<<

Confinement and the Spectrum XII

Nora Brambilla Nora Brambilla Thessaloniki, 28 TU MUNICH August-4 September TU Munich 2016 4el Much of the way in which we develop science

Aristotele’s apprehension of reality Aristotele’ school TIMES changed …… Conf12 venue but other things resisted the time the beauty of the place but other things resisted the time

the temper, the determination and the ambition of the “locals” Modern Heros

that organised 10 days of conference(s) with 400 participants, hundreds of talks, 7 sessions running in parallel , a social event each night and…. almost NO FUNDS ! and what allowed to surpass any difficulty was..

to have as Chair a true descendant of Cleopatra with the same inherited personality We can say that the Quark Confinement Conference shares some of the important Macedonian footprints

• “Many different nations, cultures, languages.... “Macedoin” now means “a mix”

We have the ambition to bring together all the people dealing with strong interactions from one perspective or the other Scientific Sessions of the conference Section A: Vacuum Structure and Confinement Mechanisms of quark confinement (vortices, monopoles, calorons...) and the structure of the vacuum in non-Abelian gauge theories. Chiral symmetry breaking, and the Dirac spectrum in the low-momentum region. Studies of ghost and propagators. Confining strings and flux tubes, their effective actions. Renormalons and power corrections. Interface between perturbative and non-perturbative . Conveners: D. Antonov (Heidelberg), M. Faber (TU Vienna), J. Greensite (San Francisco State U) Focus Subsection: Emergent gauge fields and chiral fermions Chiral Fermions and anomalous hydrodynamic effects in condensed matter systems, quantum simulators of QCD, topological phenomena in condensed matter systems. Conveners: T. Schaefer (NC State U), V. Shevchenko (NRC Kurchatov I.) Section B: Light Chiral and soft collinear effective theories; sum rules; lattice; Schwinger-Dyson equations; masses of light quarks; light-quark loops; phenomenology of light-hadron form factors, spectra and decays; structure functions and generalized parton distributions; exotics and glueballs; experiments. Conveners: J. Goity (Hampton U.), B. Ketzer (Bonn U.), H. Sazdjian (IPN Orsay), N. G. Stefanis (Ruhr U. Bochum), H. Wittig (JGU Mainz) Section C: Heavy Quarks Heavy-light mesons, heavy quarkonia, heavy baryons, heavy exotics and related topics: phenomenology of spectra, decays, and production; effective theories for heavy quarks (HQET, NRQCD, pNRQCD, vNRQCD, SCET); sum rules for heavy ; lattice calculations of heavy hadrons; heavy-quark masses determination; experiments. Conveners: G. Bodwin (Argonne NL), P. Pakhlov (ITEP, Moscow), J. Soto (U. Barcelona), A. Vairo (TU Munich) Section D: Deconfinement QCD at finite temperature; quark-gluon plasma detection and characteristics; jet quenching; transportation coefficients; lattice QCD and phases of quark matter; QCD vacuum and strong fields; heavy-ion experiments. Conveners: C. Allton (Swansea U.), E. Iancu (CEA/DSM/Saclay), M. Janik (WUT), P. Petreczky (BNL), A. Vuorinen (U. Helsinki), Y. Foka (GSI) Section E: QCD and New Physics Physics beyond the Standard Model with hadronic physics precision experimental data and precision calculations. Conveners: W. Detmold (MIT), M. Gersabeck (U. Manchester), F. J. Llanes-Estrada (UC Madrid), E. Mereghetti (Los Alamos NL), J. Portoles (IFIC, Valencia) Section F: Nuclear and Astroparticle Physics Nuclear matter; nuclear forces; quark matter; neutron and compact stars. Conveners: M. Alford (Washington U. in St.Louis), D. Blaschke (U. Wroclaw), T. Cohen (U. Maryland), L. Fabbietti (TU Munich), A. Schmitt (U Southampton) Section G: Strongly Coupled Theories Hints on the confinement/deconfinement mechanisms from supersymmetric and string theories; strongly coupled theories beyond the Standard Model; applications of nonperturbative methods of QCD to other fields. Conveners: D. Espriu (U. Barcelona), Z. Fodor (BU Wuppertal), E. Kiritsis (APC and U. Crete), F. Sannino (CP3-Origins), A. Weiler (TU Munich) Poster Section: with wine tasting (N. Isgur) Convener: M. Creutz(BNL)

Two new sections at this edition: Future Perspectives, Upgrades, Instrumentation Probing QCD and facilities, future experiments, planned upgrades, performance studies, simulation and analysis methods, instrumentation and new technologies Conveners: L. Musa (CERN), S. Leontsinis (U. Colorado), P. Di Nezza (INFN Frascati), C. Sturm (GSI) Statistical Methods for Physics Analysis in the XXI Century Machine learning techniques; data fitting and extraction of signals; new developents in unfolding methods; averaging and combination of results Conveners: T. Dorigo (INFN, Italy)

The conference has been a great mixing of people, approaches, methods, cultures, tools, ideas… in the best tradition of this series ! We can say that the Quark Confinement Conference shares some of the important Macedonian footprints

• The coexistence of classic and hellenistic elements

from the classic to the idea of hellenistic beauty representation

from to the experimental data This is the XII edition of an enterprise started in 1994 Past Editions S. Petersburg (Russia) 2014 Munich(Germany)2012 Madrid (Spain) 2010 Mainz (Germany) 2008 Açores (Portugal) 2006 Sardinia (Italy) 2004 Gargnano (Italy) 2002 Vienna (Austria) 2000 Lab (USA) 1998 Como (Italy) 1996 1994 Como (Italy) 1994 It is more than 20 years that i organise the scientific program of the conference (in collaboration with loc, IAC, conveners..) and the quark confinement has become a community seeing generations of physicists coming in young, becoming old or dying in it, and in fact at each edition we mourn our dear passed away

We dedicated Conf12 to the memory of Michael Mueller-Preussker andf we had a commemorative talk by Andre Sternbeck “QCD propagators and vertices from lattice QCD” Along the years the conference changed a lot, it grew in dimension and in scope and ambitions out of his original name, now obsolete, developed new sessions on new growing fields: the deconfinement, the QCD and nuclear physics, the QCD and astrophysics, the strongly coupled theories and now the session on Statical methods for physics analysis in XXI century

This shows the extreme vitality, impact and richness of our research field!

The conference has by now become and wants to be an important discussion forum in all the areas connected to strong interaction For this reason in 2010 at the Munich edition we started the project of a strong doc that was completed after years of work in 2014 and published in Eur.Phys.J. C74 (2014) no.10, 2981 QCD and strongly coupled gauge theories: challenges and perspectives

