Recombinant Antigens/Proteins

Total Page:16

File Type:pdf, Size:1020Kb

Recombinant Antigens/Proteins Vaccine Candidate Clinical Trial Information Results Reporting Information Developer Name (Specify) Candidate Name (Specify) Target Antigen(s) Vaccine Platform Proposed Immune Delivery Method Adjuvant R&D Status Registry ID number(s) Trial Status Sponsor Name Sponsor Type Phase Study Start Date Primary Study Sample Size, Location Results Reporting Status Mechanism of Action (Type: Specify name) Completion Date Completion Date Enrollment and Age Recombinant Antigens/Proteins Altimmune (UK) FP-01.1 Nucleoprotein (NP), Matrix Synthetic peptide-based T cell response (e.g., cytotoxic Intramuscular None Inactive, no longer in NCT01265914 Completed Immune Targeting Systems Ltd Industry Phase 1 8/1/10 3/1/11 8/1/11 49 Adults (18 to 55 London, United Kingdom Results reported in peer- (Immune Targeting Systems Ltd) protein (M1), RNA T-lymphocytes) development years) reviewed journal polymerase PB1, RNA polymerase PB2, HA head domain, conserved epitopes Altimmune (UK) FP-01.1 Nucleoprotein (NP), Matrix Synthetic peptide-based T cell response (e.g., cytotoxic Intramuscular None Inactive, no longer in NCT02071329 Completed Immune Targeting Systems Ltd Industry Phase 1 1/1/14 12/1/14 12/1/14 111 Adults (18 to 45 London, United Kingdom Results not yet reported (Immune Targeting Systems Ltd) protein (M1), RNA T-lymphocytes) development years) polymerase PB1, RNA polymerase PB2, HA head domain, conserved epitopes Altimmune (UK) FP-01.1 Nucleoprotein (NP), Matrix Synthetic peptide-based T cell response (e.g., cytotoxic Intramuscular Other: Unspecified Inactive, no longer in NCT01677676 Completed Immune Targeting Systems Ltd Industry Phase 1 1/1/12 5/1/12 9/1/12 48 Adults (18 to 55 Brisbane, Queensland, Results not yet reported (Immune Targeting Systems Ltd) protein (M1), RNA T-lymphocytes) development years) Australia polymerase PB1, RNA polymerase PB2, HA head domain, conserved epitopes Altimmune (UK) FP-01.1 Nucleoprotein (NP), Matrix Synthetic peptide-based T cell response (e.g., cytotoxic Intramuscular Other: Unspecified Inactive, no longer in NCT01701752 Completed Immune Targeting Systems Ltd Industry Phase 1 9/1/12 4/1/13 4/1/13 120 Older Adults (65 to Unspecified Results not yet reported (Immune Targeting Systems Ltd) protein (M1), RNA T-lymphocytes) development 74 years) polymerase PB1, RNA polymerase PB2, HA head domain, conserved epitopes Altimmune (UK) FP-01.1 Nucleoprotein (NP), Matrix Synthetic peptide-based T cell response (e.g., cytotoxic Intramuscular Inactive, no longer in See preclinical information Immune Targeting Systems Ltd Industry (Immune Targeting Systems Ltd) protein (M1), RNA T-lymphocytes) development polymerase PB1, RNA polymerase PB2, HA head domain, conserved epitopes Altimmune (UK) FP-01.1 Nucleoprotein (NP), Matrix Synthetic peptide-based T cell response (e.g., cytotoxic Intramuscular Inactive, no longer in Immune Targeting Systems Ltd Industry (Immune Targeting Systems Ltd) protein (M1), RNA T-lymphocytes) development polymerase PB1, RNA polymerase PB2, HA head domain, conserved epitopes BiondVax Pharmaceuticals Ltd Multimeric-001 (M-001) HA head domain, Peptide-based, T cell response (e.g., cytotoxic Intramuscular None Active, currently in NCT03450915 Open, not recruiting BiondVax Pharmaceuticals Ltd. Industry Phase 3 8/1/19 Estimated May Estimated 12,463 Adults