Central America:Tropical Storm Matthew
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Temporary Protected Status for Guatemalans
Guatemala Human Rights Commission / USA Fact Sheet Temporary Protected Status for Guatemalans Guatemalans are in urgent need of TPS due to the recent natural disasters in their home country. The economic and environmental damage has been devastating and Guatemalans living and working in the U.S. should not be forced to return to a disaster-stricken area. Additionally, families depend on financial support from their relatives in the U.S.; TPS would support the continued reconstruction of the devastation caused by tropical storms, intense rains, and volcanic activity. What is TPS? Temporary Protected Status (TPS) is a benefit granted by the Department of Homeland Security (DHS) that permits individuals from selected countries to remain in the United States for a certain amount of time, regardless of previous immigration status. Grants of TPS are initially made for periods of 6 to 18 months and may be extended depending on the situation. Removal proceedings are suspended for those granted TPS. DHS may grant TPS to countries due to: If granted TPS, individuals: Ongoing armed conflicts (such as civil wars) Cannot be removed from the U.S. Environmental disasters (such as hurricanes or Cannot be detained by DHS earthquakes) Can obtain an employment authorization document Other extraordinary or temporary conditions Are eligible for travel authorization TPS does not lead to permanent resident status. After the designated time period has expired, previous immigration status is restored. Pacaya Eruption and Tropical Storms On May 27, 2010, the Pacaya Volcano erupted just south of Guatemala City, forcing 2,000 people to evacuate. This was only the beginning. -
Conference Poster Production
65th Interdepartmental Hurricane Conference Miami, Florida February 28 - March 3, 2011 Hurricane Earl:September 2, 2010 Ocean and Atmospheric Influences on Tropical Cyclone Predictions: Challenges and Recent Progress S E S S Session 2 I The 2010 Tropical Cyclone Season in Review O N 2 The 2010 Atlantic Hurricane Season: Extremely Active but no U.S. Hurricane Landfalls Eric Blake and John L. Beven II ([email protected]) NOAA/NWS/National Hurricane Center The 2010 Atlantic hurricane season was quite active, with 19 named storms, 12 of which became hurricanes and 5 of which reached major hurricane intensity. These totals are well above the long-term normals of about 11 named storms, 6 hurricanes, and 2 major hurricanes. Although the 2010 season was considerably busier than normal, no hurricanes struck the United States. This was the most active season on record in the Atlantic that did not have a U.S. landfalling hurricane, and was also the second year in a row without a hurricane striking the U.S. coastline. A persistent trough along the east coast of the United States steered many of the hurricanes out to sea, while ridging over the central United States kept any hurricanes over the western part of the Caribbean Sea and Gulf of Mexico farther south over Central America and Mexico. The most significant U.S. impacts occurred with Tropical Storm Hermine, which brought hurricane-force wind gusts to south Texas along with extremely heavy rain, six fatalities, and about $240 million dollars of damage. Hurricane Earl was responsible for four deaths along the east coast of the United States due to very large swells, although the center of the hurricane stayed offshore. -
TROPICAL STORM AMANDA (EP022020) 30–31 May 2020
NATIONAL HURRICANE CENTER TROPICAL CYCLONE REPORT TROPICAL STORM AMANDA (EP022020) 30–31 May 2020 Robbie Berg National Hurricane Center 10 September 2020 GOES-EAST GEOCOLOR IMAGE OF TROPICAL STORM AMANDA AT 1200 UTC 31 MAY 2020, A COUPLE OF HOURS AFTER THE STORM MADE LANDFALL IN SOUTHEASTERN GUATEMALA (IMAGE COURTESY OF NOAA/NESDIS/STAR) Amanda is the second-known tropical storm to make landfall along the Pacific coast of Guatemala, after Tropical Storm Agatha of 2010. In conjunction with a larger weather system over Central America and Tropical Storm Cristobal over the Bay of Campeche, Amanda produced significant rainfall and flooding over portions of Central America and southeastern Mexico, resulting in 40 deaths in El Salvador, Guatemala, and Honduras. Tropical Storm Amanda 2 Tropical Storm Amanda 30–31 MAY 2020 SYNOPTIC HISTORY Multiple factors appear to have led to Amanda’s formation. The convectively active phase of an eastward-moving Kelvin wave spread over the far eastern part of the North Pacific Ocean between 26 and 31 May, while at the same time a mid- to upper-level low closed off over northeastern Mexico. The upper-level diffluence associated with these features caused an overall increase in convection over the far eastern Pacific during that period, as well as the development of a broad area of low pressure south of Guatemala and El Salvador by 27 May. A low-latitude tropical wave, which had moved off the coast of Africa around 18 to 19 May, moved into the Pacific basin on 29 May and caused the broad low and associated convection to become more organized. -