1 2, 3 4 5 6 N. Brambilla†, S. Eidelman†, P. Foka†‡, S. Gardner†‡, A.S. Kronfeld†, 7 8 9 10 11 12 M.G. Alford‡, R. Alkofer‡, M. Butensch¨on‡, T.D. Cohen‡, J. Erdmenger‡, L. Fabbietti‡, 2 13 14, 15 1 16 17 M. Faber‡, J.L. Goity‡, B. Ketzer‡§, H.W. Lin‡, F.J. Llanes-Estrada‡, QCD and strongly coupled gauge theories: challenges and perspectives 18 19, 20 21 19, 20 22 H.B.42 MeyerMoscow‡, P. Physical Pakhlov‡ Engineering, E. Pallante Institute,‡, M.I. Moscow Polikarpov 115409,‡, H. Russia Sazdjian‡, 23 24 1 25, 26 27 18 43LawrenceA. Schmitt Berkeley‡, W.M. National Snow‡, Laboratory,A. Vairo‡, 1R. Cyclotron Vogt‡, Rd.,A. Vuorinen Berkeley,‡, CAH. 94720,Wittig‡, USA 28 29 30 31, 32, 33 34 13 P.44 Arnold,IFIC, UniversitatP. Christakoglou, de Val`encia–P. Di Nezza, CSIC,Z. Apt. Fodor, Correus 22085,X. Garcia 46071 i Tormo, Val`encia,SpainR. H¨ollwieser, M.A. Janik,45 35 A. Kalweit,36 D. Keane,37 E. Kiritsis,38, 39, 40 A. Mischke,41 R. Mizuk,19, 42 Departamento43 de Fisica21 Teorica44 y del45 Cosmos and46, CAFPE, 47 48, 49 G. Odyniec, K. Papadodimas, A. Pich, R. Pittau, J.-W. Qiu, G. Ricciardi, M.G. Alford Campus Fuentenueva50 s. n.,7 Universidad51 de Granada, 1807118 Granada, Spain11, 19 P. Arnold, 46C.A.Physics Salgado, Department,K. Schwenzer, BrookhavenN.G. Stefanis, NationalG.M. Laboratory, von Hippel, Upton,and NY V.I. 11973, Zakharov USA 1 47C. N. Yang Institute forPhysik Theoretical Department, Physics Technische and Universit¨at Department M¨unchen, of Physics and Astronomy, James-Franck-Straße 1, 85748 Garching, Germany .SchmittA. H.B. Meyer 2 Stony Brook University, Stony Brook, NY 11794, USA Budker Institute of Nuclear Physics, SB RAS, Novosibirsk 630090, Russia Odyniec,G. M.A. Janik, FaberM. BrambillaN. 48 C.A. Salgado, Dipartimento di3 Fisica,Novosibirsk Universit´adegli State University, Studi Novosibirsk di Napoli 630090, Federico Russia II, 80126, Italy 4 49 28 GSI Helmholtzzentrum f¨urINFN, Schwerionenforschung Sezione di Napoli, GmbH, Planckstraße 80126, Italy 1, 64291 Darmstadt, Germany4 GSI Helmholtzzentrum f¨ur Schwerionenforschung GmbH, Planckstraße 64291 1, Darmstadt, Germany ‡ 5 , 50 7 DepartamentoDepartment de of Fisica Physics de and Particulas Astronomy, Universityy IGFAE, of Universidade Kentucky, Lexington, de Santiago KY 40506-0055, de Compostela, USA5 P. Christakoglou, 6 Department Physics of and Astronomy, University Kentucky, of Lexington, KY 40506-0055, USA Theoretical15782 Physics Santiago Department, de Compostela, Fermi National Galicia, Accelerator Spain Laboratory, AlkoferR.

