Brain Health: Translating Scientific Evidence Into

Total Page:16

File Type:pdf, Size:1020Kb

Brain Health: Translating Scientific Evidence Into BRAIN HEALTH: TRANSLATING SCIENTIFIC EVIDENCE INTO CLINICAL PRACTICE IN MULTIPLE SCLEROSIS This satellite symposium took place on 29th May 2016, as part of the 2nd Congress of the European Academy of Neurology (EAN), Copenhagen, Denmark Chairperson Per Soelberg Sørensen1 Speakers Heinz Wiendl,2 Andreas Lysandropoulos,3 Andrew Chan4 1. Danish Multiple Sclerosis Center, Copenhagen University Hospital, Copenhagen, Denmark 2. Department of Neurology, University Hospital of Münster, Münster, Germany 3. Neuroimmunology Unit, Department of Neurology, University Hospital Erasme, Brussels, Belgium 4. Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany Disclosure: Prof Per Soelberg Sørensen has received personal compensation for serving on scientific advisory boards, steering committees, or independent data monitoring boards for Biogen, Merck Serono, Novartis, Genzyme, Teva Pharmaceutical Industries Ltd., GlaxoSmithKline, medDay Pharmaceuticals, and Forward Pharma and has received speaker honoraria from Biogen, Merck Serono, Teva Pharmaceutical Industries Ltd., Genzyme, and Novartis. His department has received research support from Biogen Merck Serono, TEVA, Sanofi-Aventis/Genzyme, Novartis, Bayer, RoFAR, Roche, the Danish Multiple Sclerosis Society, the Danish Medical Research Council, and the European Union Sixth Framework Programme: Life sciences, and Genomics and Biotechnology for health. Prof Heinz Wiendl has received honoraria for lecturing and travel expenses for attending meetings from Bayer Healthcare, Biogen, Elan Corporation, Lilly, Lundbeck, Merck Serono, Novartis, Sanofi Genzyme, and Teva Neuroscience, has received compensation for serving as a consultant for Biogen, Merck Serono, Novartis Pharma, and Sanofi Genzyme, and research support from Bayer Schering Pharma, Biogen, Elan Corporation, Merck Serono, Novartis, Novo Nordisk, and Sanofi Genzyme. Dr Andreas Lysandropoulos has received educational grants and honoraria as a speaker and member of advisory boards for Bayer, Biogen, Merck, Novartis, Sanofi Genzyme, and Teva. Prof Andrew Chan has received personal compensation (speakers honoraria and advisory board) from Bayer, Biogen, Sanofi Genzyme, Merck, Novartis, Roche, and Teva, and research support from Biogen, Sanofi Genzyme, and Novartis. Acknowledgements: Writing assistance was provided by Dr Joan Thomas of ApotheCom. Support: The symposium and publication of this article was sponsored by Sanofi Genzyme. Authors received honoraria for preparation and delivery of their presentations. The views and opinions expressed are those of the authors and not necessarily Sanofi Genzyme. Citation: EMJ Neurol. 2016;4[1]:36-44. MEETING SUMMARY Brain volume loss (BVL) progresses more rapidly in patients with multiple sclerosis (MS) than in healthy individuals, and brain atrophy begins early in the course of the disease. The objective of this symposium was to emphasise the importance of care and preservation of the brain within treatment protocols for MS so that early and appropriate management can be initiated to preserve brain volume and function. Prof Per Solberg Sørensen chaired the symposium and welcomed the speakers. Prof Heinz Wiendl gave a presentation on BVL in MS and described its underlying pathophysiology. Dr Andreas Lysandropoulos illustrated how information on BVL is clinically relevant and can be taken from clinical studies to assist clinical practice and decision-making. The final presentation was given by Prof Andrew Chan who highlighted the important role of brain atrophy in decision-making for early treatment and presented recent data for two treatments for MS: teriflunomide and the monoclonal antibody alemtuzumab. The symposium was concluded by a short question and answer session. 36 NEUROLOGY • July 2016 EMJ EUROPEAN MEDICAL JOURNAL NEUROLOGY • July 2016 EMJ EUROPEAN MEDICAL JOURNAL 37 Brain Volume Loss in Multiple Sclerosis: autoreactive antibodies via several well-defined Underlying Pathophysiology mechanisms including complement activation, phagocytosis by macrophages, and recruitment Professor Heinz Wiendl of autoreactive T cells.7,8 Remyelination is not uncommon in early lesions, although it fails in MS has traditionally been regarded as a white later stages of MS.9 Other mechanisms that matter disease and identifying lesions using may contribute to demyelination include the conventional magnetic resonance imaging (MRI) activities of cytotoxic CD8+ T lymphocytes and has become essential in the early diagnosis activated macrophages, hypoxia-like injury and management of the disease.1 More recently, leading to oligodendrocyte apoptosis, and grey matter disease has emerged as an important primary oligodendrocyte