to achieve a speedup factor of up to 1,000 over a closed system.
    [Show full text]
  • An Introduction to Quantum Annealing
    RAIRO-Theor. Inf. Appl. 45 (2011) 99–116 Available online at: DOI: 10.1051/ita/2011013 www.rairo-ita.org AN INTRODUCTION TO QUANTUM ANNEALING Diego de Falco1 and Dario Tamascelli1 Abstract. Quantum annealing, or quantum stochastic optimization, is a classical randomized algorithm which provides good heuristics for the solution of hard optimization problems. The algorithm, suggested by the behaviour of quantum systems, is an example of proficuous cross contamination between classical and quantum computer science. In this survey paper we illustrate how hard combinatorial problems are tackled by quantum computation and present some examples of the heuristics provided by quantum annealing. We also present preliminary results about the application of quantum dissipation (as an alternative to imaginary time evolution) to the task of driving a quantum system toward its state of lowest energy. Mathematics Subject Classification. 81P68, 68Q12, 68W25. 1. Introduction Quantum computation stems from a simple observation [19,23]: any compu- tation is ultimately performed on a physical device; to any input-output relation there must correspond a change in the state of the device. If the device is micro- scopic, then its evolution is ruled by the laws of quantum mechanics. The question of whether the change of evolution rules can lead to a breakthrough in computational complexity theory is still unanswered [11,34,40]. What is known is that a quantum computer would outperform a classical one in specific tasks such as integer factorization [47] and searching an unordered database [28,29]. In fact, Grover’s algorithm can search a keyword quadratically faster than any classical algorithm, whereas in the case of Shor’s factorization the speedup is exponential.
    [Show full text]
  • Physical Implementations of Quantum Computing
    Physical implementations of quantum computing Andrew Daley Department of Physics and Astronomy University of Pittsburgh Overview (Review) Introduction • DiVincenzo Criteria • Characterising coherence times Survey of possible qubits and implementations • Neutral atoms • Trapped ions • Colour centres (e.g., NV-centers in diamond) • Electron spins (e.g,. quantum dots) • Superconducting qubits (charge, phase, flux) • NMR • Optical qubits • Topological qubits Back to the DiVincenzo Criteria: Requirements for the implementation of quantum computation 1. A scalable physical system with well characterized qubits 1 | i 0 | i 2. The ability to initialize the state of the qubits to a simple fiducial state, such as |000...⟩ 1 | i 0 | i 3. Long relevant decoherence times, much longer than the gate operation time 4. A “universal” set of quantum gates control target (single qubit rotations + C-Not / C-Phase / .... ) U U 5. A qubit-specific measurement capability D. P. DiVincenzo “The Physical Implementation of Quantum Computation”, Fortschritte der Physik 48, p. 771 (2000) arXiv:quant-ph/0002077 Neutral atoms Advantages: • Production of large quantum registers • Massive parallelism in gate operations • Long coherence times (>20s) Difficulties: • Gates typically slower than other implementations (~ms for collisional gates) (Rydberg gates can be somewhat faster) • Individual addressing (but recently achieved) Quantum Register with neutral atoms in an optical lattice 0 1 | | Requirements: • Long lived storage of qubits • Addressing of individual qubits • Single and two-qubit gate operations • Array of singly occupied sites • Qubits encoded in long-lived internal states (alkali atoms - electronic states, e.g., hyperfine) • Single-qubit via laser/RF field coupling • Entanglement via Rydberg gates or via controlled collisions in a spin-dependent lattice Rb: Group II Atoms 87Sr (I=9/2): Extensively developed, 1 • P1 e.g., optical clocks 3 • Degenerate gases of Yb, Ca,..
    [Show full text]
  • Magnetically Induced Transparency of a Quantum Metamaterial Composed of Twin flux Qubits
    ARTICLE DOI: 10.1038/s41467-017-02608-8 OPEN Magnetically induced transparency of a quantum metamaterial composed of twin flux qubits K.V. Shulga 1,2,3,E.Il’ichev4, M.V. Fistul 2,5, I.S. Besedin2, S. Butz1, O.V. Astafiev2,3,6, U. Hübner 4 & A.V. Ustinov1,2 Quantum theory is expected to govern the electromagnetic properties of a quantum metamaterial, an artificially fabricated medium composed of many quantum objects acting as 1234567890():,; artificial atoms. Propagation of electromagnetic waves through such a medium is accompanied by excitations of intrinsic quantum transitions within individual meta-atoms and modes corresponding to the interactions between them. Here we demonstrate an experiment in which an array of double-loop type superconducting flux qubits is embedded into a microwave transmission line. We observe that in a broad frequency range the transmission coefficient through the metamaterial periodically depends on externally applied magnetic field. Field-controlled switching of the ground state of the meta-atoms induces a large suppression of the transmission. Moreover, the excitation of meta-atoms in the array leads to a large resonant enhancement of the transmission. We anticipate possible applications of the observed frequency-tunable transparency in superconducting quantum networks. 1 Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany. 2 Russian Quantum Center, National University of Science and Technology MISIS, Moscow, 119049, Russia. 3 Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Moscow region, Russia. 4 Leibniz Institute of Photonic Technology, PO Box 100239, D-07702 Jena, Germany. 5 Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon, 34051, Republic of Korea.
    [Show full text]