51 P.O. Box 500, Batavia, Illinois 60510-5011, USA ‡ ‡ Institut f¨urTheoretische7 Physik II, Ruhr-Universit¨atBochum, 44780 Bochum, Germany ‡ , , 13 Department of Physics, Washington University, St Louis, MO, 63130, USA 23 , 43 18 8 (Dated: April 16, 2014) 35 arXiv:1404.3723v1University of [hep-ph] Graz, 8010 Graz, Austria 14 Apr 2014 2 J.L. Goity 9 50 W.M. Snow † Budker Institute Nuclear of Physics, RAS,SB Novosibirsk 630090, Russia Papadodimas,K. Kalweit,A. PakhlovP. , University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Wien, Austria 1 We highlight the10 progress, current status, and open challenges of QCD-driven physics, in theory Maryland Center for Fundamental Physics and the Department of Physics,9 Schwenzer,K. .EidelmanS. ‡ University Vienna, of Faculty Physics, of Boltzmanngasse7 1090 5, Wien, Austria6 and in experiment. We discussUniversity how of the Maryland, strong College interaction Park, MD is intimately 20742-4111, connected USA to a broad sweep , Department Physics, of WashingtonTheoretical University, Physics Louis, St MO, Department, 63130, USA Fermi National Accelerator Laboratory, 8 11 11 of physical problems,Max-Planck-Institute in settings ranging for Physics, from F¨ohringerRing astrophysics 6, 80805and cosmology M¨unchen,Germany10 to strongly-coupled, 17 M. Butensch¨on 12 Max-Planck-Institute Physics,for F¨ohringer Ring 80805 6, M¨unchen, Germany 1 Maryland Center Fundamental for Physics andDepartment the Physics, of Excellence Cluster “Origin and Structure of the Universe”, 3 29 complex systems in particle and condensed-matter18 Department physics, Fisica Teorica Universidad I, Complutense as Madrid, de well 28040 Madrid, Spain as to searches for physics beyond Physik Department, Technische Universit¨at M¨unchen, 16 Novosibirsk State University, Novosibirsk 630090, Russia Technische21 Universit¨at M¨unchen, 85748 Garching, Germany ‡ James-Franck-Straße 85748 1, Garching, Germany the Standard Model. We also discuss how successPRISMA Cluster Excellence, in of describingInstitut f¨ur Kernphysik and Helmholtz Institut Mainz, the strong interaction impacts other , 13 22 P. Nezza,Di ‡ 14, 15 Department Physics, of University Washington, of Seattle, WA 98195-1560, USA 36 ‡ Atominstitut,Centre Technische Theoreticalfor Physics, University Groningen, of Universit¨at 9747 AG Groningen, Netherlands Wien, 1040 Vienna, Austria , , 19, 20 14 24 fields, and, in turn, how such subjectsHamptonInstitut Physique de Nucl´eaire, can University, CNRS/IN2P3, impact Universit´e Paris-Sud, Hampton, 91405 studies Orsay, France of VA the 23668, strong USA interaction. In the course of 23 13 University Maryland, of College Park, MD 20742-4111, USA 15 Keane,D. 25 the work we oer a perspective on the many research streams which flow into and out of QCD,P.O. Box500, Batavia, Illinois 60510-5011, as USA † Jeerson Laboratory,19 Newport News, VA 23606, USA12 VairoA. Institut f¨ur Theoretische Physik, Technische20 Universit¨at Wien, 1040 Vienna, Austria Atominstitut, Technische Universit¨at Wien, 1040 Vienna, Austria , 16 7 KetzerB. 2, 3 Physics Division, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA Technische Universit¨at M¨unchen, Garching,Germany 85748 21 well as a vision forDepartment future developments. of Physics, UniversityInstitute Theoretical of of and Experimental Washington, Physics, Moscow 117218, Russia Seattle, WA 98195-1560,Excellence Cluster “Origin andStructure Universe”, the of USA .PallanteE. 17 Moscow Institute Physics for and Technology, Dolgoprudny 141700, Russia N.G. Stefanis, 38 Department Fisica Teorica I, Universidad Complutense de Madrid, 28040 Madrid, Spain 24 18 Pich,A. FokaP. Crete Center forTheoretical Physics, Department Physics, of University Crete, of 71003 Heraklion, Greece. PRISMA Cluster of Excellence, InstitutJohannes f¨ur Gutenberg-Universit¨at Kernphysik Mainz, 55099 Mainz,15 Germany and Helmholtz Institut Mainz, 8 PACS30 numbers: 12.38.-t Center Exploration for Energy of and Matter and Department Physics, of University Graz, of 8010 Graz, Austria ‡ Johannes Gutenberg-Universit¨atMainz, 55099 Mainz,14 Germany , Je 30 9 Istituto Nazionale Fisica di Nucleare (INFN), Fermi Via E. 0004440, Frascati, Italy 19 26 37 ‡ Institute of Theoretical and Experimental Physics, MoscowHampton University, Hampton, 117218, VA 23668, USA Russia 39 , T.D. Cohen 20 1 Physics Department, University California, of Davis, CA95616, USA Fodor,Z. 34 ContentsMoscow Institute for Physics and Technology, Dolgoprudny3.4.7.erson Laboratory, Newport Baryon News, VA 23606, USA 141700, chiral Russia dynamics 45 ‡§ Laboratoire APC, Universit´e Paris Diderot, Sorbonne Paris-Cit´e, 75205 Paris Cedex 13,France 28 21 Kiritsis,E. VogtR. 41 Centre for Theoretical Physics, University of Groningen, 9747 AG Groningen, Netherlands 44 , †‡ Albert Einstein Center Fundamentalfor Physics, Institut f¨ur Theoretische Physik, 3.4.8. Other topics 46 1 Department Physics, of University Virginia, of 382McCormick Rd., ‡ 35 22 , , Utrecht University, Faculty Science, of Princetonplein 3584 5, CC Utrecht, The Netherlands Institut de Physique Nucl´eaire, CNRS/IN2P3, Universit´eParis-Sud, 91405 Orsay, France 21 4 1 29 27 Pittau,R. H.W. Lin aut fPyis aswUiest fTechnology, Warsaw, PolandWarsaw 00-662 of UniversityPhysics, of Faculty 23 3.4.9. Outlook and remarks 46 36 1. Overview 4 Institut f¨urTheoretische Physik, Technische Universit¨atWien, 1040 Vienna, Austria 51 NIKHEF, Science Park 105, 1098 XG Amsterdam, NetherlandsDepartment Physics of andHelsinki Institute Physics, of Indiana University, Bloomington, 47408, IN USA GardnerS. 24 3.5. Low-energy precision observables and tests of the M.I. Polikarpov European Organization Nuclear for 1.1. Research (CERN), Readers’ Geneva, Switzerland guideCenter for Exploration of Energy 4 and Matter and Department of Physics, 37 P.O. Box 400714, Charlottesville, VA 22904-4714,P.O. 00014 Box 64, University USA Helsinki, of Finland 40 G.M. von Hippel, 31, 32, 33 Indiana University, Bloomington, INStandard 47408, USA Model 47 ‡ , Kent State University, Department Physics, of Kent, OH44242, USA 25 25, 26 ‡ Theory Group, Physics Department, CERN, 1211, Geneva Switzerland 23, 2 Physics Division, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA 38, 39, 40 , 31 3.5.1. The muon’s anomalous magnetic moment 47 10 2. The nature of QCD 26 6 Universit¨at Bern, Sidlerstraße 301233 Bern, 5, Switzerland Physics Department, University of California, Davis, CA 95616, USA 2.1.BroaderthemesinQCDWuppertal University, Wuppertal, 42119, Germany 27 6 3.5.2. Theelectroweakmixingangle 49 ‡ 45 , ErdmengerJ. Forschungszentrum J¨ulich, J¨ulich, Germany 52425, Department of Physics and Helsinki Institute of Physics, 16 2.2. Experiments32 addressing QCD 8 3.5.3. s from inclusive hadronic ⌅ decay 50 VuorinenA. P.O. Box 64, 00014 University of Helsinki, Finland GarciaX. Tormo, i †‡ E¨otv¨os University, Budapest, 1117, Hungary 28 J.-W. Qiu, 2.3.TheoreticalarXiv:1404.3723v1 [hep-ph] 14 Apr 2014 tools for QCD 8 F.J. Llanes-Estrada Department of Physics, University of Virginia,3.6. Future 382 McCormick Directions Rd., 51 , 5 2.4.FundamentalparametersofQCDP.O. Box 400714, Charlottesville, 10 VA 22904-4714, USA Mischke,A. 29NIKHEF, Science Park 105, 1098 XG Amsterdam, Netherlands4 A.S. Kronfeld 4. Heavy quarks 53 ‡ 30 , 3 Istituto Nazionale di Fisica Nucleare (INFN), Via E. Fermi 40, 00044 Frascati, Italy 19, 20 3. Light quarks 31 12 4.1. Methods 53 Wuppertal University, Wuppertal, 42119, Germany 18 3.1. Introduction32 12 E¨otv¨osUniversity, Budapest, 1117,4.1.1. Hungary Nonrelativistic eective field theories 53 46, 47 ‡ ‡ 33 , 3.2. Hadron structure 12 and V.I. Zakharov 27 , Forschungszentrum J¨ulich, J¨ulich, 52425,4.1.2. Germany The progress on NRQCD factorization 54 SazdjianH. 11 34 3.2.1. Parton distributionAlbert functions Einstein Center in QCD for Fundamental 12 Physics, Institut f¨ur Theoretische Physik, 41 4.1.3.Latticegaugetheory 57 WittigH. FabbiettiL. 3.2.2. PDFs in the DGLAP approachUniversit¨at Bern, Sidlerstraße 16 5, 3012 Bern, Switzerland Ricciardi,G. 35 4.2. Heavy semileptonic decays 59 Mizuk,R. † Faculty of Physics, Warsaw University of Technology, 00-662 Warsaw, Poland 34 3.2.3. PDFs and nonlinear36 evolution equations 17 , European Organization for Nuclear Research (CERN),4.2.1. Geneva,Exclusive Switzerland and inclusive D decays 59 6 3.2.4. Hadron form factors37 and GPDs 18 ‡ .H¨ollwieser,R. , Kent State University, Department of Physics,4.2.2. Kent, Exclusive OH 44242,B USAdecays 62 17 3.2.5. The38 proton radius puzzle 22 Crete Center for Theoretical Physics, Department of Physics, University of Crete, 71003 Heraklion, Greece. ‡ 39 4.2.3. Inclusive B decays 63 , 3.2.6. The pion andLaboratoire other pseudoscalar APC, Universit´eParis mesons Diderot, 24 Sorbonne Paris-Cit´e, 75205 Paris Cedex 13, France 22 ‡ 40 4.2.4. Rare charm decays 64 19, 42 , 3.3. Hadron spectroscopyTheory Group, Physics Department, 25 CERN, 1211, Geneva 23, Switzerland 18 ‡ , 41 12 Utrecht University, Faculty of Science, Princetonplein4.3. 5, Spectroscopy 3584 CC Utrecht, The Netherlands 64 48, 49 3.3.1. Lattice QCD 26 11, 19 3.3.2. Continuum methods 30 4.3.1.Experimentaltools 65 3.3.3. Experiments 30 4.3.2. Heavy quarkonia below open flavor 3.4. Chiral dynamics 40 thresholds 65 13 3.4.1. ⇤⇤ and ⇤K scattering lengths 41 4.3.3. Quarkonium-like states at open flavor 3.4.2. Lattice QCD calculations: quark masses and thresholds 67 eective couplings 42 4.3.4. Quarkonium and quarkonium-like states 3.4.3. SU(3)L SU(3)R global fits 43 aboveopenflavorthresholds 70 3.4.4. ⇥ 3⇤ and the nonstrange quark masses 43 4.3.5. Summary 72 ⇥ 3.4.5. Other tests with electromagnetic probes 44 4.4. Strong coupling s 72 3.4.6. Hard pion ChPT 45 4.5.Heavyquarkoniumproduction 73 4.5.1. Summary of recent experimental progress 73 4.5.2. NLO tests of NRQCD LDME universality 75 Corresponding author, [email protected] 4.5.3. Recent calculations of relativistic corrections 77 †Editor 4.5.4. Calculations using k factorization 77 Chapter Convener T ‡ 4.5.5. Current trends in theory 78 §Present address: Helmholtz-Institut f¨urStrahlen- und Kernphysik, Universit¨at Bonn, 53115 Bonn, Germany 4.6. Future directions 78 2