degeneration.8 As an component of MS and has been suggested to MS plaque progresses from acute to chronic, early correlate better with specific disability outcomes.1 inflammation and oedema resolve and astrocytes Healthy individuals lose between 0.1% and produce a glial scar.10 Gliosis may confound 0.3% of brain volume per year.2 BVL in people assessments of BVL in multiple ways including with MS, however, is typically 3-times this rate maintenance of volume in the event of axonal throughout the course of the disease.3 The rate injury9 and contraction of astrocyte volume as of grey matter volume loss increases with the the lesion matures.11 The volume of astrocytes is stage of the disease, from 3.4-fold in relapsing- reduced, which represents a physical and chemical remitting MS (RRMS) to 14-fold in secondary barrier to axon regeneration.12 Perhaps the progressive MS.3 most destructive mechanism of MS is axonal The application of different technologies can loss/neurodegeneration. Axonal loss has been be useful in identifying loss of white and grey demonstrated in both acute (new active) and matter. Cortical extrinsic curvature (CEC) is a chronic active (older reactivated) lesions in MS novel measure of white matter loss and is a more patients with disease duration from 2 weeks sensitive indicator of ‘pure’ white matter loss to 27 years.13 Axonal density is reduced up to than conventional MRI methods.4 Based on CEC 80% in chronic plaques.10 Axonal pathology measures, white matter atrophy appears to occur has been demonstrated in normal-appearing early in MS and may occur as early as clinically white matter as well as demyelinated lesions, isolated syndrome (CIS). An increase in CEC in indicating that factors other than inflammation patients with MS correlates significantly with loss can contribute to neurodegeneration.10,14 Potential of white matter integrity in the corpus callosum mechanisms include Wallerian degeneration as as assessed by fractional anisotropy, supporting well as retrograde and anterograde transneuronal the validity of CEC.4 There is increasing interest in degeneration.9,14 Different mechanisms contribute nuclear regions of the brain such as the thalamus, to this degeneration, including cytotoxic CD8+ which are affected early in the course of MS. T cells, which may directly destroy axons,14,15 A recent study evaluating early thalamic atrophy possibly via granule-mediated death. in patients with CIS and RRMS demonstrated Recent in vivo microscopy studies evaluating the that loss of relative thalamic volume correlated dynamics of neuronal reaction in response to significantly with disease duration.5 Patients with an inflammatory trigger demonstrate that acute RRMS and CIS with disease duration ≤24 months axonal transection is an early indicator of already had a reduced relative thalamic volume neurodegeneration in MS.15-17 Neuronal reactions versus healthy controls. The alterations in can occur in the absence of visible demyelination white matter in these patients could not be in which acute neuroinflammation induces a explained by the distribution of white matter pervasive state of reversible axonal dysfunction.16 lesions and it was concluded that early thalamic Ultrastructural axonal damage may occur with atrophy is mainly due to silent microstructural or without demyelination and may recover thalamic alterations.5 spontaneously.17 Transition from RRMS to secondary Pathological processes that underlie BVL include progressive MS occurs when the central nervous demyelination, gliosis, and axon loss. Focal loss of system (CNS) can no longer compensate for myelin tissue, particularly within overt white matter neuronal loss, resulting in progressive disability.15 lesions, is a contributing factor of brain atrophy.6 This important information demonstrates Demyelination is facilitated, at least in part, by that any type of inflammatory mechanism 36 NEUROLOGY • July 2016 EMJ EUROPEAN MEDICAL JOURNAL NEUROLOGY • July 2016 EMJ EUROPEAN MEDICAL JOURNAL 37 could eventually lead to neuronal dysfunction. Lost in Translation? Brain Atrophy from This has also been demonstrated in studies in Clinical Studies to Clinical Practice which it was shown that chronically demyelinated axons lacking Na+/K+ ATPase are incapable Doctor Andreas Lysandropoulos of nerve transmission.18 Thus, demyelination is one Evidence has shown that BVL is correlated with, possibility for axonal destruction or dysfunction and is predictive of, disability worsening in MS.21 but it is not the only one. Chronic CNS Popescu et al.21 showed that early BVL is strongly inflammation therefore involves several different correlated to clinical outcomes 10 years later. pathological mechanisms that lead to neuroaxonal Interestingly, in RRMS, the correlation is stronger damage by apoptosis and necrosis.
