molecules

Review Bioactive Steroids and Saponins of the Genus

Shafiq Ur Rahman 1,*, Muhammad Ismail 2, Muhammad Khurram 1, Irfan Ullah 3, Fazle Rabbi 2 and Marcello Iriti 4,* ID

1 Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir 18000, Pakistan; [email protected] 2 Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; [email protected] (M.I.); [email protected] (F.R.) 3 Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar 25120, Pakistan; [email protected] 4 Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy * Correspondence: shafi[email protected] (S.U.R.); [email protected] (M.I.); Tel.: +92-334-930-9550 (S.U.R.); +39-025-031-6766 (M.I.)

Received: 17 October 2017; Accepted: 1 December 2017; Published: 5 December 2017

Abstract: The of the genus Trillium ( alt. Trilliaceae) include perennial herbs with characteristic mainly distributed in Asia and North America. Steroids and saponins are the main classes of phytochemicals present in these . This review summarizes and discusses the current knowledge on their chemistry, as well as the in vitro and in vivo studies carried out on the extracts, fractions and isolated pure compounds from the different species belonging to this genus, focusing on core biological properties, i.e., cytotoxic, antifungal and anti-inflammatory activities.

Keywords: bioactive phytochemicals; cytotoxic activity; anti-inflammatory activity; analgesic activity; antifungal activity

1. Introduction Natural products obtained from plants have played remarkable role in drug discovery and improvement of health care system [1–6]. According to the World Health Organization (WHO) estimate, about 80% of world population relies on natural sources for their primary health care need while the remaining 20% of the population uses integrated natural sources [7]. Even at the dawn of 21st century, 11% of the 252 drugs considered as basic and essential by the WHO were exclusively of flowering plants origin [8]. At present, the area of cancer and infectious diseases are mostly dependent on natural products, and among the 175 approved anti-cancer drug molecules, 85 (49%) are either natural products or their derivatives [3]. In scientific literature around the world, more than 35,000 species have been reported to be used in different human cultures for medicinal purposes [9]. Nevertheless, this number could be much higher, as knowledge of indigenous use of medicinal plants mainly passes verbally from one generation to another and largely remains undocumented. Among the 250,000 reported higher plant species, only 5–15% has been scrutinized for their bioactive molecules [10]. Therefore, medicinal plants represent an area under focus since their secondary metabolites encompass a significant number of drugs used in current therapeutics and their potential as source of new medicines is beyond any doubts. Saponins are steroid or triterpene glycosides widely distributed in the plants that possess hemolytic properties and poisonous effects [11]. The aglycone part (sapogenin) of saponins may have steroid or triterpenoid nuclei, based on whom saponins are generally classified. Steroidal saponins are less common and usually found in monocotyledonous plants as compared to triterpenoid saponins,

Molecules 2017, 22, 2156; doi:10.3390/molecules22122156 www.mdpi.com/journal/molecules Molecules 2017, 22, 2156 2 of 15 which are extensively distributed and found in dicotyledonous plants [12]. The basic skeleton of steroidal sapogenins (27C) may be either 6-ring spirostane or 5-ring furostane, while triterpenoid sapogenins (30C) are structurally different and often consist of five or rarely four units. In general, at C-3 of aglycone moiety, the glycone (sugar) is attached, including one to several monosaccharide units. The attached sugar chains may be from one to three, either straight, branched or both. The presence of different substituents in the sapogenin as well as the composition, linkage and number of sugar moieties account for structural diversity of saponins [13]. Similarly, the structural complexity of the saponins accounts for their diverse physicochemical, pharmacological and biological properties as well as their commercial relevance as promising molecules with several applications in food, cosmetic, pharmaceutical and health fields [14]. Indeed, saponins have been investigated for the development of new natural medicines and to prove the efficacy of traditional herbal medicines. Crude drugs containing saponins that have less irritating effects following oral administration are generally used as expectorant and antitussive agents [11]. It is worth mentioning that many saponins have been reported to exhibit significant anti-inflammatory, anti-nociceptive, antipyretic, anti-allergic and anti-cancer properties [15,16]. Steroids are a group of secondary metabolites derived from cholesterol, showing diverse chemical structure and biological functions. Almost all steroid molecules possess the same basic perhydroxyl cyclopentenophenanthrene skeleton. The differences in the basic skeleton and the attachment of different groups result in various classes of steroids [17]. Steroids have many pharmacological applications and the research is continuing to find out about these metabolites, as potential lead compounds in drug design and discovery [18]. For instance, ecdysteroids are polyhydroxy steroids produced by certain plants including those belonging to the genus Trillium. Plants containing ecdysteroids possess noticeable pharmacological properties as anabolic, antidiabetic, analgesic, anti-inflammatory and anthelmintic activities [18,19].

2. The Genus Trillium Trillium is the most important genus belonging to the family Melanthiaceae alt. Trilliaceae. Steven Elliott in 1817 wrote: “The family Trilliaceae is an attractive one. A spiral of leaves at the peak of a stem, sustaining solitary flower; it encloses and covers numerous species”. The genus Trillium consists of perennial herbs with characteristic rhizomes that are horizontal or erect, semierect, branched or faintly unbranched, compressed to shortened, elongated to bulky and fleshy, distal end pointed or premorse; the apex bears large terminal shoot/bud. Stem has leaf-sheaths and brown scales at the base. Leaves are three located at the top of the main stem. Flowers are totally to partly pedicellate, sessile and syncarpous. The genus comprises about forty-eight interrelated species in eastern North America and temperate areas of Asia, as well as in western North America [20]. Most of the Trillium species are related with deciduous forests (Arcto-Tertiary flora), which have continued with remarkable changes in geographical ranges since the early Tertiary period in the northern hemisphere. At present, Trillium species are limited to one of three geographical areas: Asia, western North America and eastern North America [21]. Some important species of the genus Trillium with specific characteristics [22–24] are reported in Table1.

Table 1. Common species of the genus Trillium.

No. Species with Common Name Occurrence Flowering Period L. • 1 Wake robin North America April–June • Red Trillium

Trillium nivale Riddell • 2 Snow Trillium March–April • Dwarf white Trillium Molecules 2017, 22, 2156 3 of 15

Table 1. Cont.

No. Species with Common Name Occurrence Flowering Period Trillium undulatum Willd. • 3 Painted Trillium Wisconsin (U.S.) April–June • Painted lady

Trillium pusillum Michx. • 4 Dwarf Trillium United States March–May • Least Trillium

Trillium grandiflorum (Michx.) Salisb. • 5 Great white Trillium Mountains of Virginia (U.S.) April–June • White wake-robin

Trillium ovatum Pursh 6 • Western white Trillium North America March–May

Trillium luteum Harb. • Yellow Trillium 7 Molecules 2017, 22, 2156 Joseph rivers and elsewhere in Michigan (U.S.) April–May3 of 16 Molecules• 2017Yellow, 22, 2156 toadshade 3 of 16

Trillium petiolatumLeastLeast Trillium TrilliumPursh TrilliumTrillium grandiflorum grandiflorum (Michx.) (Michx.) Salisb. Salisb. • Purple Trillium 8 55  GreatGreat white white Trillium Trillium MountainsMountainsNorth of of Virginia Virginia America (U.S.) (U.S.) April–JuneApril–June April–May • Round-leaved Trillium  WhiteWhite wake wake‐‐robinrobin TrilliumTrillium ovatum ovatum Pursh Pursh 6Trillium6 simile Gleason NorthNorth America America March–MayMarch–May  WesternWestern white white Trillium Trillium 9 North America April–May • SweetTrilliumTrillium white luteum luteumTrillium Harb. Harb. JosephJoseph rivers rivers and and elsewhere elsewhere 77  YellowYellow Trillium Trillium April–MayApril–May Trillium lancifolium Raf. inin Michigan Michigan (U.S.) (U.S.)  YellowYellow toadshade toadshade 10 • LanceTrilliumTrillium leaved petiolatum petiolatumTrillium Pursh Pursh North America February–May 88  PurplePurple Trillium Trillium NorthNorth America America April–MayApril–May 11 Trillium kamtschaticumRoundRound‐‐leavedleavedPall. Trillium Trillium Ex Miyabe Korea, Japan, Russia, North America, China April–June 12 TrilliumTrilliumTrillium tschonoskii simile simile Gleason Maxim.Gleason Bhutan, Japan, Korea, China July–August 99 NorthNorth America America April–MayApril–May  SweetSweet white white Trillium Trillium 13 Trillium taiwanense S.S.Ying Taiwan, China May–June TrilliumTrillium lancifolium lancifolium Raf. Raf. 1010 NorthNorth America America February–MayFebruary–May Trillium parviflorumLanceLance leaved leavedV.G.Sokup Trillium Trillium 14 1111• SmallTrilliumTrillium flowered kamtschaticum kamtschaticumTrillium Pall. Pall. Ex Ex Miyabe Miyabe Korea,Korea, Japan, Japan, Russia, Russia,North North North America America, America, China China April–JuneApril–June March–May 1212 TrilliumTrillium tschonoskii tschonoskii Maxim. Maxim. Bhutan,Bhutan, Japan, Japan, Korea, Korea, China China July–AugustJuly–August 15 13Trillium13 TrilliumTrillium govanianum taiwanense taiwanenseWall. S.S.Ying S.S.Ying Bhutan, India,Taiwan,Taiwan, Nepal, China China China, PakistanMay–JuneMay–June April–August TrilliumTrillium parviflorum parviflorum V.G.Sokup V.G.Sokup 1414 NorthNorth America America March–MayMarch–May  SmallSmall flowered flowered Trillium Trillium 3. Phytochemicals1515 TrilliumTrillium of govanianum thegovanianum Genus Wall. Wall. Trillium Bhutan,Bhutan, India, India, Nepal, Nepal, China, China, Pakistan Pakistan April–AugustApril–August