42IFIC, Universitat de Val`encia– CSIC, Apt. Correus 22085, 46071 Val`encia,Spain 43Departamento de Fisica Teorica y del Cosmos and CAFPE, Campus Fuentenueva s. n., Universidad de Granada, 18071 Granada, Spain 44Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA 45C. N. Yang Institute for Theoretical Physics and Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA 46Dipartimento di Fisica, Universit´adegli Studi di Napoli Federico II, 80126, Italy 47INFN, Sezione di Napoli, 80126, Italy 48Departamento de Fisica de Particulas and IGFAE Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia – Spain 49Institut f¨urTheoretische Physik II, Ruhr-Universit¨atBochum, 44780 Bochum, Germany (Dated: April 3, 2014) We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly-coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we oer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.

PACS numbers: 12.38.-t

Contents 3.4.8. Other topics 46 3.4.9. Outlook and remarks 46 1. Overview1 4 3.5. Low-energy precision observables and tests of the 1.1. Readers’ guide 4 Standard Model 47 3.5.1. The muon’s anomalous magnetic moment 47 2. The nature of QCD2 6 3.5.2. Theelectroweakmixingangle 49 2.1.BroaderthemesinQCD 6 3.6. s from the inclusive hadronic ⇥ decay 50 2.2. QCD experiments 8 3.7. Future Directions 51 2.3.Theoreticaltools 9 4. Heavy quarks 4 52 2.4. QCD parameters 10 4.1. Methods 52 3. Light quarks 3 12 4.1.1. Nonrelativistic eective field theories 52 4.1.2. The progress on NRQCD factorization 53 3.1. Introduction 12 4.1.3. Lattice 56 3.2. Hadron structure 12 4.2. Heavy semileptonic decays 58 3.2.1. Parton distribution functions in QCD 12 4.2.1. Exclusive and inclusive D decays 58 3.2.2. PDFs in the DGLAP approach 16 4.2.2. Exclusive B decays 61 3.2.3. PDFs and nonlinear evolution equations 17 4.2.3. Inclusive B decays 62 3.2.4. Hadron form factors and GPDs 18 4.2.4. Rare charm decays 63 3.2.5. The proton radius puzzle 22 4.3. Spectroscopy 63 3.2.6. The pion and other pseudoscalar mesons 24 4.3.1.Experimentaltools 64 3.3. Hadron spectroscopy 25 4.3.2. Heavy quarkonia below open flavor 3.3.1. Lattice QCD 26 thresholds 64 3.3.2. Continuum methods 29 4.3.3. Quarkonium-like states at open flavor 3.3.3. Experiments 30 thresholds 66 3.4. Chiral dynamics 40 4.3.4. Quarkonium and quarkonium-like states 3.4.1. ⇤⇤ and ⇤K scattering lengths 41 aboveopenflavorthresholds 69 3.4.2. Lattice calculations: quark masses and 4.3.5. Summary 70 eective couplings 42 4.4. Strong coupling s 71 3.4.3. SU(3)L SU(3)R global fits 43 4.5.Heavyquarkoniumproduction 71 3.4.4. ⇥ 3⇤ and the nonstrange quark masses 43 ⇥ 4.5.1. Summary of recent experimental progress 71 3.4.5. Other tests with electromagnetic probes 44 4.5.2. NLO tests of the NRQCD LDME 3.4.6. Hard pion ChPT 45 universality 74 3.4.7. Baryon chiral dynamics 45 4.5.3. Recent calculations of relativistic corrections 76 4.5.4. Calculations using kT factorization 76 4.5.5. Current trends in theory 77 4.6. Future directions 77 Corresponding author, [email protected] †Editor 5. Searching for new physics with precision 5 ‡Chapter Convener measurements and computations 79 2

42IFIC, Universitat de Val`encia– CSIC, Apt. Correus 22085, 46071 Val`encia,Spain 43Departamento de Fisica Teorica y del Cosmos and CAFPE, Campus Fuentenueva s. n., Universidad de Granada, 18071 Granada, Spain 44Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA 45C. N. Yang Institute for Theoretical Physics and Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA 46Dipartimento di Fisica, Universit´adegli Studi di Napoli Federico II, 80126, Italy 47INFN, Sezione di Napoli, 80126, Italy 48Departamento de Fisica de Particulas and IGFAE Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia – Spain 49Institut f¨urTheoretische Physik II, Ruhr-Universit¨atBochum, 44780 Bochum, Germany (Dated: April 3, 2014) We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly-coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we oer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.