Recommended publications
  • AUBAGIO* (Teriflunomide)
    AUBAGIO* (teriflunomide) * Bolded medications are the preferred products RATIONALE FOR INCLUSION IN PA PROGRAM Background Aubagio (teriflunomide) is indicated for relapsing multiple sclerosis. It is an anti-inflammatory immunomodulatory agent, which inhibits dihydroorotate dehydrogenase, a mitochondrial enzyme involved in de novo pyrimidine synthesis. The exact mechanism by which teriflunomide exerts its therapeutic effect in multiple sclerosis is unknown, but may involve a reduction in the number of activated lymphocytes in the CNS (1). Regulatory Status FDA-approved indication: Aubagio is a pyrimidine synthesis inhibitor indicated for the treatment of relapsing forms of multiple sclerosis (MS), to include clinically isolated syndrome, relapsing- remitting disease, and active secondary progressive disease (1). The Aubagio label includes a boxed warning citing the risk of hepatotoxicity. Aubagio is contraindicated in patients with severe hepatic impairment. Severe liver injury, including fatal liver failure, has been reported in patients treated with leflunomide, which is indicated for rheumatoid arthritis. A similar risk would be expected for teriflunomide because recommended doses of teriflunomide and leflunomide result in a similar range of plasma concentrations of teriflunomide. Concomitant use of Aubagio with other potentially hepatotoxic drugs may increase the risk of severe liver injury. Obtain transaminase and bilirubin levels within 6 months before initiation of Aubagio and monitor ALT levels at least monthly for six months after starting Aubagio. If drug induced liver injury is suspected, discontinue Aubagio and start an accelerated elimination procedure. Elimination of Aubagio can be accelerated by administration of cholestyramine or activated charcoal for 11 days (1). Aubagio also carries a boxed warning on the risk of teratogenicity.
    [Show full text]
  • COMPARISON of the WHO ATC CLASSIFICATION & Ephmra/Intellus Worldwide ANATOMICAL CLASSIFICATION
    COMPARISON OF THE WHO ATC CLASSIFICATION & EphMRA/Intellus Worldwide ANATOMICAL CLASSIFICATION: VERSION June 2019 2 Comparison of the WHO ATC Classification and EphMRA / Intellus Worldwide Anatomical Classification The following booklet is designed to improve the understanding of the two classification systems. The development of the two systems had previously taken place separately. EphMRA and WHO are now working together to ensure that there is a convergence of the 2 systems rather than a divergence. In order to better understand the two classification systems, we should pay attention to the way in which substances/products are classified. WHO mainly classifies substances according to the therapeutic or pharmaceutical aspects and in one class only (particular formulations or strengths can be given separate codes, e.g. clonidine in C02A as antihypertensive agent, N02C as anti-migraine product and S01E as ophthalmic product). EphMRA classifies products, mainly according to their indications and use. Therefore, it is possible to find the same compound in several classes, depending on the product, e.g., NAPROXEN tablets can be classified in M1A (antirheumatic), N2B (analgesic) and G2C if indicated for gynaecological conditions only. The purposes of classification are also different: The main purpose of the WHO classification is for international drug utilisation research and for adverse drug reaction monitoring. This classification is recommended by the WHO for use in international drug utilisation research. The EphMRA/Intellus Worldwide classification has a primary objective to satisfy the marketing needs of the pharmaceutical companies. Therefore, a direct comparison is sometimes difficult due to the different nature and purpose of the two systems.