and Older 83 clinical trial sites in 7 Results not yet reported (Israel) conserved epitopes, Recombinant protein T-lymphocytes), B cell development 2020 December 2020 Adults (50 years and countries in Eastern Europe Nucleoprotein (NP), Matrix response (e.g., neutralizing older); half over 65 years protein (M1) antibodies) BiondVax Pharmaceuticals Ltd Multimeric-001 (M-001) HA head domain, Peptide-based, T cell response (e.g., cytotoxic Intramuscular None Active, currently in NCT03058692 Completed National Institute of Allergy and Government Phase 2 4/9/18 1/14/19 1/14/19 120 Adults (18 to 49 United States: Iowa, Ohio, Results reported in registry (Israel) conserved epitopes, Recombinant protein T-lymphocytes), B cell development Infectious Disease (NIAID) years) Texas Nucleoprotein (NP), Matrix response (e.g., neutralizing protein (M1) antibodies) 1 Results Reporting Information Preclinical Studies Key Partners Other Data Sources Interim Publication Type, Date, and Link Full Publication Type, Date, and Link Clinical Trials Registry, Publication Study Intent Publication Link Name(s) Contact Notes References Date and Link Information Recombinant Antigens/Proteins Peer-reviewed publication or journal [1] Francis 2015 (PMID: 24928790) 6/10/2014 [2] Gottlieb 2014 (PMID: 25172355) Francis 2015 PMID: 24928790 [3] https://clinicaltrials.gov/ct2/show/NCT01265914 [1] Francis 2015 (PMID: 24928790) [2] Gottlieb 2014 (PMID: 25172355) [3] https://clinicaltrials.gov/ct2/show/NCT02071329 [1] Francis 2015 (PMID: 24928790) [2] Gottlieb 2014 (PMID: 25172355) [3] https://clinicaltrials.gov/ct2/show/NCT01677676 [1] Francis 2015 (PMID: 24928790) [2] Gottlieb 2014 (PMID: 25172355) [3] https://clinicaltrials.gov/ct2/show/NCT01701752 Unknown Unknown [1] Francis 2015 (PMID: 24928790) [2] Gottlieb 2014 (PMID: 25172355) [1] Francis 2015 (PMID: 24928790) [2] Gottlieb 2014 (PMID: 25172355) [1] Rudolph 2014 (PMID: 21285533) [2] Gottlieb 2014 (PMID: 25172355) [3] Astmon 2012 (PMID: 22318394) [4] Astmon 2014 (PMID: 25173483) [5] Van Doorn 2017 (PMID: 28296763) [6] Press Release 2019 [7] https://clinicaltrials.gov/ct2/show/NCT03450915 clinicaltrials.gov [1] Rudolph 2014 (PMID: 21285533) 2/5/2020 [2] Gottlieb 2014 (PMID: 25172355) https://clinicaltrials.gov/ct2/show/results/N CT03058692 [3] Astmon 2012 (PMID: 22318394) [4] Astmon 2014 (PMID: 25173483) [5] Van Doorn 2017 (PMID: 28296763) [6] Press release 2019 [7] Press release 2020 [8] https://clinicaltrials.gov/ct2/show/NCT03058692 2 Vaccine Candidate Clinical Trial Information Results Reporting Information Developer Name (Specify) Candidate Name (Specify) Target Antigen(s) Vaccine Platform Proposed Immune Delivery Method Adjuvant R&D Status Registry ID number(s) Trial Status Sponsor Name Sponsor Type Phase Study Start Date Primary Study Sample Size, Location Results Reporting Status Mechanism of Action (Type: Specify name) Completion Date Completion Date Enrollment and Age Recombinant Antigens/Proteins BiondVax Pharmaceuticals Ltd Multimeric-001 (M-001) HA head domain, Peptide-based, T cell response (e.g., cytotoxic Intramuscular None NCT02691130 Completed (a) BiondVax Pharmaceuticals Industry, Government Phase 2 11/1/15 10/1/16 1/1/17 224 Adults (18 to 60 Budapest, Hungary Interim results reported (Israel) conserved epitopes, Recombinant protein T-lymphocytes), B cell Ltd. years) Nucleoprotein (NP), Matrix response (e.g., neutralizing (b) Seventh Framework protein (M1) antibodies) Program BiondVax Pharmaceuticals Ltd Multimeric-001 (M-001) HA head domain, Peptide-based, T cell response (e.g., cytotoxic Intramuscular None NCT02293317 Completed BiondVax Pharmaceuticals Ltd. Industry Phase 2 11/1/14 3/1/15 6/1/15 37 Adults and Older Tel Aviv, Israel Interim results reported (Israel) conserved epitopes, Recombinant protein T-lymphocytes), B cell Adults (50 to 65 years) Nucleoprotein (NP), Matrix response (e.g., neutralizing protein (M1) antibodies) BiondVax Pharmaceuticals Ltd Multimeric-001 (M-001) HA head domain, Peptide-based, T cell response (e.g., cytotoxic Intramuscular Aluminum salts: Alum NCT01419925 Completed BiondVax Pharmaceuticals Ltd. Industry Phase 2 8/1/11 1/1/12 1/1/12 120 Older Adults (65 Jerusalem, Isreal Interim results reported, (Israel) conserved epitopes, Recombinant protein T-lymphocytes), B cell years and older) Results reported in peer- Nucleoprotein (NP), Matrix response (e.g., neutralizing reviewed journal protein (M1) antibodies) BiondVax Pharmaceuticals Ltd Multimeric-001 (M-001) HA head domain, Peptide-based, T cell response (e.g., cytotoxic Intramuscular Other: unspecified NCT01146119 Completed BiondVax Pharmaceuticals Ltd. Industry Phase 2 7/1/10 5/1/11 6/1/11 200 Adults (18 to 49 Israel: Jerusalem, Tel Aviv Interim results reported (Israel) conserved epitopes, Recombinant protein T-lymphocytes), B cell years) Nucleoprotein (NP), Matrix response (e.g., neutralizing protein (M1) antibodies) BiondVax Pharmaceuticals Ltd Multimeric-001 (M-001) HA head domain, Peptide-based, T cell response (e.g., cytotoxic Intramuscular Oil-in-water: Montanide NCT01010737 Completed BiondVax Pharmaceuticals Ltd. Industry Phase 1 9/1/09 3/1/10 3/1/10 60 Adults and Older Tel Aviv, Israel Interim results reported (Israel) conserved epitopes, Recombinant protein T-lymphocytes), B cell ISA VG51 Adults (55 to 75 years) Nucleoprotein (NP), Matrix response (e.g., neutralizing protein (M1) antibodies) 3 Results Reporting Information Preclinical Studies Key Partners Other Data Sources Interim Publication Type, Date, and Link Full Publication Type, Date, and Link Clinical Trials Registry, Publication Study Intent Publication Link Name(s) Contact Notes References Date and Link Information Recombinant Antigens/Proteins Sponsor press release [1] Rudolph 2014 (PMID: 21285533) 07/20/17 [2] Gottlieb 2014 (PMID: 25172355) http://www.biondvax.com/2017/07/biondvax- reports-positive-phase-2b-clinical-trial-results-for- its-universal-flu-vaccine/ [3] Astmon 2012 (PMID: 22318394) [4] Astmon 2014 (PMID: 25173483) [5] Van Doorn 2017 (PMID: 28296763) [6] https://clinicaltrials.gov/ct2/show/NCT02691130 Sponsor website [1] Rudolph 2014 (PMID: 21285533) http://www.biondvax.com/clinical-trials/ [2] Gottlieb 2014 (PMID: 25172355) [3] Astmon 2012 (PMID:
Recommended publications
  • Fact Sheet: COVID Vaccines & Fetal Cell Lines
    Fact Sheet: COVID Vaccines & Fetal Cell Lines What is a fetal cell line? A cell taken from an aborted baby is multiplied into many cells of the same kind. These can be grown indefinitely and further multiplied, creating lines of cells that are sometimes used for science experiments. Fetus Kidney Tissue Human Cell Fetal Cell Line Expand and Multiply How are fetal cell lines used in vaccines? Fetal cell lines have been used to grow viruses and then create inactive viruses for vaccines. Historical fetal cell lines (WI-38 and MRC-5) derived