An Influenza a Hemagglutinin Small-Molecule Fusion Inhibitor Identified by a New High-Throughput Fluorescence Polarization Screen
An influenza A hemagglutinin small-molecule fusion inhibitor identified by a new high-throughput fluorescence polarization screen Yao Yaoa, Rameshwar U. Kadamb, Chang-Chun David Leeb, Jordan L. Woehla, Nicholas C. Wub, Xueyong Zhub, Seiya Kitamuraa, Ian A. Wilsonb,c,1, and Dennis W. Wolana,b,1 aDepartment of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037; bDepartment of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037; and cThe Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037 Contributed by Ian A. Wilson, June 2, 2020 (sent for review April 13, 2020; reviewed by William F. DeGrado and Stephen W. White) Influenza hemagglutinin (HA) glycoprotein is the primary surface to combat pandemics and seasonal epidemics that can work alone or antigen targeted by the host immune response and a focus for synergistically with current therapeutics and/or the host adaptive development of novel vaccines, broadly neutralizing antibodies immune system. (bnAbs), and therapeutics. HA enables viral entry into host cells via The HA glycoprotein is the most abundant transmembrane receptor binding and membrane fusion and is a validated target protein on the surface of influenza and is necessary for initiating for drug discovery. However, to date, only a very few bona fide viral infection. HA is a trimeric class I viral fusion protein with a small molecules have been reported against the HA. To identity globular membrane-distal head containing the receptor binding site new antiviral lead candidates against the highly conserved fusion and a membrane-proximal stem housing the fusion machinery (9).
[Show full text]