    [Show full text]
  • Teriflunomide (Aubagio) Reference Number: CP.PHAR.262 Effective Date: 08.01.16 Last Review Date: 05.20 Line of Business: Commercial, HIM, Medicaid Revision Log
    Clinical Policy: Teriflunomide (Aubagio) Reference Number: CP.PHAR.262 Effective Date: 08.01.16 Last Review Date: 05.20 Line of Business: Commercial, HIM, Medicaid Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description Teriflunomide (Aubagio®) is a pyrimidine synthesis inhibitor. FDA Approved Indication(s) Aubagio is indicated for the treatment of relapsing forms of multiple sclerosis (MS), to include clinically isolated syndrome, relapsing-remitting disease, and active secondary progressive disease, in adults. Policy/Criteria Provider must submit documentation (such as office chart notes, lab results or other clinical information) supporting that member has met all approval criteria. It is the policy of health plans affiliated with Centene Corporation® that Aubagio is medically necessary when the following criteria are met: I. Initial Approval Criteria A. Multiple Sclerosis (must meet all): 1. Diagnosis of one of the following (a, b, or c): a. Clinically isolated syndrome; b. Relapsing-remitting MS; c. Secondary progressive MS; 2. Prescribed by or in consultation with a neurologist; 3. Age ≥ 18 years; 4. Aubagio is not prescribed concurrently with other disease modifying therapies for MS (see Appendix D); 5. At the time of request, member is not receiving leflunomide; 6. Dose does not exceed 14 mg (1 tablet) per day. Approval duration: 6 months B. Other diagnoses/indications 1. Refer to the off-label use policy for the relevant line of business if diagnosis is NOT specifically listed under section III (Diagnoses/Indications for which coverage is NOT authorized): CP.PMN.53 for Medicaid. II. Continued Therapy A.
    [Show full text]
  • Immunosuppressive Therapy DR
    OCTOBER 2017 Immunosuppressive Therapy DR. ANDREW MACKIN BVSc BVMS MVS DVSc FANZCVSc DipACVIM Professor of Small Animal Internal Medicine Mississippi State University College of Veterinary Medicine, Starkville, MS A number of established immunosuppressive agents have been used in small animal medicine for many decades. Some have justifiably fallen out of favor whereas, for others, new and promising uses have been described in the recent veterinary literature. Established “old favorites” have included cyclophosphamide, chlorambucil, azathioprine, danazol and vincristine, although cyclophosphamide and danazol are rarely used as immunosuppressive agents these days. Several potent immunosuppressive drugs developed over the past few decades in human medicine have recently made the leap to our small animal patients, and our use of drugs such as cyclosporine, leflunomide and mycophenolate is growing. Cyclophosphamide Cyclophosphamide, a cell-cycle nonspecific nitrogen mustard derivative alkylating agent, was one of the first major chemotherapeutic agents approved by the FDA over 50 years ago, and has since become very well-established in human medicine as both an antineoplastic drug and as an immunosuppressive agent. Within a few years of FDA approval in the late 1950s, the use of cyclophosphamide for the prevention of transplant rejection in experimental models and for the treatment of both neoplasia and immune-mediated diseases was described in both dogs and cats. Cyclophosphamide has persisted to this day as one of the core drugs used in many small animal cancer chemotherapeutic protocols. In contrast, after many years as one of the most commonly immunosuppressive drugs utilized to treat immune-mediated diseases in cats and dogs, the use of cyclophosphamide as an immunosuppressive agent in small animal patients has in the past two decades essentially faded away.
    [Show full text]
  • Persistence with Dimethyl Fumarate in Relapsing-Remitting Multiple Sclerosis: a Population-Based Cohort Study
    Eur J Clin Pharmacol https://doi.org/10.1007/s00228-017-2366-4 PHARMACOEPIDEMIOLOGY AND PRESCRIPTION Persistence with dimethyl fumarate in relapsing-remitting multiple sclerosis: a population-based cohort study Irene Eriksson1,2 & Thomas Cars3 & Fredrik Piehl4 & Rickard E. Malmström1,5 & Björn Wettermark1,2 & Mia von Euler1,5,6 Received: 21 June 2017 /Accepted: 30 October 2017 # The Author(s) 2017. This article is an open access publication Abstract DMF discontinuation (treatment gap ≥ 60 days) or switching Purpose To describe patients initiating dimethyl fumarate to another DMT. (DMF) and measure persistence with DMF, discontinuation, Results The study included 400 patients (median follow- and switching in treatment-naïve DMF patients and patients up = 2.5 years). The majority had previously been treated with switching to DMF from other multiple sclerosis disease- other DMTs (61%). Throughout the follow-up period, 124 modifying treatments (DMTs). patients (31%) discontinued DMF and 114 patients (29%) Methods A population-based cohort study of all Stockholm switched treatment. Overall, 34% of patients initiating DMF County residents initiating DMF from 9 May 2014 until 31 stopped treatment within 1 year and only 43% of patients May 2017. All data were derived from a regional database that remained on DMF at 2 years from treatment initiation. collects individual-level data on healthcare and drug utiliza- Conclusions DMF had a rapid market uptake likely due to tion of all residents. The study outcomes were persistence with high expectations held by both patients and clinicians. DMF and DMF discontinuation and switching to other DMTs. However, persistence with DMF in routine clinical practice Persistence was measured as the number of days until either was found to be low.