in the 1960’s and 1970’s were used to create vaccines for diseases such as Rubella, Hepatitis A, and rabies. These and other historical cell lines (HEK293 and PER.C6) are sometimes used today in the creation of vaccines. Any vaccine that relies on these historic cell lines will not require new abortions. Are fetal cell lines necessary for vaccines? Most vaccines use non-human cells. Vaccines can be developed ethically using no cells or cells from animals, insects, chicken eggs, or yeast. Do COVID vaccines being developed in Operation Warp Speed use fetal cell lines? Six vaccines do not use fetal cell lines. Two vaccines do, using the historically derived fetal cell lines HEK293 and PER.C6. Table: Vaccines being developed in Operation Warp Speed Sponsor(s) Type of Vaccine Production Astrazeneca & Univ. Oxford Adenovirus carrier ❌ HEK293 abortion-derived cell line Janssen and Johnson & Adenovirus carrier ❌ PER.C6 abortion-derived cell line Johnson VSV (animal virus) Merck and IAVI ✅ Vero monkey cells carrier Novavax Protein vaccine ✅ Sf9 insect cells Sanofi and GSK Protein vaccine ✅ Sf9 insect cells Moderna with NIAID mRNA vaccine ✅ No cells used Pfizer and BioNTech mRNA vaccine ✅ No cells used Inovio Pharmaceuticals DNA vaccine ✅ No cells used In order to increase the rates of COVID vaccination among the public, many of whom are opposed to the use of fetal cell lines, policymakers may want to encourage the production and availability of vaccines that do not use fetal cell lines.
    [Show full text]
  • Infectious Diseases
    2013 MEDICINES IN DEVELOPMENT REPORT Infectious Diseases A Report on Diseases Caused by Bacteria, Viruses, Fungi and Parasites PRESENTED BY AMERICA’S BIOPHARMACEUTICAL RESEARCH COMPANIES Biopharmaceutical Research Evolves Against Infectious Diseases with Nearly 400 Medicines and Vaccines in Testing Throughout history, infectious diseases hepatitis C that inhibits the enzyme have taken a devastating toll on the lives essential for viral replication. and well-being of people around the • An anti-malarial drug that has shown Medicines in Development world. Caused when pathogens such activity against Plasmodium falci- For Infectious Diseases as bacteria or viruses enter a body and parum malaria which is resistant to multiply, infectious diseases were the current treatments. Application leading cause of death in the United Submitted States until the 1920s. Today, vaccines • A potential new antibiotic to treat methicillin-resistant Staphylococcus Phase III and infectious disease treatments have proven to be effective treatments in aureus (MRSA). Phase II many cases, but infectious diseases still • A novel treatment that works by Phase I pose a very serious threat to patients. blocking the ability of the smallpox Recently, some infectious pathogens, virus to spread to other cells, thus 226 such as pseudomonas bacteria, have preventing it from causing disease. become resistant to available treatments. Infectious diseases may never be fully Diseases once considered conquered, eradicated. However, new knowledge, such as tuberculosis, have reemerged new technologies, and the continuing as a growing health threat. commitment of America’s biopharma- America’s biopharmaceutical research ceutical research companies can help companies are developing 394 medicines meet the continuing—and ever-changing and vaccines to combat the many threats —threat from infectious diseases.