PACS numbers: 12.38.-t

Contents 3.4.8. Other topics 46 3.4.9. Outlook and remarks 46 1. Overview1 4 3.5. Low-energy precision observables and tests of the 1.1. Readers’ guide 4 Standard Model 47 3.5.1. The muon’s anomalous magnetic moment 47 2. The nature of QCD2 6 3.5.2. Theelectroweakmixingangle 49 2.1.BroaderthemesinQCD 6 3.6. s from the inclusive hadronic ⇥ decay 50 2.2. QCD experiments 8 3.7. Future Directions 51 2.3.Theoreticaltools 9 3 4. Heavy quarks 4 52 2.4. QCD parameters 10 4.1. Methods 52 5.1. Introduction 79 6.8. The chiral magnetic eect 144 3. Light quarks 3 12 4.1.1. Nonrelativistic eective field theories 52 4.1.2. The progress on NRQCD factorization 53 5.2. QCD for collider-based BSM searches 80 6.9. Future directions 145 3.1. Introduction 12 4.1.3. Lattice 56 5.2.1. Theoretical overview: factorization 80 3.2. Hadron structure 12 4.2. Heavy semileptonic decays 58 5.2.2. Outcomes for a few sample processes 80 7. Nuclear physics and dense QCD in colliders and 3.2.1. Parton distribution functions in QCD 12 compact stars 7 147 4.2.1. Exclusive and inclusive D decays 58 5.2.3. LHCresults: Higgsandtopphysics 82 3.2.2. PDFs in the DGLAP approach 16 7.1. Experimental constraints on high–density objects 147 4.2.2. Exclusive B decays 61 5.2.4. Uncertainties from nucleon structure and 3.2.3. PDFs and nonlinear evolution equations 17 7.1.1. Resultsfromheavy–ioncollisions 147 4.2.3. Inclusive B decays 62 PDFs 84 3.2.4. Hadron form factors and GPDs 18 7.1.2. The K–nucleon interaction in vacuum 150 4.2.4. Rare charm decays 63 5.2.5. Complementarity with low-energy probes 85 3.2.5. The proton radius puzzle 22 5.3. Low-energy framework for the analysis of BSM 7.1.3. Hyperon–nucleoninteraction 151 4.3. Spectroscopy 63 3.2.6. The pion and other pseudoscalar mesons 24 eects 86 7.1.4. Implications for neutron stars 151 4.3.1.Experimentaltools 64 3.3. Hadron spectroscopy 25 5.4. Permanent EDMs 87 7.1.5. Neutron–rich nuclei 152 4.3.2. Heavy quarkonia below open flavor 3.3.1. Lattice QCD 26 5.4.1. Overview 87 7.2. Nucleon-nucleon interactions and finite nuclei from thresholds 64 5.4.2. Experiments, and their interpretation and QCD 153 3.3.2. Continuum methods 29 4.3.3. Quarkonium-like states at open flavor 3.3.3. Experiments 30 implications 88 7.2.1. Lattice QCD and nuclear physics 153 thresholds 66 7.2.2. Eective field theory approach 154 3.4. Chiral dynamics 40 5.4.3. EFTsforEDMs: theneutroncase 89 4.3.4. Quarkonium and quarkonium-like states 7.2.3. Large N limit and the 1/N expansion 154 3.4.1. ⇤⇤ and ⇤K scattering lengths 41 5.4.4. Lattice-QCDmatrixelements 90 c c aboveopenflavorthresholds 69 5.5. Probing non-(V A) interactions in beta decay 91 7.3. Dense matter: theory and astrophysical constraints 155 3.4.2. Lattice calculations: quark masses and 4.3.5. Summary 70 7.3.1. Ultra-dense QCD and color-flavor locking 155 eective couplings 42 5.5.1. The role of the neutron lifetime 94 4.4. Strong coupling s 71 5.6. Broader applications of QCD 95 7.3.2.ModeratelydenseQCD 156 3.4.3. SU(3) SU(3) global fits 43 L R 4.5.Heavyquarkoniumproduction 71 5.6.1. Determination of the proton radius 95 7.3.3. Theoretical approaches and challenges 156 3.4.4. ⇥ 3⇤ and the nonstrange quark masses 43 ⇥ 4.5.1. Summary of recent experimental progress 71 5.6.2. Dark-matter searches 95 7.3.4. Dense matter and observations of compact 3.4.5. Other tests with electromagnetic probes 44 4.5.2. NLO tests of the NRQCD LDME 5.6.3.Neutrinophysics 96 stars 158 3.4.6. Hard pion ChPT 45 universality 74 5.6.4. Cold nuclear medium eects 96 7.4. Future directions 161 3.4.7. Baryon chiral dynamics 45 4.5.3. Recent calculations of relativistic corrections 76 5.6.5. Gluonic structure 97 4.5.4. Calculations using k factorization 76 8. Vacuum structure and infrared QCD: T 5.7.Quarkflavorphysics 97 8 4.5.5. Current trends in theory 77 5.7.1. Quark masses and charges 98 confinement and chiral symmetry breaking 163 4.6. Future directions 77 5.7.2.TestingtheCKMparadigm 99 8.1. Confinement 163 Corresponding author, [email protected] 5.7.3. New windows on CP and T violation 103 8.2. Functional methods 167 8.3. Mechanism of chiral symmetry breaking 171 †Editor 5. Searching for new physics with precision 5.7.4. Rare decays 105 5 3 8.4. Future Directions 175 ‡Chapter Convener measurements and computations 79 5.8. Future Directions 106