    [Show full text]
  • WHO Drug Information Vol
    WHO Drug Information Vol. 26, No. 4, 2012 WHO Drug Information Contents International Regulatory Regulatory Action and News Harmonization New task force for antibacterial International Conference of Drug drug development 383 Regulatory Authorities 339 NIBSC: new MHRA centre 383 Quality of medicines in a globalized New Pakistan drug regulatory world: focus on active pharma- authority 384 ceutical ingredients. Pre-ICDRA EU clinical trial regulation: public meeting 352 consultation 384 Pegloticase approved for chronic tophaceous gout 385 WHO Programme on Tofacitinib: approved for rheumatoid International Drug Monitoring arthritis 385 Global challenges in medicines Rivaroxaban: extended indication safety 362 approved for blood clotting 385 Omacetaxine mepesuccinate: Safety and Efficacy Issues approved for chronic myelo- Dalfampridine: risk of seizure 371 genous leukaemia 386 Sildenafil: not for pulmonary hyper- Perampanel: approved for partial tension in children 371 onset seizures 386 Interaction: proton pump inhibitors Regorafenib: approved for colorectal and methotrexate 371 cancer 386 Fingolimod: cardiovascular Teriflunomide: approved for multiple monitoring 372 sclerosis 387 Pramipexole: risk of heart failure 372 Ocriplasmin: approved for vitreo- Lyme disease test kits: limitations 373 macular adhesion 387 Anti-androgens: hepatotoxicity 374 Florbetapir 18F: approved for Agomelatine: hepatotoxicity and neuritic plaque density imaging 387 liver failure 375 Insulin degludec: approved for Hypotonic saline in children: fatal diabetes mellitus
    [Show full text]
  • Tysabri® (Natalizumab)
    UnitedHealthcare® Commercial Medical Benefit Drug Policy Tysabri® (Natalizumab) Policy Number: 2021D0026M Effective Date: May 1, 2021 Instructions for Use Table of Contents Page Community Plan Policy Coverage Rationale ....................................................................... 1 • Tysabri® (Natalizumab) Applicable Codes .......................................................................... 2 Background.................................................................................... 3 Benefit Considerations .................................................................. 3 Clinical Evidence ........................................................................... 4 U.S. Food and Drug Administration ............................................. 6 References ..................................................................................... 7 Policy History/Revision Information ............................................. 8 Instructions for Use ....................................................................... 8 Coverage Rationale See Benefit Considerations Tysabri (natalizumab) is proven for the treatment of: Relapsing Forms of Multiple Sclerosis Tysabri (natalizumab) is medically necessary for the treatment of relapsing forms of multiple sclerosis (MS) when all of the following are met:1 Initial Therapy o Diagnosis of relapsing forms of multiple sclerosis (MS) (e.g., clinically isolated syndrome, relapsing-remitting disease, active secondary-progressive disease); and o Patient is not receiving Tysabri
    [Show full text]
  • AUBAGIO® Safely and 7 Mg and 14 Mg film-Coated Tablets (3) Effectively
    HIGHLIGHTS OF PRESCRIBING INFORMATION ———————————— DOSAGE FORMS AND STRENGTHS ———————————— These highlights do not include all the information needed to use AUBAGIO® safely and 7 mg and 14 mg film-coated tablets (3) effectively. See full prescribing information for AUBAGIO. ——————————————— CONTRAINDICATIONS ——————————————— AUBAGIO® (teriflunomide) tablets, for oral use • Severe hepatic impairment (4, 5.1) Initial U.S. Approval: 2012 • Pregnancy (4, 5.2, 8.1) • Hypersensitivity (4, 5.5) • Current leflunomide treatment (4) WARNING: HEPATOTOXICITY and EMBRYOFETAL TOXICITY ————————————— WARNINGS AND PRECAUTIONS ————————————— See full prescribing information for complete boxed warning. • Elimination of AUBAGIO can be accelerated by administration of cholestyramine or activated • Hepatotoxicity charcoal for 11 days. (5.3) • AUBAGIO may decrease WBC. A recent CBC should be available before starting AUBAGIO. Clinically significant and potentially life-threatening liver injury, including acute liver Monitor for signs and symptoms of infection. Consider suspending treatment with AUBAGIO failure requiring transplant, has