    [Show full text]
  • Vaccines in Development to Target COVID-19 Disease April 9, 2020
    Vaccines in Development to Target COVID-19 Disease April 9, 2020 BACKGROUND development, including funding research into the development and use of platform technologies and investigational vaccines Since its emergence in December 2019 in Wuhan, China, the against novel pathogens.6 Given the abundance of vaccines under SARS-CoV-2 virus has caused more than 1.3 million cases and development, this fact sheet will focus on the vaccine candidates nearly 75,000 deaths globally as of April 06, 2020.1 Currently, for which research is currently being funded at least in part by no vaccine or proven treatment exists for this virus or any CEPI, as well as candidates that are undergoing clinical trials. coronavirus. The rapid spread and unprecedented dramatic rise Vaccine candidates are listed by developer below. of COVID-19 deaths and cases has led many research groups worldwide to explore potential vaccine candidates against SARS-CoV-2.2 The World Health Organization (WHO) has Phase I Clinical Trials worked to develop a Research and Development Blueprint that outlines key areas for research and innovation to address gaps • CanSino Biological, Inc., and Beijing Institute of in controlling COVID-19.3 Additionally, as of April 4, 2020, Biotechnology WHO has identified more than 60 vaccine candidates currently CanSino Biological, Inc., a China-based company, is being investigated against the SARS-CoV-2 virus across a range collaborating with the Beijing Institute of Biotechnology to of platforms, including nucleic acid, live attenuated, protein develop a nonreplicating viral vector vaccine2 and has recently subunit, and viral vector (Table 1).2 Of these, 2 are undergoing begun phase I clinical trials, with more than 100 participants 7,8 phase 1 clinical trials, while the remaining candidates are aged 18 to 60 years old, in a hospital located in Wuhan, China.
    [Show full text]
  • Inovio Welcomes Biotech Leader to Its Board of Directors
    NEWS RELEASE Inovio Welcomes Biotech Leader to its Board of Directors 1/15/2020 Inovio also announces retirement of long-serving board member PLYMOUTH MEETING, Pa., Jan. 15, 2020 /PRNewswire/ -- Inovio Pharmaceuticals, Inc. (NASDAQ:INO) today announced the appointment of Jay Shepard to its Board of Directors. Mr. Shepard brings broad healthcare and nancial experience to the board given his tenure as CEO of several biotech companies, his multiple corporate board appointments and his expertise as a healthcare venture capitalist. Dr. J. Joseph Kim, Inovio's President & CEO said, "We are fortunate to have Jay Shepard join Inovio's Board of Directors. Jay's expertise in health care, corporate nancing and M&A in the industry will be an asset to our company as we execute on our strategic deliverables in the next year and the next decade." Inovio also announced the retirement of Mort Collins from its Board. Dr. Collins had been a founding Board member of Inovio's predecessor, VGX Pharmaceuticals. Regarding Mort Collins, Dr. Kim said, "For nearly two decades Mort has been a guiding hand for Inovio helping us grow and make the right choices in science and business. For me, Mort has been more than a corporate board member. He has been a mentor to me and a strong voice I've relied on to manage innovation as we develop and commercialize our DNA medicines." About Jay Shepard Mr. Shepard is currently Non-executive Chairman and formerly President and Chief Executive Ocer of Aravive, a clinical-stage biopharmaceutical company developing treatments designed to halt the progression of life- threatening diseases, including cancer and brosis.
    [Show full text]
  • COVID-19 Vaccines: Summary of Current State-Of-Play Prepared Under Urgency 21 May 2020 – Updated 16 July 2020
    Office of the Prime Minister’s Chief Science Advisor Kaitohutohu Mātanga Pūtaiao Matua ki te Pirimia COVID-19 vaccines: Summary of current state-of-play Prepared under urgency 21 May 2020 – updated 16 July 2020 The COVID-19 pandemic has spurred a global effort to find a vaccine to protect people from SARS- CoV-2 infection. This summary highlights selected candidates, explains the different types of vaccines being investigated and outlines some of the potential issues and risks that may arise during the clinical testing process and beyond. Key points • There are at least 22 vaccine candidates registered in clinical (human) trials, out of a total of at least 194 in various stages of active development. • It is too early to choose a particular frontrunner as we lack safety and efficacy information for these candidates. • It is difficult to predict when a vaccine will be widely available. The fastest turnaround from exploratory research to vaccine approval was previously 4–5 years (ebolavirus vaccine), although it is likely that current efforts will break this record. • There are a number of challenges associated with accelerated vaccine development, including ensuring safety, proving efficacy in a rapidly changing pandemic landscape, and scaling up manufacture. • The vaccine that is licensed first will not necessarily confer full or long-lasting protection. 1 Contents Key points .................................................................................................................................. 1 1. Types of vaccines ...............................................................................................................