6 9. Strongly coupled theories and conformal 5.1. Introduction 79 6.6.8. Deconfinement The chiral magnetic eect 144107 symmetry 9 177 5.2. QCD for collider-based BSM searches 80 6.9.6.1.MappingtheQCDphasediagram Future directions 145 108 6.1.1. Precision lattice QCD calculations at 9.1. New exact results in quantum field theory 177 5.2.1. Theoretical overview: factorization 80 9.1.1. Integrability of planar =4SYM 178 7. Nuclear physicsfinite-temperature and dense QCD in colliders and 108 5.2.2. Outcomes for a few sample processes 80 9.1.2.ScatteringamplitudesN 178 compact6.1.2. stars A critical7 point in the QCD phase diagram?147 110 5.2.3. LHCresults: Higgsandtopphysics 82 9.1.3. Generalized unitarity and its consequences 179 5.2.4. Uncertainties from nucleon structure and 7.1. Experimental6.1.3. Experimental constraints exploration on high–density of the QCD objects phase 147 diagram 110 9.1.4. Supersymmetric gauge theories 179 PDFs 84 7.1.1. Resultsfromheavy–ioncollisions 147 9.1.5. Conformal field theories 180 5.2.5. Complementarity with low-energy probes 85 6.2.7.1.2. Near-equilibrium The K–nucleon properties interaction of the in QGP vacuum 150 112 6.2.1. Globaleventcharacterization 112 9.1.6. 3dCFTsandhigherspinsymmetry 180 5.3. Low-energy framework for the analysis of BSM 7.1.3. Hyperon–nucleoninteraction 151 9.2. Conformal symmetry, strongly coupled theories and eects 86 7.1.4.6.2.2.Azimuthalanisotropies Implications for neutron stars 151 115 6.2.3. Transport coe⇥cients & spectral functions: new physics 181 5.4. Permanent EDMs 87 7.1.5. Neutron–rich nuclei 152 theory 117 9.2.1. Theory of the conformal window 181 5.4.1. Overview 87 7.2. Nucleon-nucleon interactions and finite nuclei from 6.3. Approach to equilibrium 118 9.2.2. Lattice, AdS/CFT, and the electroweak 5.4.2. Experiments, and their interpretation and QCD 153 6.3.1. Thermalization at weak and strong coupling 118 symmetry breaking 182 implications 88 7.2.1. Lattice QCD and nuclear physics 153 6.3.2. Multiplicities and entropy production 119 9.3. Electroweak symmetry breaking 183 5.4.3. EFTsforEDMs: theneutroncase 89 7.2.2. Eective field theory approach 154 6.4. Hard processes and medium induced eects 121 9.3.1. Strongly coupled scenarios for EWSB 183 5.4.4. Lattice-QCDmatrixelements 90 7.2.3. Large Nc limit and the 1/Nc expansion 154 9.3.2. Conformal symmetry, the Planck scale, and 7.3. Dense6.4.1.Introduction matter: theory and astrophysical constraints 155 121 5.5. Probing non-(V A) interactions in beta decay 91 6.4.2. Theory of hard probes 122 naturalness 186 7.3.1. Ultra-dense QCD and color-flavor locking 155 5.5.1. The role of the neutron lifetime 94 Nuclear matter eects in pAcollisions 122 9.4. Methods from high-energy physics for strongly 7.3.2.ModeratelydenseQCD 156 5.6. Broader applications of QCD 95 Energy loss theory 124 coupled, condensed matter systems 188 7.3.3. Theoretical approaches and challenges 156 5.6.1. Determination of the proton radius 95 Quarkonium interaction at finite 9.4.1. Latticegaugetheoryresults 188 7.3.4. Dense matter and observations of compact 5.6.2. Dark-matter searches 95 temperature and quarkonium suppression 125 9.4.2. Gauge-gravitydualityresults 189 stars 158 5.6.3.Neutrinophysics 96 6.4.3. Experimental results on hard probes 128 9.5. Summary and future prospects 191 7.4. Future directions 161 5.6.4. Cold nuclear medium eects 96 High p observables 128 T Appendix: Acronyms 192 5.6.5. Gluonic structure 97 Heavy flavors 133 8. Vacuum structure and infrared QCD: 5.7.Quarkflavorphysics 97 6.5. Referenceforheavy-ioncollisions 140 confinement and chiral symmetry breaking8 163 Acknowledgements 197 5.7.1. Quark masses and charges 98 6.6. Lattice QCD, AdS/CFT and perturbative QCD 141 8.1. Confinement 163 5.7.2.TestingtheCKMparadigm 99 6.6.1. Weakly and strongly coupled (Super) 8.2. Functional methods 167 References 198 5.7.3. New windows on CP and T violation 103 Yang-Millstheories 142 8.3. Mechanism of chiral symmetry breaking 171 5.7.4. Rare decays 105 6.6.2. Holographic breaking of scale invariance and 5.8. Future Directions 106 8.4. Future DirectionsIHQCD 175 143 6.7. Impact of thermal field theory calculations on 3 6 9. Strongly coupled theories and conformal 6. Deconfinement 107 cosmology9 144 6.1.MappingtheQCDphasediagram 108 symmetry 177 5.1.6.1.1. Introduction Precision lattice QCD calculations at 79 9.1.6.8. New The exact chiral results magnetic in quantum eect field theory 177 144 5.2. QCD for collider-based BSM searches 80 6.9.9.1.1. Future Integrability directions of planar =4SYM 178 145 finite-temperature 108 N 6.1.2.5.2.1. A Theoretical critical point overview: in the QCD factorization phase diagram? 110 80 9.1.2.Scatteringamplitudes 178 5.2.2. Outcomes for a few sample processes 80 7. Nuclear9.1.3. Generalized physics and unitarity dense and QCD its consequencesin colliders and 179 6.1.3. Experimental exploration of the QCD phase 7 5.2.3.diagram LHCresults: Higgsandtopphysics 110 82 compact9.1.4. Supersymmetric stars gauge theories 179147 6.2. Near-equilibrium5.2.4. Uncertainties properties from nucleon of the QGP structure and 112 7.1.9.1.5. Experimental Conformal constraints field theories on high–density objects 180 147 6.2.1. GlobaleventcharacterizationPDFs 112 84 9.1.6.7.1.1. 3dCFTsandhigherspinsymmetry Resultsfromheavy–ioncollisions 180 147 6.2.2.Azimuthalanisotropies5.2.5. Complementarity with low-energy probes 115 85 9.2. Conformal7.1.2. The symmetry,K–nucleon strongly interaction coupled in theories vacuum and 150 5.3.6.2.3. Low-energy Transport framework coe⇥cients for the & spectral analysis functions: of BSM new7.1.3. physics Hyperon–nucleoninteraction 181 151 eectstheory 117 86 9.2.1.7.1.4. Theory Implications of the conformal for neutron window stars 181 151 6.3.5.4. Approach Permanent to EDMs equilibrium 118 87 9.2.2.7.1.5. Lattice, Neutron–rich AdS/CFT, nuclei and the electroweak 152 6.3.1.5.4.1. Thermalization Overview at weak and strong coupling 118 87 7.2. Nucleon-nucleonsymmetry breaking interactions and finite nuclei from 182 6.3.2.5.4.2. Multiplicities Experiments, and and entropy their interpretation production and 119 9.3. ElectroweakQCD symmetry breaking 183 153 6.4. Hard processesimplications and medium induced eects 121 88 9.3.1.7.2.1. Strongly Lattice coupled QCD and scenarios nuclear for physics EWSB 183 153 6.4.1.Introduction5.4.3. EFTsforEDMs: theneutroncase 121 89 9.3.2.7.2.2. Conformal Eective symmetry, field theory the approach Planck scale, and 154 naturalness 186 6.4.2.5.4.4. Theory Lattice-QCDmatrixelements of hard probes 122 90 7.2.3. Large Nc limit and the 1/Nc expansion 154 5.5. ProbingNuclear non-( matterV A) e interactionsects in pAcollisions in beta decay 122 91 9.4.7.3. Methods Dense matter: from high-energy theory and physics astrophysical for strongly constraints 155 5.5.1.Energy The role loss of theory the neutron lifetime 124 94 coupled,7.3.1. Ultra-dense condensed matter QCD and systems color-flavor locking 188 155 9.4.1. Latticegaugetheoryresults 188 5.6. BroaderQuarkonium applications interaction of QCD at finite 95 7.3.2.ModeratelydenseQCD 156 9.4.2. Gauge-gravitydualityresults 189 5.6.1.temperature Determination and of quarkonium the proton suppression radius 125 95 7.3.3. Theoretical approaches and challenges 156 9.5. Summary and future prospects 191 6.4.3.5.6.2. Experimental Dark-matter results searches on hard probes 128 95 7.3.4. Dense matter and observations of compact High p observables 128 stars 158 5.6.3.NeutrinophysicsT 96 Appendix: Acronyms 192 5.6.4.Heavy Cold nuclear flavors medium eects 133 96 7.4. Future directions 161 6.5. Referenceforheavy-ioncollisions5.6.5. Gluonic structure 140 97 Acknowledgements 197 6.6. Lattice QCD, AdS/CFT and perturbative QCD 141 8. Vacuum structure and infrared QCD: 5.7.Quarkflavorphysics 97 8 6.6.1.5.7.1. Weakly Quark massesand strongly and charges coupled (Super) 98 Referencesconfinement and chiral symmetry breaking 198163 5.7.2.TestingtheCKMparadigmYang-Millstheories 142 99 8.1. Confinement 163 6.6.2.5.7.3. Holographic New windows breaking on CP of and scale T violation invariance and 103 8.2. Functional methods 167 5.7.4.IHQCD Rare decays 143 105 8.3. Mechanism of chiral symmetry breaking 171 6.7.5.8. Impact Future of Directions thermal field theory calculations on 106 8.4. Future Directions 175 cosmology 144 6 9. Strongly coupled theories and conformal 6. Deconfinement 107 9 6.1.MappingtheQCDphasediagram 108 symmetry 177 6.1.1. Precision lattice QCD calculations at 9.1. New exact results in quantum field theory 177 9.1.1. Integrability of planar =4SYM 178 finite-temperature 108 N 6.1.2. A critical point in the QCD phase diagram? 110 9.1.2.Scatteringamplitudes 178 6.1.3. Experimental exploration of the QCD phase 9.1.3. Generalized unitarity and its consequences 179 diagram 110 9.1.4. Supersymmetric gauge theories 179 6.2. Near-equilibrium properties of the QGP 112 9.1.5. Conformal field theories 180 6.2.1. Globaleventcharacterization 112 9.1.6. 3dCFTsandhigherspinsymmetry 180 6.2.2.Azimuthalanisotropies 115 9.2. Conformal symmetry, strongly coupled theories and 6.2.3. Transport coe⇥cients & spectral functions: new physics 181 theory 117 9.2.1. Theory of the conformal window 181 6.3. Approach to equilibrium 118 9.2.2. Lattice, AdS/CFT, and the electroweak 6.3.1. Thermalization at weak and strong coupling 118 symmetry breaking 182 6.3.2. Multiplicities and entropy production 119 9.3. Electroweak symmetry breaking 183 6.4. Hard processes and medium induced eects 121 9.3.1. Strongly coupled scenarios for EWSB 183 6.4.1.Introduction 121 9.3.2. Conformal symmetry, the Planck scale, and 6.4.2. Theory of hard probes 122 naturalness 186 Nuclear matter eects in pAcollisions 122 9.4. Methods from high-energy physics for strongly Energy loss theory 124 coupled, condensed matter systems 188 Quarkonium interaction at finite 9.4.1. Latticegaugetheoryresults 188 temperature and quarkonium suppression 125 9.4.2. Gauge-gravitydualityresults 189 6.4.3. Experimental results on hard probes 128 9.5. Summary and future prospects 191 High p observables 128 T Appendix: Acronyms 192 Heavy flavors 133 6.5. Referenceforheavy-ioncollisions 140 Acknowledgements 197 6.6. Lattice QCD, AdS/CFT and perturbative QCD 141 6.6.1. Weakly and strongly coupled (Super) References 198 Yang-Millstheories 142 6.6.2. Holographic breaking of scale invariance and IHQCD 143 6.7. Impact of thermal field theory calculations on cosmology 144 3