ANNUAL SUMMARY Atlantic Hurricane Season of 2005
MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record. -
Rapid Impact and Vulnerability Analysis Fund (RIVAF)
Rapid Impact and Vulnerability Analysis Fund (RIVAF) Final Report 1 This report is a compilation of executive summaries from the research findings of eight projects, which involve the work of eleven United Nations Agencies, conducted and completed under the Rapid Impact and Vulnerability Assessment Fund (RIVAF) between 2010 and 2011. The UN Global Pulse team in New York prepared this final report for publication in March 2012. Full research reports will be available upon request. Research conducted by: United Nations Children’s Fund United Nations Development Programme United Nations Educational, Scientific and Cultural Organization United Nations Population Fund United Nations Office on Drugs and Crime United Nations World Tourism Organization United Nations Office for Outer Space Affairs World Food Program International Labour Organization Special thanks to: Shantanu Muhkerjee, UNDP Shivani Nayyer, UNDP Paula Razquin, UNESCO Muna Idris, UNFPA Oscar Sandino, UNFPA Meron Tewfik, UNFPA Enrico Bisogno, UNODC Farbrizio Sarrica, UNODC Brian Tomaszewski, Rochester Institute of Technology Juan Carlos Villagran, UNOOSA Sandra Carvao, UNWTO Sarbuland Khan, UNWTO Patricia Bonnard, WFP Arif Hisain, WFP Joyce Luma, WFP Sofia Soromen-Horamos, UNICEF Tim Conway, Department for International Development Zazie Schafer, Global Pulse Lotta Segerstrom, Permanent Mission of Sweden to the UN Eva Kaplan, Global Pulse About Global Pulse: Global Pulse is an innovation initiative of the United Nations Secretary-General, which functions as an innovation lab, bringing together expertise from inside and outside the UN to harness today's new world of digital data and real-time analytics for global development. The initiative contributes to a future in which access to better information sooner makes it possible to keep international development on track, protect the world's most vulnerable populations, and strengthen resilience to global shocks. -
NASA Satellites and Aircraft Studied Hurricane Karl Before It Faded 20 September 2010
NASA satellites and aircraft studied Hurricane Karl before it faded 20 September 2010 dropsondes were launched successfully to aid the other instruments in gauging wind profiles and moisture content. Meanwhile, NASA's WB-57 took off from its base in Houston, Texas and joined the DC-8 for flights over Hurricane Karl in mid-afternoon on Sept. 17. The WB-57 flew higher than the DC-8 aircraft, at an altitude between 56,000 and 58.000 feet. The WB-57 has two instruments aboard to study tropical cyclones: the Advanced Microwave Precipitation This photo was taken looking out of the window of the Radiometer (AMPR) and the HIRAD (Hurricane DC-8 aircraft on the afternoon of Friday, Sept. 17, about Imaging Radiometer). AMPR studies rain cloud 3 hours after Hurricane Karl made landfall in Mexico. It systems, but are also useful to studies of various was taken from an altitude of about 37,000 feet while ocean and land surface processes. The HIRAD flying over Karl. Credit: NASA measures strong ocean surface winds through heavy rain, providing information on both rain rate and wind speed. Hurricane Karl made landfall near Veracruz, Mexico on Friday, Sept. 17 and moved inland over Mexico's rugged terrain, which took the punch out of the storm. As Karl was moving into Mexico, NASA aircraft and NASA satellites were gathering data from this storm that jumped from a tropical storm to a Category 3 hurricane the day before. Karl had maximum sustained winds of 115 mph when it made landfall on Friday afternoon, Sept. -
Presentation
27th Conference on Hurricanes and Tropical Meteorology 24-28 April 2006, Monterey, CA 3A.6 HURRICANES IVAN, JEANNE, KARL (2004) AND MID-LATITUDE TROUGH INTERACTIONS Ryan N. Maue*, Melinda S. Peng, Carolyn A. Reynolds, Rolf H. Langland Naval Research Laboratory, Monterey, CA 1. INTRODUCTION The initial-time SV sensitivity (largest shaded The Atlantic hurricane season of 2004 featured values in figures) indicates regions where several powerful, landfalling storms that caused perturbations to the initial state would have the largest considerable damage and loss of life in many impact on the 2-day forecast (regions where the countries. During September, three hurricanes, Ivan, forecast is most sensitive to changes in the initial Jeanne, and Karl, were linked