The3.3. genus Phytochemicals PhytochemicalsTrillium of isof the athe rich Genus Genus source Trillium Trillium of bioactive phytochemicals as steroids, saponin derivatives and flavonoidsTheThe [ genus25genus–29 TrilliumTrillium]. Thus isis far, aa richrich several sourcesource of steroidalof bioactivebioactive saponins phytochemicalsphytochemicals have asas been steroids,steroids, isolated saponinsaponin and derivativesderivatives purified from the plants belongingandand flavonoidsflavonoids to this [25–29].[25–29]. genus ThusThus and, far,far, at severalseveral present, steroidalsteroidal novel saponinssaponins metabolites/phytochemicals havehave beenbeen isolatedisolated andand purifiedpurified from fromfromTrillium ssp. are investigatingthethe plantsplants belonging usingbelonging the toto latest thisthis genusgenus technologies and,and, atat present,present, [30 novelnovel–34]. metabolites/phytochemicalsmetabolites/phytochemicals The secondary metabolites/phytochemicals fromfrom TrilliumTrillium ssp.ssp. of areare investigatinginvestigating usingusing thethe latestlatest technologiestechnologies [30–34].[30–34]. TheThe secondarysecondary metabolites/phytochemicalsmetabolites/phytochemicals ofof Trillium species belongingspeciesspecies belonging belonging to the to to genus the the genus genus Trillium Trilliumare are are reportedreported reported in in in Table Table Table 2. 2. 2.

TableTableTable 2. List 2. 2. List List of of of phytochemicals phytochemicals phytochemicals isolated isolated isolated from from from genus genus genus Trillium TrilliumTrillium. . .

Source Chemical Name Chemical Structure References SourceSource Chemical Name Name ChemicalChemical Structure References References

Spirost-5-en-3-ol(diosgenin) T. govanianumT.T. govanianum govanianum SpirostSpirost‐‐55‐‐enen‐‐33‐‐ol(diosgenin)ol(diosgenin) (compound (compound 1 1)) [28][28] [28] (compound 1)

(25(25(25SS)S)‐‐spirost)-spirost-5-ene-3spirost‐‐55‐‐eneene‐‐33ββ,17,17βαα,17,27,27‐α‐trioltriol,27-triol T. erectumT.T. erectum erectum [26][26] [26] (compound(compound(compound 2 2)) 2)

(25(25SS))‐‐33ββ,17,17α‐α‐dihydroxyspirostdihydroxyspirost‐‐55‐‐enen‐‐2727‐‐ylyl T.T. erectum erectum [26][26] β‐β‐DD‐‐glucopyranosideglucopyranoside (compound (compound 3 3))

Molecules 2017, 22, 2156 3 of 16

 Least Trillium Trillium grandiflorum (Michx.) Salisb. 5  Great white Trillium Mountains of Virginia (U.S.) April–June  White wake‐robin Pursh 6 North America March–May  Western white Trillium Trillium luteum Harb. Joseph rivers and elsewhere 7  Yellow Trillium April–May in Michigan (U.S.)  Yellow toadshade Trillium petiolatum Pursh 8  Purple Trillium North America April–May  Round‐leaved Trillium Trillium simile Gleason 9 North America April–May  Sweet white Trillium Trillium lancifolium Raf. 10 North America February–May  Lance leaved Trillium 11 Trillium kamtschaticum Pall. Ex Miyabe Korea, Japan, Russia, North America, China April–June 12 Trillium tschonoskii Maxim. Bhutan, Japan, Korea, China July–August 13 Trillium taiwanense S.S.Ying Taiwan, China May–June Trillium parviflorum V.G.Sokup 14 North America March–May  Small flowered Trillium 15 Trillium govanianum Wall. Bhutan, India, Nepal, China, Pakistan April–August

3. Phytochemicals of the Genus Trillium The genus Trillium is a rich source of bioactive phytochemicals as steroids, saponin derivatives and flavonoids [25–29]. Thus far, several steroidal saponins have been isolated and purified from the plants belonging to this genus and, at present, novel metabolites/phytochemicals from Trillium ssp. are investigating using the latest technologies [30–34]. The secondary metabolites/phytochemicals of species belonging to the genus Trillium are reported in Table 2.

Table 2. List of phytochemicals isolated from genus Trillium.

Source Chemical Name Chemical Structure References

T. govanianum Spirost‐5‐en‐3‐ol(diosgenin) (compound 1) [28]

Molecules 2017, 22, 2156 4 of 15

(25S)‐spirost‐5‐ene‐3β,17α,27‐triol T. erectum Table 2. Cont. [26] (compound 2)

Source Chemical Name Chemical Structure References

Molecules 20172017,, 2222,, 21562156(25 S)-3β,17α(25-dihydroxyspirost-5-en-27-ylS)‐3β,17α‐dihydroxyspirost‐5‐en‐27‐yl 44 ofof 1616 T. erectum T. erectum [26] [26] β-D-glucopyranosideβ‐D‐glucopyranoside (compound (compound3 3)) MoleculesMolecules 2017 2017, ,22 22, ,2156 2156 44 of of 16 16

(25(25SS))‐‐1717α,27,27‐‐dihydroxyspirost‐‐55‐‐enen‐‐33 β‐ β‐ylyl T. erectumerectum [26][26] β‐β‐D‐‐glucopyranosideglucopyranoside (compound(compound 44)) Molecules(25 2017S,)-17 22, 2156α,27-dihydroxyspirost-5-en-3 4 of 16 (25(25SS))‐‐1717αα,27,27‐‐dihydroxyspirostdihydroxyspirost‐‐55‐‐enen‐‐33 β‐ β‐ylyl T. erectumT.T. erectum erectum β-yl β-D-glucopyranoside [26][26] [26] β‐β‐DD‐‐glucopyranosideglucopyranoside (compound (compound 4 4)) (compound 4)

(25S)‐17α,27‐dihydroxyspirost‐5‐en‐3 β‐yl T. erectum [26] β‐D‐glucopyranoside (compound 4)

(25(25SS))‐‐2727‐‐[([(β‐β‐D‐‐glucopyranosyl)oxy]glucopyranosyl)oxy]‐‐1717α‐hyhy droxyspirost‐‐55‐‐enen‐‐33β‐β‐ylyl O α‐ α‐LL‐ ‐ T. erectumerectum (25S)‐27‐[(β‐D‐glucopyranosyl)oxy]‐17α‐hy [26][26] rhamnopyranosylrhamnopyranosyl(25(25SS)‐)-27-[(27‐[(β‐βD-‐glucopyranosyl)oxy]D-glucopyranosyl)oxy]-‐‐(1(1→2)2)‐β‐‐β‐D‐‐glucopyranoglucopyrano‐17α‐hy droxyspirostsidedroxyspirost17α (compound-hydroxyspirost-5-en-3‐‐55‐‐enen 5‐)‐3 3β‐β‐ylyl O O α‐ α‐LL‐ ‐ β-yl O T. erectumT.T. erectum erectum side (compound 5) [26][26] [26] rhamnopyranosylrhamnopyranosylα-L-rhamnopyranosyl-(1‐‐(1(1→→2)2)‐β‐‐β‐DD‐→‐glucopyranoglucopyrano2)- (25S)‐27‐[(β‐D‐glucopyranosyl)oxy]‐17α‐hy sidesideβ (compound (compound 5 5)) -D-glucopyranosidedroxyspirost‐5‐en‐ (compound3β‐yl O α‐L‐ 5) T. erectum [26] rhamnopyranosyl‐(1→2)‐β‐D‐glucopyrano side (compound 5)