been reported in patients treated with AUBAGIO in the in case of serious infection. Do not start AUBAGIO in patients with active infections. (5.4) postmarketing setting (5.1). Concomitant use of AUBAGIO with other hepatotoxic • Stop AUBAGIO if patient has anaphylaxis, angioedema, Stevens-Johnson syndrome, toxic drugs may increase the risk of severe liver injury. Obtain transaminase and bilirubin epidermal necrolysis, drug reaction with eosinophilia and systemic symptoms; initiate rapid levels within 6 months before initiation of AUBAGIO and monitor ALT levels at least elimination. (5.3, 5.5, 5.6, 5.7) monthly for six months (5.1). If drug induced liver injury is suspected, discontinue • If patient develops symptoms consistent with peripheral neuropathy, evaluate patient and AUBAGIO and start accelerated elimination procedure (5.3).
    [Show full text]
  • Functional Relevance of the Multi-Drug Transporter Abcg2 on Teriflunomide
    Thiele née Schrewe et al. Journal of Neuroinflammation (2020) 17:9 https://doi.org/10.1186/s12974-019-1677-z SHORT REPORT Open Access Functional relevance of the multi-drug transporter abcg2 on teriflunomide therapy in an animal model of multiple sclerosis Lisa Thiele née Schrewe1,2*, Kirsten Guse1,2, Silvia Tietz1, Jana Remlinger1, Seray Demir2, Xiomara Pedreiturria2, Robert Hoepner1, Anke Salmen1, Maximilian Pistor1,2, Timothy Turner3, Britta Engelhardt4, Dirk M. Hermann5, Fred Lühder6, Stefan Wiese7 and Andrew Chan1* Abstract Background: The multi-drug resistance transporter ABCG2, a member of the ATP-binding cassette (ABC) transporter family, mediates the efflux of different immunotherapeutics used in multiple sclerosis (MS), e.g., teriflunomide (teri), cladribine, and mitoxantrone, across cell membranes and organelles. Hence, the modulation of ABCG2 activity could have potential therapeutic implications in MS. In this study, we aimed at investigating the functional impact of abcg2 modulation on teri-induced effects in vitro and in vivo. Methods: T cells from C57BL/6 J wild-type (wt) and abcg2-knockout (KO) mice were treated with teri at different concentrations with/without specific abcg2-inhibitors (Ko143; Fumitremorgin C) and analyzed for intracellular teri concentration (HPLC; LS-MS/MS), T cell apoptosis (annexin V/PI), and proliferation (CSFE). Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6J by active immunization with MOG35–55/CFA. Teri (10 mg/kg body weight) was given orally once daily after individual disease onset. abcg2-mRNA expression (spinal cord, splenic T cells) was analyzed using qRT-PCR. Results: In vitro, intracellular teri concentration in T cells was 2.5-fold higher in abcg2-KO mice than in wt mice.
    [Show full text]
  • Risk Assessment and Risk Mitigation Review(S)
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 022561Orig1s000 RISK ASSESSMENT and RISK MITIGATION REVIEW(S) Division of Risk Management (DRISK) Office of Medication Error Prevention and Risk Management (OMEPRM) Office of Surveillance and Epidemiology (OSE) Center for Drug Evaluation and Research (CDER) Application Type NDA Application Number 22561 PDUFA Goal Date March 29, 2019 OSE RCM # 2018-1351 Reviewer Name(s) Charlotte Jones, MD, PhD, MSPH Team Leader Donella Fitzgerald, PharmD Division Director Cynthia LaCivita, PharmD Review Completion Date March 26, 2019 Subject Evaluation of Need for a REMS Established Name Cladribine Trade Name Mavenclad Name of Applicant EMD Serono, Inc. Therapeutic Class Multiple Sclerosis Formulation(s) 10mg tablet Dosing Regimen The recommended cumulative dose of Mavenclad is 3.5 mg/kg body weight over 2 years, administered as 1 treatment course of 1.75 mg/kg per year. 1 Reference ID: 44094884413345 Table of Contents EXECUTIVE SUMMARY ......................................................................................................................................................... 3 1 Introduction ..................................................................................................................................................................... 3 2 Background ...................................................................................................................................................................... 3 2.1 Product Information ..........................................................................................................................................