together involving a analysis). The final SVs portray the amplitude and midlatitude trough. This study shows how one mid- distribution of the energy associated with the fastest latitude trough can impact three storms as revealed growing perturbations at the end of the forecast (here by forecast model dynamics using singular vector 48 hours). The sensitivity shown is the vertically (SV) sensitivity. The SV analysis identifies the integrated total energy of the SV perturbations influence of remote synoptic features on tropical summed over the first 3 leading SVs and weighted by cyclone evolution by finding the fastest-growing initial the singular vector amplification factors. perturbations localized about the tropical cyclone at the end of the optimization period. SV diagnostics have been applied mostly to midlatitude phenomena (Palmer et al. 1998). Only recently have singular vectors been applied to understanding tropical ensemble forecasting and analysis problems (e.g. -
Natural Disasters in Latin America and the Caribbean
NATURAL DISASTERS IN LATIN AMERICA AND THE CARIBBEAN 2000 - 2019 1 Latin America and the Caribbean (LAC) is the second most disaster-prone region in the world 152 million affected by 1,205 disasters (2000-2019)* Floods are the most common disaster in the region. Brazil ranks among the 15 548 On 12 occasions since 2000, floods in the region have caused more than FLOODS S1 in total damages. An average of 17 23 C 5 (2000-2019). The 2017 hurricane season is the thir ecord in terms of number of disasters and countries affected as well as the magnitude of damage. 330 In 2019, Hurricane Dorian became the str A on STORMS record to directly impact a landmass. 25 per cent of earthquakes magnitude 8.0 or higher hav S America Since 2000, there have been 20 -70 thquakes 75 in the region The 2010 Haiti earthquake ranks among the top 10 EARTHQUAKES earthquak ory. Drought is the disaster which affects the highest number of people in the region. Crop yield reductions of 50-75 per cent in central and eastern Guatemala, southern Honduras, eastern El Salvador and parts of Nicaragua. 74 In these countries (known as the Dry Corridor), 8 10 in the DROUGHTS communities most affected by drought resort to crisis coping mechanisms. 66 50 38 24 EXTREME VOLCANIC LANDSLIDES TEMPERATURE EVENTS WILDFIRES * All data on number of occurrences of natural disasters, people affected, injuries and total damages are from CRED ME-DAT, unless otherwise specified. 2 Cyclical Nature of Disasters Although many hazards are cyclical in nature, the hazards most likely to trigger a major humanitarian response in the region are sudden onset hazards such as earthquakes, hurricanes and flash floods. -
Aircurrents Novel Tools for Modeling Tropical Cyclone Risk in the Caribbean and Central America
AIRCURRENTS NOVEL TOOLS FOR MODELING TROPICAL CYCLONE RISK IN THE CARIBBEAN AND CENTRAL AMERICA By Tim Doggett, Ph.D., and Mr. Scott Stransky 08.2011 Edited by Meagan Phelan INTRODUCTION This article provides an overview of tropical cyclone risk in If a tropical cyclone has only weak winds and does not come the Caribbean and Central America, with a focus on tropical ashore, can it still cause notable insured losses to exposure cyclone-induced flooding, which can be a significant driver nearby? In the Caribbean and Central America, the answer of loss. is yes—primarily as a result of the precipitation hazard associated with tropical cyclones, even those with relatively TROPICAL CYCLONE CLIMATOLOGY IN THE CARIBBEAN AND CENTRAL AMERICA weak winds. Within the North Atlantic basin, roughly eleven tropical cyclones are spawned each year on average, six of which Indeed, the often-held view that flood-dominated tropical become hurricanes. Of all the landmasses in the basin, cyclones always result in lower insured losses than their the Caribbean islands experience the greatest number of windier counterparts requires a hard look; “wet” storms can storms—and often the most intense. That said, some island significantly impact a company’s portfolio. 1979’s Hurricane countries and territories within the Caribbean are more at David in the Caribbean, from which more than 50% of risk than others; in general, risk increases south to north, losses were flood-related—and which AIR estimates would such that the Bahamas is perhaps the most at-risk country in cause USD 6.0 billion in insured losses if it were to recur the Caribbean today. -
RA IV Hurricane Committee Thirty-Third Session