(25(25SS))‐‐2727‐‐[([(β‐β‐D‐‐glucopyranosyl)oxy]glucopyranosyl)oxy]‐‐1717α,, 2727‐‐dihydroxyspirost‐‐55‐‐enen‐‐33‐‐ylyl O‐‐(4(4‐‐O‐ ‐ T. erectum (25S)-27-[(β-D-glucopyranosyl)oxy]- [26] T. erectum (25(25SS))‐‐2727‐‐[([(β‐β‐DD‐‐glucopyranosyl)oxy]glucopyranosyl)oxy]‐‐1717αα, , [26] acetylacetyl17α,27-dihydroxyspirost-5-en-3-yl‐α‐‐α‐LL‐‐rhamnopyranosyl)rhamnopyranosyl)‐‐(1(1→2)2)‐β‐‐β‐D‐ ‐ 27glucopyranosideglucopyranoside27‐‐dihydroxyspirostdihydroxyspirost(25S)‐27 ‐ (compound[((compoundβ‐‐D‐55‐‐glucopyranosyl)oxy]‐enen‐‐33‐‐ylyl 66 O ))O ‐‐(4(4‐‐OO‐ ‐ ‐17α, T. erectumT.T. erectum erectum O-(4-O-acetyl-27‐dihydroxyspirostα-L-rhamnopyranosyl)-‐5‐en‐3‐yl O‐(4‐O‐ [26][26] [26] T. erectumacetylacetyl ‐α‐‐α‐LL‐‐rhamnopyranosyl)rhamnopyranosyl)‐‐(1(1→→2)2)‐β‐‐β‐DD‐ ‐ [26] (1→2)-βacetyl-D-glucopyranoside‐α‐L‐rhamnopyranosyl)‐(1→2)‐β‐D‐ glucopyranosideglucopyranoside (compound (compound 6 6)) (compoundglucopyranoside6) (compound 6)

(25(25SS))‐‐2727‐‐[([(β‐β‐D‐‐glucopyranosyl)oxy]glucopyranosyl)oxy]‐‐1717α,, 2727(25‐‐dihydroxyspirostS)-27-[((25Sβ)‐-27D-glucopyranosyl)oxy]-‐[(β‐‐‐D55‐‐glucopyranosyl)oxy]‐enen‐‐33β‐β‐D‐ ‐ ‐17α, (25S)‐27‐[(β‐D‐glucopyranosyl)oxy]‐17α, T. erectumerectum glucopyranosylglucopyranosyl(2517αS),27-dihydroxyspirost-5-en-‐27‐[(27β‐‐dihydroxyspirostD‐glucopyranosyl)oxy]‐‐(1(1→6)6)‐‐O‐‐[[α‐‐5LL‐en‐ ‐ ‐3β‐D‐‐ 17α, [26][26] 27‐dihydroxyspirost‐5‐en‐→3β‐D‐ L T. erectum T. erectumrhamnopyranosylrhamnopyranosyl273 β‐dihydroxyspirost-D-glucopyranosyl-(1glucopyranosyl‐‐(1(1→‐52)]‐2)]‐en(1‐β‐‐β‐‐36)β‐→D‐‐OD‐glucopyrano6)-glucopyrano‐‐ [α‐ ‐ [26] [26] rhamnopyranosyl→ ‐(1→2)]‐β‐D‐glucopyrano T.T. erectum erectum glucopyranosylsidesideglucopyranosylO-[ (compoundα(compound-L-rhamnopyranosyl-(1‐‐ (1 7(17)) → 6)6)‐‐OO‐‐[[α‐α‐LL‐ ‐ →2)]- [26][26] side (compound 7) rhamnopyranosylrhamnopyranosylβ-D-glucopyranoside‐‐(1(1→→2)]2)]‐β‐ (compound‐β‐DD‐‐glucopyranoglucopyrano7) sideside (compound (compound 7 7))

(25S)-17(25α,27-dihydroxyspirost-S)‐17α,27‐dihydroxyspirost‐5‐en‐3β‐yl T. erectum(25(25 SS))‐‐1717α,27,27O‐(4‐‐dihydroxyspirost‐O‐acetyl‐α‐L‐rhamnopyranosyl)‐‐55‐‐enen‐‐33β‐β‐ylyl ‐ [26] 5-en-3β-yl O-(4-O-acetyl- T. erectumT. erectumerectum O‐‐(4(4‐‐O‐‐acetylacetyl(1→‐α‐2)‐α‐‐β‐LL‐D‐rhamnopyranosyl)rhamnopyranosyl)‐glucopyranoside (compound‐ ‐ 8) [26][26] [26] (25α-SL)‐-rhamnopyranosyl)-(117α,27‐dihydroxyspirost→‐5‐2)-en‐3β‐yl (1(1(25→S2)2))‐‐β‐‐β‐17αD,27‐‐glucopyranosideglucopyranoside‐dihydroxyspirost (compound(compound‐5‐en‐3β‐yl 88) ) T.T. erectum erectum OOβ‐‐(4-(4D‐‐O-glucopyranosideO‐‐acetylacetyl‐α‐‐α‐LL‐‐rhamnopyranosyl)rhamnopyranosyl) (compound‐ ‐ 8) [26][26] (1(1→→2)2)‐β‐‐β‐DD‐‐glucopyranosideglucopyranoside (compound (compound 8 8)) (1 2)‐β‐ ‐glucopyranoside (compound 8)

(25R)‐17α‐hydroxyspirost‐5‐en‐3β‐yl O‐α‐L‐rhamnopyranosyl‐(1→4)‐O‐ T. erectum [26] [α‐L‐rhamnopyranosyl‐(1→4)]‐β‐D‐ (25(25(25R)R)‐‐17)-1717α‐glucopyranosideαhydroxyspirosthydroxyspirost-hydroxyspirost-5-en-3 (compound‐‐55‐‐enen‐‐33β‐β‐ ylyl9) β-yl OO‐α‐‐α‐-αLL-‐‐Lrhamnopyranosylrhamnopyranosyl-rhamnopyranosyl-(1‐‐(1(1→4)4)‐‐→O‐ ‐ 4)- T. erectumT. erectumerectum (25(25RR))‐‐1717α‐α‐hydroxyspirosthydroxyspirost‐‐55‐‐enen‐‐33β‐β‐ylyl [26][26] [26] [[(25α‐OL-[LR‐‐αrhamnopyranosylrhamnopyranosyl)‐-17L-rhamnopyranosyl-(1α‐hydroxyspirost‐‐(1(1→‐54)]4)]‐en‐β‐‐β‐‐3→Dβ‐‐ ‐ 4)]-yl OglucopyranosideO‐α‐‐α‐LL‐‐rhamnopyranosylrhamnopyranosyl (compound‐‐(1(1→→ 4)94))‐ ‐OO‐ ‐ T.T. erectum erectum glucopyranosideβ-D-glucopyranoside (compound (compound 9) 9) [26][26] [[α‐α‐LL‐‐rhamnopyranosylrhamnopyranosyl‐‐(1(1→→4)]4)]‐β‐‐β‐DD‐ ‐ glucopyranosideglucopyranoside (compound (compound 9 9))

Molecules 2017, 22, 2156 5 of 15

Molecules 2017,, 22,, 2156 Table 2. Cont. 5 of 16

Molecules 2017, 22, 2156 5 of 16 Source Chemical Name Chemical Structure References Molecules 2017, 22, 2156 5 of 16

(25(25R))‐‐26‐‐[([(β‐D‐‐glucopyranosyl)oxy]‐‐22α‐m ethoxyfurost‐‐5‐‐en‐‐3β‐yl O‐α‐‐α‐L‐ ‐ (25R)-26-[(β-D-glucopyranosyl)oxy]- T. erectum (25rhamnopyranosylR)‐26‐[(β‐D‐glucopyranosyl)oxy]‐‐(1(1→2)‐‐O‐‐[[α‐L‐‐rhamnop‐22α‐m [26][26] 22α-methoxyfurost-5-en-3β-yl ethoxyfurostyranosyl(25‐‐R(1(1)→‐26‐54)]‐‐[(enβ‐‐β‐‐β‐‐D3D‐β‐glucopyranosyl)oxy]‐‐glucopyranosideyl O‐α‐L‐ ‐22α‐m O-α-Lethoxyfurost-rhamnopyranosyl-(1‐5‐en‐3β‐yl O‐α‐→L‐ 2)- T. erectumT. erectum rhamnopyranosyl(compound(compoundethoxyfurost 10)) ‐‐(15‐en→‐2)3β‐‐Oyl‐[ Oα‐‐α‐L‐rhamnop‐ [26] [26] T. erectum O-[α-rhamnopyranosylL-rhamnopyranosyl-‐(1→2)‐O‐[α‐L‐rhamnop [26] yranosyl‐(1→4)]‐β‐D‐glucopyranoside (1→4)]-yranosylβ-D-glucopyranoside‐(1→4)]‐β‐D‐glucopyranoside (compound 10) (compound(compound10 )10)