    [Show full text]
  • Ozanimod to Treat Relapsing Forms of Multiple Sclerosis: a Comprehensive Review of Disease, Drug Efficacy and Side Effects
    Review Ozanimod to Treat Relapsing Forms of Multiple Sclerosis: A Comprehensive Review of Disease, Drug Efficacy and Side Effects Grace Lassiter 1,*, Carlie Melancon 2, Tyler Rooney 2 , Anne-Marie Murat 2, Jessica S. Kaye 3, Adam M. Kaye 3 , Rachel J. Kaye 4, Elyse M. Cornett 5, Alan D. Kaye 5, Rutvij J. Shah 5,6, Omar Viswanath 5,7,8,9 and Ivan Urits 5,10 1 School of Medicine, Georgetown University, Washington, DC 20007, USA 2 School of Medicine, Louisiana State University Shreveport, Shreveport, LA 71103, USA; [email protected] (C.M.); [email protected] (T.R.); [email protected] (A.-M.M.) 3 Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211, USA; [email protected]fic.edu (J.S.K.); akaye@pacific.edu (A.M.K.) 4 School of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; [email protected] 5 Department of Anesthesiology, Louisiana State University Shreveport, Shreveport, LA 71103, USA; [email protected] (E.M.C.); [email protected] (A.D.K.); [email protected] (R.J.S.); [email protected] (O.V.); [email protected] (I.U.) 6 Department of Neurology, Louisiana State University Shreveport, Shreveport, LA 71103, USA 7 College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85724, USA 8 Department of Anesthesiology, School of Medicine, Creighton University, Omaha, NE 68124, USA 9 Valley Anesthesiology and Pain Consultants—Envision Physician Services, Phoenix, AZ 85004, USA 10 Southcoast Health, Southcoast Physicians Group Pain Medicine, Wareham, MA 02571, USA * Correspondence: [email protected] Received: 23 October 2020; Accepted: 1 December 2020; Published: 3 December 2020 Abstract: Multiple sclerosis (MS) is a prevalent and debilitating neurologic condition characterized by widespread neurodegeneration and the formation of focal demyelinating plaques in the central nervous system.
    [Show full text]
  • Alemtuzumab (Lemtrada) Reference Number: CP.CPA.325 Effective Date: 06.01.18 Last Review Date: 05.19 Coding Implications Line of Business: Commercial Revision Log
    Clinical Policy: Alemtuzumab (Lemtrada) Reference Number: CP.CPA.325 Effective Date: 06.01.18 Last Review Date: 05.19 Coding Implications Line of Business: Commercial Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description Alemtuzumab (Lemtrada®) is a CD52-directed cytolytic monoclonal antibody. FDA Approved Indication(s) Lemtrada is indicated for the treatment with relapsing forms of multiple sclerosis (MS), to include relapsing-remitting disease and active secondary progressive disease, in adults. Because of its safety profile, the use of Lemtrada should generally be reserved for patients who have had an inadequate response to two or more drugs indicated for the treatment of MS. Limitation(s) of use: Lemtrada is not recommended for use in patients with clinically isolated syndrome (CIS) because of its safety profile. Policy/Criteria Provider must submit documentation (such as office chart notes, lab results or other clinical information) supporting that member has met all approval criteria. It is the policy of health plans affiliated with Centene Corporation® that Lemtrada is medically necessary when the following criteria are met: I. Initial Approval Criteria A. Multiple Sclerosis (must meet all): 1. Diagnosis of relapsing-remitting or secondary progressive MS; 2. Prescribed by or in consultation with a neurologist; 3. Age ≥ 18 years; 4. Failure of two of the following at up to maximally indicated doses, unless contraindicated or clinically significant adverse effects are experienced: Aubagio®, Tecfidera®, Gilenya™, Avonex®, Betaseron®, Plegridy®, glatiramer, Copaxone®, Glatopa®, or Rebif®; *Prior authorization may be required for all disease modifying therapies for MS 5.
    [Show full text]