dr WORLD METEOROLOGICAL ORGANIZATION RA IV HURRICANE COMMITTEE THIRTYTHIRD SESSION GRAND CAYMAN, CAYMAN ISLANDS (8 to 12 March 2011) FINAL REPORT 1. ORGANIZATION OF THE SESSION At the kind invitation of the Government of the Cayman Islands, the thirtythird session of the RA IV Hurricane Committee was held in George Town, Grand Cayman from 8 to 12 March 2011. The opening ceremony commenced at 0830 hours on Tuesday, 8 March 2011. 1.1 Opening of the session 1.1.1 Mr Fred Sambula, Director General of the Cayman Islands National Weather Service, welcomed the participants to the session. He urged that in the face of the annual recurrent threats from tropical cyclones that the Committee review the technical & operational plans with an aim at further refining the Early Warning System to enhance its service delivery to the nations. 1.1.2 Mr Arthur Rolle, President of Regional Association IV (RA IV) opened his remarks by informing the Committee members of the national hazards in RA IV in 2010. He mentioned that the nation of Haiti suffered severe damage from the earthquake in January. He thanked the Governments of France, Canada and the United States for their support to the Government of Haiti in providing meteorological equipment and human resource personnel. He also thanked the Caribbean Meteorological Organization (CMO), the World Meteorological Organization (WMO) and others for their support to Haiti. The President spoke on the changes that were made to the hurricane warning systems at the 32 nd session of the Hurricane Committee in Bermuda. He mentioned that the changes may have resulted in the reduced loss of lives in countries impacted by tropical cyclones. -
Summary of 2010 Atlantic Seasonal Tropical Cyclone Activity and Verification of Author's Forecast
SUMMARY OF 2010 ATLANTIC TROPICAL CYCLONE ACTIVITY AND VERIFICATION OF AUTHOR’S SEASONAL AND TWO-WEEK FORECASTS The 2010 hurricane season had activity at well above-average levels. Our seasonal predictions were quite successful. The United States was very fortunate to have not experienced any landfalling hurricanes this year. By Philip J. Klotzbach1 and William M. Gray2 This forecast as well as past forecasts and verifications are available via the World Wide Web at http://hurricane.atmos.colostate.edu Emily Wilmsen, Colorado State University Media Representative, (970-491-6432) is available to answer various questions about this verification. Department of Atmospheric Science Colorado State University Fort Collins, CO 80523 Email: [email protected] As of 10 November 2010* *Climatologically, about two percent of Net Tropical Cyclone activity occurs after this date 1 Research Scientist 2 Professor Emeritus of Atmospheric Science 1 ATLANTIC BASIN SEASONAL HURRICANE FORECASTS FOR 2010 Forecast Parameter and 1950-2000 Climatology 9 Dec 2009 Update Update Update Observed (in parentheses) 7 April 2010 2 June 2010 4 Aug 2010 2010 Total Named Storms (NS) (9.6) 11-16 15 18 18 19 Named Storm Days (NSD) (49.1) 51-75 75 90 90 88.25 Hurricanes (H) (5.9) 6-8 8 10 10 12 Hurricane Days (HD) (24.5) 24-39 35 40 40 37.50 Major Hurricanes (MH) (2.3) 3-5 4 5 5 5 Major Hurricane Days (MHD) (5.0) 6-12 10 13 13 11 Accumulated Cyclone Energy (ACE) (96.2) 100-162 150 185 185 163 Net Tropical Cyclone Activity (NTC) (100%) 108-172 160 195 195 195 Note: Any storms forming after November 10 will be discussed with the December forecast for 2011 Atlantic basin seasonal hurricane activity. -
Rio Grande Flooding 5 Resulted in Fatalities When Automobiles Were Swept Into Swift Flowing Waters
NWS Corpus Christi, TX 2010 Fall Edition Wettest Water Year on Record for South Texas and New Flood Crest on the Oso Creek By Alex Tardy - Science and Operations Officer The water year, defined as October 1, 2009 through September 30, 2010, was the wettest on record for Corpus Christi and much of South Texas. Corpus Christi International Airport recorded 52.53 inches. Heavy rains began in September 2009, following the record drought and heat wave. There were many significant rain events during the winter of 2009-10 including: 12 inches in Rockport on November 20th; 6 to 8 inches on the Coast January 14-15th; widespread heavy rain February 4-5th; 22 inches in Calliham; 5 to 8 inches in Orange Grove and Alice between April 12-17; widespread 5 inches in the city of Victoria on May 14th; several inches of rain from Hurricane Alex and Tropical Depression #2 between June 29th and July 9th; Tropical Storm Hermine from September 6 to 7th; and finally 6 to 10 inches of rain in Corpus Christi which produced record flooding on Oso Creek. (Left) Hurricane Alex making landfall in northern Mexico on June 30, 2010. Alex was the strongest Atlantic Basin hurricane in the month of June since 1966 and the first since 1995. Inside this issue: (Right) One week rainfall through July 6, 2010. Remnants of Hurricane Alex brought 10 to 20 inches of rain to Mexico and resulted in historical flooding on the Rio Grande. Record Rainfall (continued) 2 A Look Ahead 3 The heavy rain was beneficial to the water supply system, filling Lake Corpus Christi by April and near 90 percent capacity at Choke Canyon reservoir.