(25(25S))‐‐17α,27,27‐‐dihydroxyspirost‐‐5‐‐en‐‐3β‐yl T. kamtschaticum O(25‐α‐‐α‐SL‐‐)-17rhamnopyranosylα,27-dihydroxyspirost-‐‐(1(1→2)‐β‐‐β‐D‐‐glucop [35][35] (25S)‐17α,27‐dihydroxyspirost‐5‐en‐3β‐yl (25yranoside5-en-3S)‐17αβ,27-yl (compound(compound‐dihydroxyspirostO-α-L-rhamnopyranosyl- 11)) ‐5‐en‐3β‐yl T. kamtschaticum T. kamtschaticum O‐α‐L‐rhamnopyranosyl‐(1→2)‐β‐D‐glucop [35] [35] T. kamtschaticum O‐α‐L‐rhamnopyranosyl‐(1→2)‐β‐D‐glucop [35] (1→2)-yranosideβ-D-glucopyranoside (compound 11) yranoside(compound (compound11) 11)

(25(25(25R)R)‐‐17)-17α‐hydroxyspirostα-hydroxyspirost-5-en-3‐‐5‐‐en‐‐3 β‐ β‐yl β-yl Trillium (25R)‐17α‐hydroxyspirost‐5‐en‐3 β‐yl Trillium OO‐α‐‐α‐-αL-‐‐Lrhamnopyranosyl-rhamnopyranosyl-‐‐(1(1→2)‐β‐‐β‐D‐‐glucop [36][36] Trillium kamtschaticumkamtschaticum O‐α‐L‐rhamnopyranosyl‐(1→2)‐β‐D‐glucop [36] [36] kamtschaticum(25yranoside R→)‐17α‐β hydroxyspirost(compound(compound 12))‐ 5‐en‐3 β‐yl Trillium (1 2)-yranoside-D-glucopyranoside (compound 12) O‐α‐L‐rhamnopyranosyl‐(1→2)‐β‐D‐glucop [36] kamtschaticum (compound 12) yranoside (compound 12)

(25R)‐17α‐hydroxyspirost‐5‐en‐3β‐yl (25(25R))‐‐17α‐hydroxyspirostα ‐‐5‐‐en‐‐3β‐yl β T. kamtschaticum(25 R)-17O‐α‐L‐-hydroxyspirost-5-en-3rhamnopyranosyl‐(1→4)‐β‐D‐glucop-yl [36] T. kamtschaticum O‐α‐L‐rhamnopyranosyl‐(1→4)‐β‐D‐glucop [36] T. kamtschaticumT. kamtschaticum OO‐α‐-α-‐Lyranosiderhamnopyranosyl-rhamnopyranosyl-(1 (compound‐(1 13)4) ‐β‐→4)-‐glucop [36] [36] (25yranosideβ-RD)‐-glucopyranoside17α‐ hydroxyspirost(compound(compound 13))‐ (compound 5‐en‐3β‐yl 13) T. kamtschaticum O‐α‐L‐rhamnopyranosyl‐(1→4)‐β‐D‐glucop [36] yranoside (compound 13)

(25R)‐17α‐hydroxyspirost‐5‐en‐3β‐yl O‐α‐L‐rhamnopyranosyl‐(1→2)‐O‐[α‐L‐ T. kamtschaticum(25(25R ))‐‐17α‐hydroxyspirost‐‐5‐‐en‐‐3β‐yl [36] (25R)-17rhamnopyranosylα-hydroxyspirost-5-en-3‐(1→4)]‐β‐D‐ β-yl OO‐α‐‐α‐-αL-‐‐Lrhamnopyranosyl-rhamnopyranosyl-(1‐‐(1(1→2)‐‐→O‐‐2)-[[α‐L‐ ‐ T. kamtschaticumT. kamtschaticum glucopyranoside (compound 14) [36][36] [36] (25rhamnopyranosylOR-[)α‐17-Lα‐-rhamnopyranosyl-(1hydroxyspirost‐‐(1(1→4)]‐β‐‐β‐‐5‐enD‐ ‐ ‐3→β‐yl4)]- Oglucopyranosideβ‐α‐-DL-glucopyranoside‐rhamnopyranosyl (compound(compound‐(1 (compound→ 2)14‐)O) ‐[α‐L‐ 14) T. kamtschaticum [36] rhamnopyranosyl‐(1→4)]‐β‐D‐ Molecules 2017, 22, 2156glucopyranoside (compound 14) 6 of 16

(25(25RR)‐)-1717α‐αhydroxyspirost-hydroxyspirost-5-en-3‐5‐en‐3β‐yl β-yl OO‐α‐-αL-‐Lrhamnopyranosyl-rhamnopyranosyl-(1‐(1→2)→‐O‐2)-[OO‐α‐- L‐r T. kamtschaticumT. kamtschaticum hamnopyranosyl[O-α-L-rhamnopyranosyl-(1‐(1→4)‐a‐L‐rhamnopyran→4)- [36] [36] osyla-L‐-rhamnopyranosyl-(1(1→4)]‐α‐D‐glucopyranoside→4)]- (compoundα-D-glucopyranoside 15) (compound 15)

(25R)‐spirost‐5‐en‐3β‐yl T. kamtschaticum O‐α‐L‐rhamnopyranosyl‐(1→2)‐β‐D‐glucop [36] yranoside (compound 16)

(25R)‐spirost‐5‐en‐3β‐yl O‐α‐L‐rhamnopyranosyl‐(1→2)‐O‐ T. kamtschaticum [36] [α‐L‐rhamnopyranosyl‐(1→4)]‐β‐D‐ glucopyranoside (compound 17)

(25R)‐spirost‐5‐en‐3β‐yl O‐α‐L‐rhamnopyranosyl‐(1→2)‐O‐[O‐α‐L‐r T. kamtschaticum hamnopyranosyl‐(1→4)‐α‐Lrhamnopyran [36] osyl‐(1→4)]‐β‐D‐glucopyranoside (compound 18)

(25R)‐26‐[β‐D‐glucopyranosyl]oxy]‐17α‐ T. kamtschaticum hydroxy‐22β‐methoxyfurost‐5‐en‐3β‐yl [26,37] T. erectum O‐α‐L‐rhamnopyranosyl‐(1→2)‐β‐D‐glucop yranoside (compound 19)

MoleculesMoleculesMolecules 2017 2017 20172017,, , ,22 22 2222,, , ,2156 2156 21562156 6666 of of ofof 16 16 1616

(25(25(25(25RRR)))‐)‐‐17‐171717α‐α‐α‐hydroxyspirosthydroxyspirosthydroxyspirosthydroxyspirost‐‐‐5‐555‐‐‐en‐enenen‐‐‐3‐333β‐β‐β‐β‐ylylylyl Molecules 2017, 22, 2156 6 of 15 OOO‐α‐‐α‐‐α‐‐α‐LLLL‐‐‐rhamnopyranosyl‐rhamnopyranosylrhamnopyranosylrhamnopyranosyl‐‐‐(1‐(1(1(1→→→2)2)2)2)‐‐‐O‐OO‐‐‐[‐[[O[OO‐α‐‐α‐‐α‐‐α‐LLLL‐‐‐r‐rrr T.T.T. kamtschaticum kamtschaticum kamtschaticumkamtschaticum hamnopyranosylhamnopyranosylhamnopyranosylhamnopyranosyl‐‐‐(1‐(1(1(1→→→4)4)4)4)‐‐‐a‐aaa‐‐‐L‐LLL‐‐‐rhamnopyran‐rhamnopyranrhamnopyranrhamnopyran [36][36][36][36] osylosylosylosyl‐‐‐(1‐(1(1(1→→→4)]4)]4)]4)]‐α‐‐α‐‐α‐‐α‐DDD‐‐‐glucopyranoside‐glucopyranosideglucopyranosideglucopyranoside (compound(compound(compound(compound 15 15 1515))) ) Table 2. Cont.