    [Show full text]
  • On Behalf of the KY Adult Viral Hepatitis Program, We Wish You and Your Loved Ones a Blessed and Wonderful Christmas Season!
    On behalf of the KY Adult Viral Hepatitis Program, we wish you and your loved ones a blessed and wonderful Christmas season! We are pleased to share with you the December issue of KY Hepatitis Connections. The KY Hepatitis Connections provides current information, opportunities for viral Hepatitis continuing professional education and information about educational materials available. Please feel free to forward and/or copy and distribute to other professionals in your network. Your knowledge and input are greatly valued, as we are committed to keeping you up to date on shared progress in the medical community on viral Hepatitis and its impact on our families throughout the Commonwealth. Join us on Facebook, KY Viral Hepatitis. Kathy Sanders, RN MSN P a g e | 1 December 2013 64th Annual meeting of the American Association for the Study of Liver Diseases Recently the American Association for the Study of Liver Diseases met for their annual meeting in Washington, DC on November 1-5, 2013. Click on the link below to review the Conference Reports and all current detailed data and reporting. Read More: http://www.natap.org/2013/AASLD/AASLD.htm Costs for Hepatitis C Treatment Skyrocket WASHINGTON, DC — The expense of telaprevir-based triple therapy for hepatitis C — including adverse event management — is $189,000 per sustained viral response, report investigators. "Our findings indicate that the benefit-cost ratio is lower than projected, based on results of the registration trials," lead investigator Andrea Branch, MD, from the Icahn School of Medicine at Mount Sinai in New York City. Kian Bichoupan, MBS, who is Dr.
    [Show full text]
  • INOVIO Announces Positive Interim Phase 1 Data for INO-4800 Vaccine for COVID-19
    NEWS RELEASE INOVIO Announces Positive Interim Phase 1 Data For INO-4800 Vaccine for COVID-19 6/30/2020 INO-4800 Selected for the U.S. Government's Operation Warp Speed - 94% of Phase 1 trial participants demonstrated overall immune responses at Week 6 after two doses of INO-4800 in trial with 40 healthy volunteers in preliminary analyses - Through Week 8 INO-4800 regimen was deemed safe and well-tolerated with no serious adverse events; all reported adverse events were grade 1 in severity - In preclinical animal challenge study, INO-4800 provided full protection against SARS-CoV-2 replication in the lungs in mice challenged with the virus - INOVIO to begin U.S. Phase 2/3 ecacy study this summer upon regulatory concurrence PLYMOUTH MEETING, Pa., June 30, 2020 /PRNewswire/ -- INOVIO (NASDAQ:INO), a biotechnology company focused on rapidly bringing to market precisely designed DNA medicines to protect and treat people from infectious diseases and cancer, today announced positive interim clinical data of INO-4800, its vaccine candidate against novel coronavirus (SARS-CoV-2), from the rst two Phase 1 clinical trial cohorts. In addition, INO-4800 has been selected to participate in a non-human primate (NHP) challenge study as part of the U.S. government's Operation Warp Speed, a new national program aiming to provide substantial quantities of safe, eective vaccine for Americans by January 2021. Furthermore, INOVIO has expanded its Phase 1 trial to add older participants in additional cohorts and plans to initiate a Phase 2/3 ecacy trial this summer upon regulatory concurrence.