5.1. Introduction 79 6.8. The chiral magnetic eect 144 5.2. QCD for collider-based BSM searches 80 6.9. Future directions 145 5.2.1. Theoretical overview: factorization 80 5.2.2. Outcomes for a few sample processes 80 7. Nuclear physics and dense QCD in colliders and 5.2.3. LHCresults: Higgsandtopphysics 82 compact stars 7 147 5.2.4. Uncertainties from nucleon structure and 7.1. Experimental constraints on high–density objects 147 PDFs 84 7.1.1. Resultsfromheavy–ioncollisions 147 5.2.5. Complementarity with low-energy probes 85 7.1.2. The K–nucleon interaction in vacuum 150 5.3. Low-energy framework for the analysis of BSM 7.1.3. Hyperon–nucleoninteraction 151 eects 86 7.1.4. Implications for neutron stars 151 5.4. Permanent EDMs 87 7.1.5. Neutron–rich nuclei 152 5.4.1. Overview 87 7.2. Nucleon-nucleon interactions and finite nuclei from 5.4.2. Experiments, and their interpretation and QCD 153 implications 88 7.2.1. Lattice QCD and nuclear physics 153 5.4.3. EFTsforEDMs: theneutroncase 89 7.2.2. Eective field theory approach 154 5.4.4. Lattice-QCDmatrixelements 90 7.2.3. Large Nc limit and the 1/Nc expansion 154 5.5. Probing non-(V A) interactions in beta decay 91 7.3. Dense matter: theory and astrophysical constraints 155 5.5.1. The role of the neutron lifetime 94 7.3.1. Ultra-dense QCD and color-flavor locking 155 5.6. Broader applications of QCD 95 7.3.2.ModeratelydenseQCD 156 5.6.1. Determination of the proton radius3 95 7.3.3. Theoretical approaches and challenges 156 5.6.2. Dark-matter searches 95 7.3.4. Dense matter and observations of compact stars 158 5.1. Introduction 79 6.8. The chiral5.6.3.Neutrinophysics magnetic eect 144 96 5.6.4. Cold nuclear medium eects 96 7.4. Future directions 161 5.2. QCD for collider-based BSM searches 80 6.9. Future directions 145 5.6.5. Gluonic structure 97 5.2.1. Theoretical overview: factorization 80 5.7.Quarkflavorphysics 97 8. Vacuum structure and infrared QCD: 7. Nuclear physics and dense QCD in colliders and 8 5.2.2. Outcomes for a few sample processes 80 5.7.1. Quark masses and charges 98 confinement and chiral symmetry breaking 163 compact stars 7 147 5.2.3. LHCresults: Higgsandtopphysics 82 5.7.2.TestingtheCKMparadigm 99 8.1. Confinement 163 7.1. Experimental constraints on high–density objects 147 5.2.4. Uncertainties from nucleon structure and 5.7.3. New windows on CP and T violation 103 8.2. Functional methods 167 7.1.1. Resultsfromheavy–ioncollisions 147 PDFs 84 5.7.4. Rare decays 105 8.3. Mechanism of chiral symmetry breaking 171 5.2.5. Complementarity with low-energy probes 85 7.1.2.5.8. Future The K Directions–nucleon interaction in vacuum 150 106 8.4. Future Directions 175 5.3. Low-energy framework for the analysis of BSM 7.1.3. Hyperon–nucleoninteraction 151 eects 86 7.1.4. Implications6 for neutron stars 151 9. Strongly coupled theories and conformal 6. Deconfinement 107 9 5.4. Permanent EDMs 87 7.1.5.6.1.MappingtheQCDphasediagram Neutron–rich nuclei 152 108 symmetry 177 5.4.1. Overview 87 7.2. Nucleon-nucleon6.1.1. Precision interactions lattice QCD and calculations finite nuclei at from 9.1. New exact results in quantum field theory 177 9.1.1. Integrability of planar =4SYM 178 5.4.2. Experiments, and their interpretation and QCDfinite-temperature 153 108 N implications 88 7.2.1.6.1.2. Lattice A critical QCD and point nuclear in the physics QCD phase diagram? 153 110 9.1.2.Scatteringamplitudes 178 9.1.3. Generalized unitarity and its consequences 179 5.4.3. EFTsforEDMs: theneutroncase 89 7.2.2.6.1.3. Eective Experimental field theory exploration approach of the QCD phase 154 9.1.4. Supersymmetric gauge theories 179 5.4.4. Lattice-QCDmatrixelements 90 7.2.3. LargediagramNc limit and the 1/Nc expansion 154 110 7.3. Dense6.2. Near-equilibrium matter: theory properties and astrophysical of the QGP constraints 155 112 9.1.5. Conformal field theories 180 5.5. Probing non-(V A) interactions in beta decay 91 9.1.6. 3dCFTsandhigherspinsymmetry 180 7.3.1.6.2.1. Ultra-dense Globaleventcharacterization QCD and color-flavor locking 155 112 5.5.1. The role of the neutron lifetime 94 9.2. Conformal symmetry, strongly coupled theories and 7.3.2.ModeratelydenseQCD6.2.2.Azimuthalanisotropies 156 115 5.6. Broader applications of QCD 95 new physics 181 7.3.3.6.2.3. Theoretical Transport approaches coe⇥cients and & challenges spectral functions: 156 5.6.1. Determination of the proton radius 95 9.2.1. Theory of the conformal window 181 5.6.2. Dark-matter searches 95 7.3.4. Densetheory matter and observations of compact 117 6.3. Approach to equilibrium 118 9.2.2. Lattice, AdS/CFT, and the electroweak 5.6.3.Neutrinophysics 96 stars 158 6.3.1. Thermalization at weak and strong coupling 118 symmetry breaking 182 5.6.4. Cold nuclear medium eects 96 7.4. Future directions 161 6.3.2. Multiplicities and entropy production 119 9.3. Electroweak symmetry breaking 183 5.6.5. Gluonic structure 97 6.4. Hard processes and medium induced eects 121 9.3.1. Strongly coupled scenarios for EWSB 183 5.7.Quarkflavorphysics 97 8. Vacuum structure and infrared QCD: 9.3.2. Conformal symmetry, the Planck scale, and 6.4.1.Introduction8 121 5.7.1. Quark masses and charges 98 confinement and chiral symmetry breaking 163 naturalness 186 8.1. Confinement6.4.2. Theory of hard probes 163 122 5.7.2.TestingtheCKMparadigm 99 Nuclear matter eects in pAcollisions 122 9.4. Methods from high-energy physics for strongly 5.7.3. New windows on CP and T violation 103 8.2. Functional methods 167 coupled, condensed matter systems 188 8.3. MechanismEnergy of chiral loss symmetry theory breaking 171 124 5.7.4. Rare decays 105 Quarkonium interaction at finite 9.4.1. Latticegaugetheoryresults 188 8.4. Future Directions243 175 5.8. Future Directions 106 temperature and quarkonium suppression 125 9.4.2. Gauge-gravitydualityresults 189 6.4.3. Experimental results on hard probes 128 9.5. Summary and future prospects 191 6 9. Strongly coupled theories and conformal 6. Deconfinement(2006), hep-th/0603001. 107 [2759] P. A. R. AdeHigh etp al.observables (Planck Collaboration) (2013), 128 symmetry 9 T 177 Appendix: Acronyms 192 6.1.MappingtheQCDphasediagram[2758] P. A. R. Ade et al. (Planck Collaboration) (2013), 108 1303.5076. Heavy flavors 133 9.1. New exact results in quantum field theory 177 6.1.1.1303.5062. Precision lattice QCD calculations at 6.5. Referenceforheavy-ioncollisions 140 9.1.1. Integrability of planar =4SYM 178 Acknowledgements 197 finite-temperature 108 6.6. Lattice QCD, AdS/CFT and perturbative QCD 141 9.1.2.ScatteringamplitudesN 178 6.1.2. A critical point in the QCD phase diagram? 1102759 references!6.6.1. Weakly and strongly coupled (Super) References 198 6.1.3. Experimental exploration of the QCD phase 9.1.3. GeneralizedYang-Millstheories unitarity and its consequences 179 142 diagram 110 9.1.4.6.6.2. Supersymmetric Holographic gaugebreaking theories of scale invariance and 179 6.2. Near-equilibrium properties of the QGP 112 9.1.5. ConformalIHQCD field theories 180 143 6.2.1. Globaleventcharacterization 112 9.1.6.6.7. Impact 3dCFTsandhigherspinsymmetry of thermal field theory calculations on 180 6.2.2.Azimuthalanisotropies 115 9.2. Conformalcosmology symmetry, strongly coupled theories and 144 6.2.3. Transport coe⇥cients & spectral functions: new physics 181 theory 117 9.2.1. Theory of the conformal window 181 6.3. Approach to equilibrium 118 9.2.2. Lattice, AdS/CFT, and the electroweak 6.3.1. Thermalization at weak and strong coupling 118 symmetry breaking 182 6.3.2. Multiplicities and entropy production 119 9.3. Electroweak symmetry breaking 183 6.4. Hard processes and medium induced eects 121 9.3.1. Strongly coupled scenarios for EWSB 183 6.4.1.Introduction 121 9.3.2. Conformal symmetry, the Planck scale, and 6.4.2. Theory of hard probes 122 naturalness 186 Nuclear matter eects in pAcollisions 122 9.4. Methods from high-energy physics for strongly Energy loss theory 124 coupled, condensed matter systems 188 Quarkonium interaction at finite 9.4.1. Latticegaugetheoryresults 188 temperature and quarkonium suppression 125 9.4.2. Gauge-gravitydualityresults 189 6.4.3. Experimental results on hard probes 128 9.5. Summary and future prospects 191 High p observables 128 T Appendix: Acronyms 192 Heavy flavors 133 6.5. Referenceforheavy-ioncollisions 140 Acknowledgements 197 6.6. Lattice QCD, AdS/CFT and perturbative QCD 141 6.6.1. Weakly and strongly coupled (Super) References 198 Yang-Millstheories 142 6.6.2. Holographic breaking of scale invariance and IHQCD 143 6.7. Impact of thermal field theory calculations on cosmology 144 This work is devised to attract broader readership, ranging from practitioners in one or more subfields of QCD, to particle and nuclear physicists working in fields other than QCD and the SM, to students starting research in QCD or elsewhere