Source Chemical Name Chemical Structure References

(25(25(25(25(25RRR)R))‐)‐‐spirost)-spirost-5-en-3‐spirostspirostspirost‐‐‐5‐555‐‐‐en‐enenen‐‐‐3‐333β‐β‐β‐β‐ylylylylβ -yl T. kamtschaticumT.T.T. kamtschaticum kamtschaticum kamtschaticumkamtschaticum OOO‐α‐‐α‐‐α‐‐α‐-αLLL-L‐‐‐Lrhamnopyranosyl‐rhamnopyranosylrhamnopyranosylrhamnopyranosyl-rhamnopyranosyl-(1‐‐‐(1‐(1(1(1→→→2)2)2)2)‐β‐‐β‐→‐β‐‐β‐D2)-DD‐‐‐glucop‐glucopglucopglucop [36][36][36][36] [36] yranosideyranosideyranosideyranosideβ-D-glucopyranoside (compound (compound (compound(compound 16 16 1616))) (compound) 16)

(25(25(25(25(25RRR)R))‐)‐‐spirost)-spirost-5-en-3‐spirostspirostspirost‐‐‐5‐555‐‐‐en‐enenen‐‐‐3‐333β‐β‐β‐β‐ylylylylβ -yl OOO‐α‐‐α‐‐α‐‐α‐-αLLL-L‐‐‐Lrhamnopyranosyl‐rhamnopyranosylrhamnopyranosylrhamnopyranosyl-rhamnopyranosyl-(1‐‐‐(1‐(1(1(1→→→2)2)2)2)‐‐→‐O‐OO‐ ‐ 2)-‐ ‐ T. kamtschaticumT.T.T. kamtschaticum kamtschaticum kamtschaticumkamtschaticum [36][36][36][36] [36] [[[α‐[Oα‐α‐L-[LLL‐‐‐αrhamnopyranosyl‐rhamnopyranosylrhamnopyranosylrhamnopyranosyl-L-rhamnopyranosyl-(1‐‐‐(1‐(1(1(1→→→4)]4)]4)]4)]‐β‐‐β‐‐β‐‐β‐→DDD‐ ‐ 4)]-‐ ‐ glucopyranosideglucopyranosideglucopyranosideglucopyranosideβ-D-glucopyranoside (compound (compound (compound(compound (compound 17 17 1717))) ) 17)

(25(25(25(25(25RRR)R))‐)‐‐spirost)-spirost-5-en-3‐spirostspirostspirost‐‐‐5‐555‐‐‐en‐enenen‐‐‐3‐333β‐β‐β‐β‐ylylylylβ -yl OOO‐α‐‐α‐‐α‐‐α‐-αLLL-L‐‐‐Lrhamnopyranosyl‐rhamnopyranosylrhamnopyranosylrhamnopyranosyl-rhamnopyranosyl-(1‐‐‐(1‐(1(1(1→→→2)2)2)2)‐‐→‐O‐OO‐‐2)-‐[‐[[O[OO‐α‐‐α‐‐α‐‐α‐LLLL‐‐‐r‐rrr T. kamtschaticumT.T.T. kamtschaticum kamtschaticum kamtschaticumkamtschaticum hamnopyranosylhamnopyranosylhamnopyranosylhamnopyranosylO-[O-α-L-rhamnopyranosyl-(1‐‐‐(1‐(1(1(1→→→4)4)4)4)‐α‐‐α‐‐α‐‐α‐LrhamnopyranLrhamnopyranLrhamnopyran→4)- [36][36][36][36] [36] osylosylosylosylα-Lrhamnopyranosyl-(1‐‐‐(1‐(1(1(1→→→4)]4)]4)]4)]‐β‐‐β‐‐β‐‐β‐DDD‐‐‐glucopyranoside‐glucopyranosideglucopyranosideglucopyranoside→4)]- (compound(compound(compound(compoundβ-D-glucopyranoside 18 18 1818))) ) (compound 18)

(25R)-26-[(β-D-glucopyranosyl)oxy]- (25(25(25(25RRR)))‐)‐‐26‐262626‐‐‐[‐[[β‐[β‐β‐β‐DDD‐‐‐glucopyranosyl]oxy]‐glucopyranosyl]oxy]glucopyranosyl]oxy]glucopyranosyl]oxy]‐‐‐17‐171717α‐ α‐ α‐ 17α-hydroxy-22β-methoxyfurost- T. kamtschaticumT.T.T. kamtschaticum kamtschaticum kamtschaticumkamtschaticum hydroxyhydroxyhydroxyhydroxy‐‐‐22‐222222β‐β‐β‐β‐methoxyfurostmethoxyfurostmethoxyfurost‐‐‐5‐555‐‐‐en‐enenen‐‐‐3‐333β‐β‐β‐β‐ylylylyl 5-en-3β-yl O-α-L- [26,37][26,37][26,37][26,37] [ 26,37] T. erectumT.T.T. erectum erectum erectumerectum OOO‐α‐‐α‐‐α‐‐α‐LLLL‐‐‐rhamnopyranosyl‐rhamnopyranosylrhamnopyranosylrhamnopyranosyl‐‐‐(1‐(1(1(1→→→2)2)2)2)‐β‐‐β‐‐β‐‐β‐DDD‐‐‐glucop‐glucopglucopglucop → β yranosideyranosideyranosideyranosiderhamnopyranosyl-(1 (compound (compound (compound(compound 19 19 1919))) ) 2)- - D-glucopyranoside (compound 19)

MoleculesMolecules 2017 2017, ,22 22, ,2156 2156 77 of of 16 16

(25R)-26-[(β-D-glucopyranosyl)oxy] (25(25RR)‐)26‐26‐[‐β‐[β‐DD‐glucopyranosyl]oxy]‐glucopyranosyl]oxy]‐17‐17α‐ α‐ -17α-hydroxy-22-amethoxyfurost-5- hydroxyhydroxy‐22‐22‐amethoxyfurost‐amethoxyfurost‐5‐5‐en‐en‐3‐3β‐β‐ylyl T. kamtschaticumT.T. kamtschaticum kamtschaticum en-3β-yl O-α-L- OO‐α‐‐α‐LL‐rhamnopyranosyl‐rhamnopyranosyl‐(1‐(1→→2)2)‐O‐O‐ ‐ [26,37][26,37] [26 ,37] T. erectumTT erectum erectum rhamnopyranosyl-(1→2)-O- [α‐[α‐LL‐rhamnopyranosyl‐rhamnopyranosyl‐(1‐(1→→4)]4)]‐β‐‐β‐DD‐ ‐ [α-L-rhamnopyranosyl-(1→4)]- glucopyranosideglucopyranoside (compound (compound 20 20) ) β-D-glucopyranoside (compound 20)

(25R)-26-[(β-D-glucopyranosyl)oxy] (25(25RR)‐)26‐26‐[‐β‐[β‐DD‐glucopyranosyl]oxy]‐glucopyranosyl]oxy]‐3‐3β‐β‐[([(OO‐‐ -3β-[(O-α-L-rhamnopyranosyl- [36] α‐α‐LL‐rhamnopyranosyl‐rhamnopyranosyl‐(1‐(1→→2)2)‐β‐‐β‐DD‐glucopyr‐glucopyr [36] TT kamtschaticum kamtschaticum T kamtschaticum (1anosyl)oxy]→2)-β-D‐-glucopyranosyl)oxy]-cholesta‐5,17‐diene‐16,22‐dion [36] anosyl)oxy]‐cholesta‐5,17‐diene‐16,22‐dion eecholesta-5,17-diene-16,22-dione (compound (compound 2 211) ) (compound 21)

(25(25RR)‐)27‐27‐hydroxypenogenin‐hydroxypenogenin T.T. kamtschaticum kamtschaticum 33‐O‐O‐α‐‐α‐LL‐rhamnopyranosyl‐rhamnopyranosyl‐(1‐(1→→2)2)‐O‐O‐β‐‐β‐DD‐gl‐gl [35][35] ucopyranosideucopyranoside (compound (compound 22 22) )

PenogeninPenogenin T.T. kamtschaticum kamtschaticum 33‐O‐O‐α‐‐α‐LL‐rhamnopyranosyl‐rhamnopyranosyl‐(1‐(1→→2)2)‐O‐O‐β‐‐β‐DD‐gl‐gl [36][36] ucopyranosideucopyranoside (compound (compound 23 23) )

PenogeninPenogenin [35] 33‐O‐O‐β‐‐β‐DD‐glucopyranosyl‐glucopyranosyl‐(1‐(1→→6)6)‐[‐O[O‐α‐‐α‐LL[‐[rha‐rha [35] T.T. kamtschaticum kamtschaticum mnopyranosyl‐(1→2)]‐O‐β‐D‐glucopyrano mnopyranosyl‐(1→2)]‐O‐β‐D‐glucopyrano side]side] (compound (compound 24 24) )