    [Show full text]
  • Inovio Pharmaceuticals (INO) – Bad Blood the COVID-19 Version of Theranos – Target Price $1
    April 27, 2020 Inovio Pharmaceuticals (INO) – Bad Blood The COVID-19 Version of Theranos – Target Price $1 It was less than 10 years ago when Theranos was the talk of the med tech community as the mysterious startup claimed breakthrough advancements with the ability to quickly process over 240 laboratory tests with a prick of the finger. Seemed too good to be true? Well, as you know, the rest of the story is business history. Fast forward 10 years and we are now facing the largest global pandemic in generations. As the greatest scientific minds globally are working tirelessly to find a cure, Inovio Pharmaceuticals (INO) claims to have developed a vaccine in just 3 hours under the same scientific team that has spent decades deceiving investors. It’s been over 40 years since Inovio was founded, yet the company has NEVER brought a product to market, and all the while insiders have enriched themselves with hefty salaries and large stock sales. In this report, Citron will detail why Inovio shareholders have been “Theranosed” and why the SEC should immediately halt this blatant stock promotion. The Secret Algorithm Much like Theranos, Inovio claims to have a “secret sauce” that, miraculously, no pharma giant has been able to figure out. This is the same “secret sauce” that supposedly developed a vaccine for COVID-19 in just 3 hours. Simply put, the management team at Inovio is a group of charlatans. Just look at this exchange with 60 minutes and Inovio’s SVP of R&D Researcher Kate Broderick: Kate Broderick: All we need is that genetic code.
    [Show full text]
  • Racing Against COVID-19: a Vaccines Strategy for Europe
    Policy Contribution Issue n˚7 | April 2020 Racing against COVID-19: a vaccines strategy for Europe Reinhilde Veugelers and Georg Zachmann Executive summary Reinhilde Veugelers The fast development of vaccines is an essential part of the long-term solution to (reinhilde.veugelers@ COVID-19, but vaccine development has high costs and carries the risk of high failure rates. bruegel.org) is a Senior Fellow at Bruegel There are currently too few promising projects in the clinical trial pipeline to guarantee at least one vaccine soon. More projects need to pass through the development pipeline in parallel. Vaccines should ultimately be widely available to all who need them at low cost. Georg Zachmann (georg. [email protected]) is Private life-sciences companies under-invest in vaccine development, especially a Senior Fellow at Bruegel when compulsory licensing and/or price regulations are imposed. Public funding is needed to reduce the risks of investing in vaccine development, and also to balance compulsory licensing and/or price regulations with incentives for private firms. The public funding being put into identifying COVID-19 vaccines is too limited to carry enough projects through so that at least one vaccine, and preferably more, become available at large scale and low cost. Public budgets for these efforts need to be multiplied up several times over. We propose a staged support scheme to tackle the COVID-19 vaccine challenge and a moon shot programme to meet the challenge of future pandemics. We calculate the public budget needed to ensure supply of COVID-19 vaccines. Although substantial, the budget represents a bargain compared to the avoided health, social and economic costs.
    [Show full text]
  • PATH Malaria Vaccine Initiative and Inovio Pharmaceuticals Partner to Accelerate Development of Malaria Vaccines and Innovative Delivery Technologies
    PATH Malaria Vaccine Initiative media contact: Preeti Singh, +1 301-280-5722, [email protected] Inovio contacts: Investors: Bernie Hertel, +1 858-410-3101, [email protected] Media: Jeff Richardson, +1 267-440-4211, [email protected] FOR RELEASE ON Monday, 7January 2013 PATH Malaria Vaccine Initiative and Inovio Pharmaceuticals Partner to Accelerate Development of Malaria Vaccines and Innovative Delivery Technologies Follow-on Agreement Will Lead to Clinical Trials WASHINGTON, DC and Blue Bell, PA (January 7, 2013)—The PATH Malaria Vaccine Initiative (MVI) and Inovio Pharmaceuticals, Inc. (NYSE MKT: INO) today announced a follow-on collaboration to advance malaria vaccine development and new vaccination delivery technologies. Researchers will test whether a novel vaccine approach that combines genetically engineered DNA with an innovative vaccine delivery technology called electroporation could induce an immune response in humans that protects against malaria parasite infection. Malaria is a deadly disease that still kills more than 500,000 children under age 5 every year. MVI accelerates the development of malaria vaccines by joining its scientific, managerial, and field expertise with companies, universities, and governments to develop malaria vaccines and continue to test and invest in those with the most promise. This follow-on agreement for clinical development builds on a 2010 research and development collaboration between Inovio and MVI. Inovio researchers and their academic collaborators developed novel DNA plasmids targeting multiple malaria parasite antigens and conducted studies in rodents to demonstrate induction of broad immune responses. The success of these studies resulted in an expanded collaboration, in which further testing demonstrated potent T cell and antibody responses in other animal models.