but also for funds agencies, projects applications ...

The results presented at this conference are already beyond some of the expectations and conjectures made in the strong doc, of course it is impossible to summarise a week of 10 hours discussions per day but let me make few points • we have the beta function at 5 loop: the series appears well behaved. We have many high order perturbative calculation from which to extract alpha_s. We can perform successful comparison and matching of many observables at zero and finite T in perturbation theory and on the lattice

• factorisation work for many observables and nonperturbative effects are systematically exposed • the issue is on precision (pert. calc.) and precision (lattice) and precision (NP methods- Schwinger- Dyson, RG methods) ! • in absence of direct detection, strong interaction remain the main issue to address for BSM physics at intensity and energy frontier • strongly coupled scenarios of BSM are not ruled out • Nuclear physics is being now approached by the QCD side (chiral Eft calculation, lattice nuclear simulation)

• we are on the verge to obtain a three dimensional tomography of the proton. Ingenuous ideas are developed to formulate distribution functions on the lattice. The EIC will become very likely a reality

• the QCD phase diagram is source of new states of matter that have a big say in the cosmology • sophisticated methods developed for resummations for QCD at finite T find application to leptogensis and baryogengesis calculations

• the behaviour of strong matter from low to high density is attacked with innovative methods at the frontier with few bodies and cold atoms • New challenges like understanding the proton radius requires combination of particle, nuclear and atomic physics

• X, Y, Z and charmonium pentaquark expose the many dynamical possibilities of QCD and call for direct application of our fundings to atomic and condensed matter physics (Born-Oppenheimer, van der Walls) • quarkonium confirms itself as a formidable tool for investigation of the QCD vacuum and the deconfinement

• gravitational waves offer the perspectives of new diagnostic tools to be applied

• Statistics and Bayesian appear the sophisticated tool for discoveries in experiments data and lattice and independently of the beauty of the local fluid we need to understand which kind of state we are originating in pp and pA collisions at high multiplicity!

QCD Effective Field Theories toto addr addressess the the r esearresearchch fr fronteeronteer of of str strongong To addresstotototo addr addr addraddr theessessessess research the the thethe r r esear rresearfronteeresearesearchchchch of fr fr frstrongfronteeronteeronteeronteer interactions of of ofof str str strstrongongongong we interactionsinteractions we we need need to to construct construct EFTS EFTS interactionsinteractionsinteractionsinteractionsneed to construct we we wewe need need needneedeffective to to toto field construct construct constructconstruct theories EFTS EFTS EFTSEFTS

to QCD CONSTRUCTED to be EQUIVALENT Future events related to these ideas are

The meeting “Machine learning challenges in complex multi scale systems”, January 9-12, 2017, TUM-IAS Munich http://www.tum-ias.de/bigdata2017/description-motivation.html for the focal activity Predictive Macroscopic Behavior from Microscopic Simulators (PROMISe) of our TUM-IAS group “Effective Field Theory” in collaboration with other groups from engineering and mathematics: the challenge is to explore applications of EFTs and lattice QCD to other fields

The school on “Effective field theories and lattice” that we will organise June 2017 at TUM, Munich, also in relation to the lattice TUMQCD collaboration that has mission to complement lattice and EFT techniques http://einrichtungen.ph.tum.de/T30f/tumqcd/index.html Credits: Conf12 Advisory Committee Members Conf12 Session Conveners

CONF12 Organizing Committee Y. Foka (GSI, Germany) - chair A. Ioannidou (AUTh, Greece)

N. Brambilla (TUM, Germany) - co-chair and scientific secretary M. Janik (WUT, Poland)

E. Andronov (SPbSU, Russia) A. Katanaeva (SPbSU, Russia)

T. Alexopoulos (NTUA, Greece) G. Kitis (AUTh, Greece)

R. Averbeck (GSI, Germany) C. Kourkoumelis (NKUA, Greece)

D. Bandekas (EMaTTech, Greece) V. Kovalenko (SPbSU, Russia)

T. Dorigo (INFN Padova, Italy) A. Liolios (AUTh, Greece)

C. Eleutheriadis (AUTh, Greece) A. Mischke (Utrecht U. the Netherlands)

T. Geralis (Demokritos, Greece) A. Petkou (AUTh, Greece)

L. Graczykowski (WUT, Poland) D. Shukhobodskaia (SPbSU, Russia)

S. Harissopoulos (Demokritos, Greece) C. Sturm (GSI, German Conf12 Speakers and participants

Photos kindly supplied by Eugenio Vairo Outlook

Quark Confinement and the Hadron Spectrum XIII in Summer 2018, likely in Ireland

stay tuned and see you there