Molecules 2017, 22, 2156 7 of 16

Molecules 2017, 22, 2156 7 of 16

Molecules 2017, 22, 2156 7 of 16 (25R)‐26‐[β‐D‐glucopyranosyl]oxy]‐17α‐ hydroxy‐22‐amethoxyfurost‐5‐en‐3β‐yl T. kamtschaticum O‐α‐L‐rhamnopyranosyl‐(1→2)‐O‐ [26,37] T erectum [α‐L‐rhamnopyranosyl(25R)‐26‐[β‐D‐glucopyranosyl]oxy]‐(1→4)]‐β‐D‐ ‐17α‐ glucopyranosidehydroxy‐22‐ amethoxyfurost(compound 20‐)5 ‐en‐3β‐yl T. kamtschaticum (25R)‐26‐[β‐D‐glucopyranosyl]oxy]‐17α‐ O‐α‐L‐rhamnopyranosyl‐(1→2)‐O‐ [26,37] T erectum hydroxy‐22‐amethoxyfurost‐5‐en‐3β‐yl T. kamtschaticum [α‐L‐rhamnopyranosyl‐(1→4)]‐β‐D‐ O‐α‐L‐rhamnopyranosyl‐(1→2)‐O‐ [26,37] T erectum glucopyranoside (compound 20) [α‐L‐rhamnopyranosyl‐(1→4)]‐β‐D‐

glucopyranoside (compound 20)

(25R)‐26‐[β‐D‐glucopyranosyl]oxy]‐3β‐[(O‐ α‐L‐rhamnopyranosyl‐(1→2)‐β‐D‐glucopyr [36] Molecules 2017T kamtschaticum, 22, 2156 7 of 15 (25R)‐26‐[β‐D‐glucopyranosyl]oxy]‐3β‐[(O‐ anosyl)oxy]‐cholesta‐5,17‐diene‐16,22‐dion α‐L‐rhamnopyranosyl‐(1→2)‐β‐D‐glucopyr [36] T kamtschaticume (compound (25R)‐26 2‐[1β‐) D‐glucopyranosyl]oxy]‐3β‐[(O‐ anosyl)oxy]‐cholesta‐5,17‐diene‐16,22‐dion

α‐L‐rhamnopyranosyl‐(1→2)‐β‐D‐glucopyr [36] T kamtschaticum e (compound 21) anosyl)oxy]‐cholesta‐5,17‐diene‐Table16,22‐dion 2. Cont. e (compound 21)

Source Chemical Name Chemical Structure References

(25(25RR)‐)-27-hydroxypenogenin27‐hydroxypenogenin (25R)‐27‐hydroxypenogenin T. kamtschaticum 33-‐OO‐α‐-αL-‐Lrhamnopyranosyl-rhamnopyranosyl-(1‐(1→2)‐→O‐β‐2)-D‐gl [35] T. kamtschaticum T. kamtschaticum 3‐O‐α‐L‐rhamnopyranosyl‐(1→2)‐O‐β‐D‐gl [35] [35] ucopyranoside(25R)‐27‐hydroxypenogenin (compound 22) O-β-Ducopyranoside-glucopyranoside (compound 22) T. kamtschaticum(compound 3‐O‐α‐L‐rhamnopyranosyl22) ‐(1→2)‐O‐β‐D‐gl [35] ucopyranoside (compound 22)

PenogeninPenogenin T. kamtschaticumPenogenin 3‐O‐α‐ L‐rhamnopyranosyl‐(1→2)‐O‐β‐D‐gl [36] 3-O-αPenogenin-L-rhamnopyranosyl-(1 →2)- T. kamtschaticumT. kamtschaticum 3‐O‐α‐ucopyranosideL‐rhamnopyranosyl (compound‐(1→ 232)‐) O‐β‐D‐gl [36] [36] O-β-D-glucopyranoside → T. kamtschaticumucopyranoside 3‐O‐α‐L‐rhamnopyranosyl (compound 23)‐ (1 2)‐O‐β‐D‐gl [36] (compounducopyranoside23) (compound 23)

Penogenin Penogenin3‐O‐β‐D‐glucopyranosyl‐(1→6)‐[O‐α‐L[‐rha [35] T. kamtschaticum Penogenin mnopyranosyl‐(1→2)]‐O‐β‐D‐glucopyrano Penogenin3-O-β-D-glucopyranosyl-(1 →6)- 3‐O‐β‐D‐glucopyranosyl‐(1→6)‐[O‐α‐L[‐rha [35] [35] T. kamtschaticum T. kamtschaticum3[‐O ‐β‐-α-side]DL‐[-rhamnopyranosyl-glucopyranosyl (compound 24)‐ (1→6)‐[O‐α‐L[‐rha [35] T. kamtschaticum mnopyranosyl‐(1→2)]‐O‐β‐D‐glucopyrano mnopyranosyl(1→2)]-side]O -(compoundβ-‐D(1-glucopyranoside]→2)] ‐24O)‐β‐ D‐glucopyrano side](compound (compound24) 24)

Molecules 2017, 22, 2156 8 of 16

Molecules 2017, 22, 2156 8 of 16

Penogenin Penogenin 3‐[O‐β‐[D‐glucopyranoside] [36] T. kamtschaticum T. kamtschaticum O β D (compound3-[ - -[ -glucopyranoside] 25) [36] (compound 25) Penogenin 3‐[O‐β‐[D‐glucopyranoside] [36] T. kamtschaticum (compound 25)

T. kamtschaticumT. kamtschaticum Deoxytrillenoside (compound (compound 26) 26) [35,38][ 35,38] T. kamtschaticum Deoxytrillenoside (compound 26) [35,38]

26-O-26β‐-OD‐β‐-glucopyranosylD‐glucopyranosyl 26‐O‐β‐D‐glucopyranosyl (22,[25R R)‐[furost‐5‐eeneβ‐3β, α (22,[25(22,25R))-furost-5-eene-3‐[furost‐5‐eene‐3β, ,17 ,22,26- T. kamtschaticum T. kamtschaticumtetraol 17α 3-,22,26O-α‐-tetraolL-rhamnopyranosyl- 3‐O‐α‐L‐ [36] [36] T. kamtschaticum 17α,22,26‐tetraol 3‐O‐α‐L‐ [36] (1→2)-rhamnopyranosylO-β-D-glucopyranoside‐(1→2)‐O‐β‐D‐glucopyra rhamnopyranosylnoside (compound‐(1→ 2)27‐)O ‐β‐D‐glucopyra noside(compound (compound27) 27)

26‐O‐β‐aD‐23glucopyranosyl (22,25R)‐furost‐5‐eene‐3β,17α, 22,26‐tetraol T. kamtschaticum26‐ O‐β‐3‐OaD‐α‐‐23glucopyranosylL‐rhamnopyranosyl ‐(1→42)‐[O‐α‐L‐[ [35] (22,25rhamnopyranosylR)‐furost‐5‐eene‐(13β→,1704)]α,‐ O22,26‐β‐D‐‐tetraolglucopyr T. kamtschaticum 3‐O‐α‐anosideL‐rhamnopyranosyl (compound 28)‐ (1→42)‐[O‐α‐L‐[ [35] rhamnopyranosyl‐(1→04)]‐O‐β‐D‐glucopyr anoside (compound 28)

26‐O‐β‐D‐glucopyranosyl 17(20)‐dehydrokryptogenin T. kamtschaticum 3‐O‐α‐L‐rhamnopyranosyl‐(1→2)‐[O‐α‐L‐r [35] 26‐O‐β‐hamnopyranosylD‐glucopyranosyl‐(1→ 4)]‐O‐β‐D‐glucopyra 17(20)noside‐dehydrokryptogenin (compound 29) T. kamtschaticum 3‐O‐α‐L‐rhamnopyranosyl‐(1→2)‐[O‐α‐L‐r [35] hamnopyranosyl‐(1→4)]‐O‐β‐D‐glucopyra noside (compound 29)

Molecules 2017, 22, 2156 8 of 16

[36] Penogenin 3‐[O‐β‐[D‐glucopyranoside] [36] T. kamtschaticum (compound 25) (compound 25)

T. kamtschaticum Deoxytrillenoside (compound 26) [35,38]

Molecules 2017, 22, 2156 26‐O‐β‐D‐glucopyranosyl 8 of 15 (22,[25R)‐[furost‐5‐eene‐3β, T. kamtschaticum 17α,22,26‐tetraol 3‐O‐α‐L‐ [36] rhamnopyranosyl‐(1→2)‐O‐β‐D‐glucopyra noside (compound 27) Table 2. Cont.