    [Show full text]
  • INOVIO's COVID-19 Vaccine Candidate, INO-4800, Provides Broad Cross-Reactive Immune Responses in Humans Against Variants of Concern
    NEWS RELEASE INOVIO's COVID-19 Vaccine Candidate, INO-4800, Provides Broad Cross-reactive Immune Responses In Humans Against Variants of Concern 4/15/2021 Results in new study showed INO-4800 vaccine-induced neutralizing antibodies and T cell responses against UK, South African and Brazilian variant strains Paper entitled, "INO-4800 DNA Vaccine Induces Neutralizing Antibodies and T cell Activity Against Global SARS-CoV- 2 Variants," submitted for peer review and available via preprint in bioRxiv PLYMOUTH MEETING, Pa., April 15, 2021 /PRNewswire/ -- INOVIO (NASDAQ:INO), a biotechnology company focused on rapidly bringing to market precisely designed DNA medicines to treat and protect people from infectious diseases, and cancer, today announced the results of a study focusing on the human immune responses induced by INOVIO's DNA vaccine candidate for COVID-19, INO-4800, against variants of concern. The results showed that INO-4800 induced a robust T cell response against all spike protein variants tested, which the company believes will be key in providing protection against SARS-CoV-2 variants, in addition to providing similar levels of neutralizing activity against both the UK and Brazilian variants as those against the original strain. The study, entitled "INO-4800 DNA Vaccine Induces Neutralizing Antibodies and T cell Activity Against Global SARS-CoV-2 Variants," has been submitted for peer review and can be viewed at https://www.biorxiv.org/content/10.1101/2021.04.14.439719v1. Dr. J. Joseph Kim, INOVIO's President & CEO, said, "These results are consistent with our expectation that INO-4800, which was found to be well-tolerated and able to produce a balanced immune response in our Phase 1 trial, is able to generate both neutralizing antibodies and robust T cell responses – both of which will be essential to protect against the emerging variants of concern." Regarding INO-4800 development Dr.
    [Show full text]
  • The Current Status of Drug Repositioning and Vaccine Developments for the COVID-19 Pandemic
    International Journal of Molecular Sciences Review The Current Status of Drug Repositioning and Vaccine Developments for the COVID-19 Pandemic Jung-Hyun Won 1,2 and Howard Lee 1,2,3,4,5,* 1 Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea; [email protected] 2 Center for Convergence Approaches in Drug Development, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea 3 Department of Clinical Pharmacology and Therapeutics, College of Medicine, Seoul National University, Seoul 03080, Korea 4 Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul 03080, Korea 5 Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea * Correspondence: [email protected]; Tel.: +82-2-3668-7602; Fax: +82-2-742-9252 Received: 30 November 2020; Accepted: 18 December 2020; Published: 21 December 2020 Abstract: Since the outbreak of coronavirus disease 2019 (COVID-19) was first identified, the world has vehemently worked to develop treatments and vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at an unprecedented speed. Few of the repositioned drugs for COVID-19 have shown that they were efficacious and safe. In contrast, a couple of vaccines against SARS-CoV-2 will be ready for mass rollout early next year. Despite successful vaccine development for COVID-19, the world will face a whole new set of challenges including scale-up manufacturing, cold-chain logistics, long-term safety, and low vaccine acceptance. We highlighted the importance of knowledge sharing and collaboration to find innovative answers to these challenges and to prepare for newly emerging viruses.
    [Show full text]