Source Chemical Name Chemical Structure References

26-O-β-aD-23glucopyranosyl β α (22,2526R‐O)-furost-5-eene-3‐β‐aD‐23glucopyranosyl,17 , 22,26-tetraol(22,25R)‐furost‐5‐eene‐3β,17α, 22,26‐tetraol T. kamtschaticum T. kamtschaticum3-O -α3‐-OL‐α‐-rhamnopyranosyl-(1L‐rhamnopyranosyl‐(1→→42)42)-‐[O‐α‐L‐[ [35] [35] O-α-Lrhamnopyranosyl-[rhamnopyranosyl-(1‐(1→04)]‐O→‐β‐04)]-D‐glucopyr O-β-Danoside-glucopyranoside (compound 28) (compound 28)

26-O-β-D-glucopyranosyl 26‐O‐β‐D‐glucopyranosyl 17(20)-dehydrokryptogenin26‐O‐β‐D‐glucopyranosyl 17(20)‐dehydrokryptogenin 3-O-α-L-rhamnopyranosyl-(1→2)- T. kamtschaticum T. kamtschaticum 3‐O‐α‐L‐rhamnopyranosyl‐(1→2)‐[O‐α‐L‐r [35] [35] α → [O- -hamnopyranosylL-rhamnopyranosyl-(1‐(1→4)]‐O‐β‐D‐4)]-glucopyra Molecules 2017, 22, 2156 9 of 16 O-β-Dnoside-glucopyranoside (compound 29) (compound 29)

Molecules 2017, 22, 2156 9 of 16 Molecules 2017, 22, 2156 9 of 16

26‐O‐β‐D‐glucopyranosyl 17(20)‐dehydrokryptogenin T. kamtschaticum [36] 326-‐O‐α‐O-Lβ‐-rhamnopyranosylD-glucopyranosyl‐(1→2)‐O‐β‐D‐gl ucopyranoside17(20)-dehydrokryptogenin2626‐O‐O‐β‐‐β‐D‐Dglucopyranosyl ‐(compoundglucopyranosyl 30 ) 17(20)17(20)‐dehydrokryptogenin‐dehydrokryptogenin T. kamtschaticum T. T.kamtschaticum kamtschaticum3-O - α-L-rhamnopyranosyl-(1→2)- [36][36] [36] 3‐3O‐O‐α‐‐α‐L‐Lrhamnopyranosyl‐rhamnopyranosyl‐(1‐(1→→2)2)‐O‐O‐β‐‐β‐DD‐gl‐gl O-β-D-glucopyranoside ucopyranosideucopyranoside (compound (compound 30 30) ) (compound 30)

T. govanianum Govanoside A (compound 31) [28] T. govanianum T. T.govanianum govanianumGovanoside GovanosideGovanoside A (compoundA A (compound (compound 31 3131) ) [28][28] [28]

T. govanianum Borassoside E (compound 32) [28] T. govanianum Borassoside E (compound 32) [28] T. govanianumT. govanianum BorassosideBorassoside E (compound E (compound 32) 32) [28] [28]

l‐O‐[2,3,4‐tri‐O‐acetyl‐α‐L‐rhamnopyranos l‐O‐[2,3,4‐tri‐O‐acetyl‐α‐L‐rhamnopyranos T. tschonoskiil- O-[2,3,4-tri-yl‐(1→2)4O‐O-acetyl-‐acetyl‐α‐αL-‐Larabinopyranosyl]- ‐ [39] T. tschonoskii yl‐(1→2)4‐O‐acetyl‐α‐L‐arabinopyranosyl]‐ [39] lrhamnopyranosyl-(1‐O‐[2,3,421‐Otri‐acetyl‐O‐acetyl‐epitrillenogenin‐α‐→L‐2)4-rhamnopyranos (compound 33) →21‐O‐acetyl‐epitrillenogenin (compound 33) T. tschonoskiiT. tschonoskii ylO‐-acetyl-(1 2)4‐αO-‐acetylL-arabinopyranosyl]-21-‐α‐L‐arabinopyranosyl]‐ [39] [39] 21O‐-acetyl-epitrillenogeninO‐acetyl‐epitrillenogenin (compound 33) (compound 33)

(25S)‐27‐hydroxypenogenin‐[3‐O‐α‐L‐rham T. tschonoskii (25nopyranosylS)‐27‐hydroxypenogenin‐(1→2)‐O‐β‐D‐‐glucopyranosid[3‐O‐α‐L‐rham [39] T. tschonoskii nopyranosyle] (compound‐(1→ 342)) ‐O‐β‐D‐glucopyranosid [39] (25S)‐27e] (compound‐hydroxypenogenin 34) ‐[3‐O‐α‐L‐rham T. tschonoskii nopyranosyl‐(1→2)‐O‐β‐D‐glucopyranosid [39] e] (compound 34)

Molecules 2017, 22, 2156 9 of 16

26‐O‐β‐D‐glucopyranosyl 17(20)‐dehydrokryptogenin T. kamtschaticum [36] 3‐O‐α‐L‐rhamnopyranosyl‐(1→2)‐O‐β‐D‐gl ucopyranoside (compound 30)

T. govanianum Govanoside A (compound 31) [28]

T. govanianum Borassoside E (compound 32) [28]

Molecules 2017, 22, 2156 9 of 15

l‐O‐[2,3,4‐tri‐O‐acetyl‐α‐L‐rhamnopyranos T. tschonoskii yl‐(1→2)4‐O‐acetyl‐α‐L‐arabinopyranosyl]Table 2.‐ Cont. [39] 21‐O‐acetyl‐epitrillenogenin (compound 33) Source Chemical Name Chemical Structure References

(25S)-27-hydroxypenogenin- (25S)‐27‐hydroxypenogenin‐[3‐O‐α‐L‐rham [3-O-α-L-rhamnopyranosyl-(1→2)- T. tschonoskii T. tschonoskii nopyranosyl‐(1→2)‐O‐β‐D‐glucopyranosid [39] [39] O-β-De]-glucopyranoside] (compound 34) (compound 34)

MoleculesMolecules 20172017,, 2222,, 21562156 1010 ofof 1616 MoleculesMolecules 20172017 2017,, ,2222 22,, ,21562156 2156 101010 ofof of 1616 16

T.T. govanianumgovanianum SpirostSpirost‐‐55‐‐eneene‐‐3,173,17‐‐diol(pennogenin)diol(pennogenin) T. govanianumT.T.T. govanianumgovanianum govanianumMolecules 2017SpirostSpirostSpirostSpirost-5-ene-3,17-diol(pennogenin), 22, 2156‐‐5‐55‐‐ene‐ene ene‐‐3,17‐3,173,17‐‐diol(pennogenin)‐diol(pennogenin)diol(pennogenin) 10[28,40][28,40] of 16 T.T. grandiflorumgrandiflorum (compound(compound 3535)) [28,40][28,40][28,40] [ 28,40] T. grandiflorumT.T.T. grandiflorumgrandiflorum grandiflorum (compound(compound(compound(compound 3535 35))35 ) )

T. govanianum Spirost‐5‐ene‐3,17‐diol(pennogenin) OHOH OHOHOHOHOH [28,40] T. grandiflorum (compound 35) OHOHOH OHOH OHOHOH T.T. govanianumgovanianum β‐β‐Ecdysone(20Ecdysone(20‐‐hydroxyecdysone)hydroxyecdysone) T. govanianumT.T.T. govanianumgovanianum govanianum β‐β‐β‐βEcdysone(20Ecdysone(20-Ecdysone(20-hydroxyecdysone)Ecdysone(20‐‐hydroxyecdysone)‐hydroxyecdysone)hydroxyecdysone) [29,35][29,35] T.T. kamtschaticumkamtschaticum (compound(compound 3636)) HOHO [29,35][29,35][29,35] [ 29,35] T.T.T. kamtschaticumkamtschaticum kamtschaticum (compound(compound(compound 3636 36)) ) HOHOHO OH T. kamtschaticum (compound 36) OHOHOH OHOHOH OH HOHO HOHO HO O T. govanianum β‐Ecdysone(20‐hydroxyecdysone) OO OOO [29,35] T. kamtschaticum (compound 36) HO OH

HO O 55 hydroxy,hydroxy, hydroxy, β‐ β‐βecdysone(5,20ecdysone(5,20-ecdysone(5,20 T.T. govanianumgovanianum 555 hydroxy,hydroxy, hydroxy, β‐ β‐ β‐ecdysone(5,20ecdysone(5,20ecdysone(5,20 [19][19] T.T.T. govanianumgovanianum govanianum dihydroxyecdysone)dihydroxyecdysone) (compound(compound 3737)) [19][19][19] T. govanianum dihydroxyecdysone)dihydroxyecdysone)dihydroxyecdysone) (compound(compound (compound 3737 37)) ) [19] (compound 37) 5 hydroxy, β‐ecdysone(5,20 T. govanianum [19] dihydroxyecdysone) (compound 37)

OtherOther nonnon‐‐steroidalsteroidal compoundscompounds Other non-steroidalOtherOther nonnon non‐‐steroidal‐steroidalsteroidal compounds compoundscompounds compounds

Other non‐steroidal compounds (10R,6E)-7,11-dimethyl-3-mehyl3ene- (10(10RR,6,6EE))‐‐7,117,11‐‐dimethyldimethyl‐‐33‐‐mehyl3enemehyl3ene‐‐66‐‐doddod (10(10(106-dodecaene-1,2,10,11-tetraolRR,6,6,6EEE))‐)‐7,11‐7,117,11‐‐dimethyl‐dimethyldimethyl‐‐3‐33‐‐mehyl3ene‐mehyl3ene‐‐6‐66‐‐dod‐doddod T. kamtschaticumT.T. kamtschaticumkamtschaticum ecaeneecaene‐‐1,2,10,111,2,10,11‐‐tetraoltetraol [35][35] [35] T.T.T. kamtschaticumkamtschaticum kamtschaticum ecaeneecaeneecaene10-O-‐‐β1,2,10,11‐1,2,10,111,2,10,11-D-glucopyranoside‐‐tetraol‐tetraoltetraol [35][35][35] 1010‐‐OO‐β‐‐β‐DD‐‐glucopyranosideglucopyranoside (compound(compound 3838)) 101010(compound‐‐O‐O‐β‐‐β‐‐β‐(10DDD‐‐Rglucopyranoside‐glucopyranosideglucopyranoside,6E)‐387,11)‐dimethyl (compound‐(compound 3(compound‐mehyl3ene 38‐38 638‐)dod) ) T. kamtschaticum ecaene‐1,2,10,11‐tetraol [35]

10‐O‐β‐D‐glucopyranoside (compound 38)

(10R,6E)-3,7,11-trimethyl-1,6- (10(10RR,6,6EE))‐‐3,7,113,7,11‐‐trimethyltrimethyl‐‐1,61,6‐‐dodecadiendodecadien‐‐33 (10(10(10dodecadien-3,10,11-triolRR,6,6,6EEE))‐)‐3,7,11‐3,7,113,7,11‐‐trimethyl‐trimethyltrimethyl‐‐1,6‐1,61,6‐‐ 10-dodecadien‐dodecadiendodecadien‐‐3‐33 T. kamtschaticumT.T. kamtschaticumkamtschaticum ,10,11,10,11‐‐trioltriol 1010‐‐OO‐‐glucopyranosideglucopyranoside [35][35] [35] T.T.T. kamtschaticumkamtschaticum kamtschaticum ,10,11,10,11,10,11O-glucopyranoside‐‐triol‐(10trioltriolR ,6 1010 10E‐)‐O‐‐3,7,11O‐‐glucopyranoside‐glucopyranosideglucopyranoside‐trimethyl‐1,6‐dodecadien ‐3 [35][35][35] (compound(compound 3939)) T. kamtschaticum(compound(compound(compound(compound ,10,11 ‐ 39triol39 39))39 ) 10) ‐O‐glucopyranoside [35] (compound 39)

(10R,6E)-3,7,11-trimethyl-1,6- (10(10RR,6,6EE))‐‐3,7,113,7,11‐‐trimethyltrimethyl‐‐1,61,6‐‐dodecadiendodecadien‐‐33 (10(10(10dodecadien-3,10,11-triolRR,6,6,6EEE))‐)‐3,7,11‐3,7,113,7,11‐‐trimethyl‐trimethyltrimethyl‐‐1,6‐1,61,6‐‐ 10-dodecadien‐dodecadiendodecadien‐‐3‐33 T. kamtschaticumT.T. kamtschaticumkamtschaticum ,10,11,10,11‐(10‐trioltriolR,6 1010E)‐‐3,7,11OO‐‐glucopyranosideglucopyranoside‐trimethyl‐1,6‐dodecadien ‐3 [35][35] [35] T.T.T. kamtschaticumkamtschaticum kamtschaticumT. kamtschaticum ,10,11,10,11,10,11O-glucopyranoside ‐‐triol‐,10,11trioltriol 1010 ‐10triol‐‐O‐O‐‐ glucopyranoside10‐glucopyranosideglucopyranoside‐O‐glucopyranoside [35][35][35] [35] (compound(compound 4040)) (compound(compound(compound(compound(compound 4040 40))40 ) )40)

7,11-dimethyl-3-methylene-1,6- 7,117,11‐‐dimethyldimethyl7,11‐dimethyl‐‐33‐‐methylenemethylene‐3‐methylene‐‐1,61,6‐‐ ‐ 1,6‐ 7,117,117,11dodecadien-10,11-diol‐‐dimethyl‐dimethyldimethyl‐‐3‐33‐‐methylene‐methylene‐‐1,6‐1,61,6‐ ‐ ‐ dodecadiendodecadiendodecadien‐‐10,1110,11‐10,11‐‐dioldiol‐ diol T. tschonoskiiT.T. tschonoskiitschonoskiiT. tschonoskii dodecadiendodecadien dodecadien10-O-β-D-(1‐‐10,11‐10,1110,11→4)glucopyranosyl-‐‐diol‐dioldiol O-β- [41] [41][41] [41] T.T.T. tschonoskiitschonoskii tschonoskii 1010‐‐OO‐β‐‐β‐10DD‐O‐‐(1(1‐β‐→→D4)glucopyranosyl‐4)glucopyranosyl(1→4)glucopyranosyl‐‐OO‐β‐ ‐‐β‐ O‐β‐ [41][41][41] 101010D‐‐-glucopyranosideO‐O‐β‐‐β‐‐β‐DDD‐‐(1‐(1(1→→4)glucopyranosyl4)glucopyranosyl4)glucopyranosyl‐‐O‐O‐β‐ ‐β‐ ‐β‐ DD‐‐glucopyranosideglucopyranosideD‐glucopyranoside (compound(compound (compound 4141 ))41 ) DDD‐‐glucopyranoside‐glucopyranosideglucopyranoside (compound(compound (compound 4141 41)) ) (compound 41)

T. tschonoskii Methylferulorate (compound 42) [41] T.T. tschonoskiitschonoskii MethylferulorateMethylferulorate (compound(compound 4242)) [41][41] T.T.T. tschonoskiitschonoskii tschonoskii MethylferulorateMethylferulorate (compound(compound (compound 4242 42)) ) [41][41][41]

Molecules 2017, 22, 2156 10 of 16

T. govanianum Spirost‐5‐ene‐3,17‐diol(pennogenin) [28,40] T. grandiflorum (compound 35)

OH OH

OH

T. govanianum β‐Ecdysone(20‐hydroxyecdysone) [29,35] T. kamtschaticum (compound 36) HO OH

HO O

5 hydroxy, β‐ecdysone(5,20 T. govanianum [19] dihydroxyecdysone) (compound 37)

Other non‐steroidal compounds

(10R,6E)‐7,11‐dimethyl‐3‐mehyl3ene‐6‐dod T. kamtschaticum ecaene‐1,2,10,11‐tetraol [35] 10‐O‐β‐D‐glucopyranoside (compound 38)

(10R,6E)‐3,7,11‐trimethyl‐1,6‐dodecadien‐3 T. kamtschaticum ,10,11‐triol 10‐O‐glucopyranoside [35] (compound 39)

(10R,6E)‐3,7,11‐trimethyl‐1,6‐dodecadien‐3 T. kamtschaticum ,10,11‐triol 10‐O‐glucopyranoside [35] (compound 40) Molecules 2017, 22, 2156 10 of 15

7,11‐dimethyl‐3‐methylene‐1,6‐ dodecadien‐10,11‐diol Table 2. Cont. T. tschonoskii [41] 10‐O‐β‐D‐(1→4)glucopyranosyl‐O‐β‐ D‐glucopyranoside (compound 41) Source Chemical Name Chemical Structure References

T. tschonoskiiT. tschonoskii MethylferulorateMethylferulorate (compound (compound 42) 42) [41] [41]

Molecules 2017,, 22,, 2156 11 of 16 MoleculesMolecules 2017 2017, ,22 22, ,2156 2156 1111 of of 16 16

Molecules 2017, 22, 2156 11 of 16

Molecules 2017, 22, 2156 11 of 16

T. kamtschaticumkamtschaticumMolecules 2017Astragalin, 22, 2156 (compound(compound 43)) 11[35] [35]of 16 T. kamtschaticumT.T. kamtschaticum kamtschaticum AstragalinAstragalin (compound (compound (compound 43 43) ) 43) [35][35] [35]

T. kamtschaticum Astragalin (compound 43) [35]

T. kamtschaticum Astragalin (compound 43) [35]

T. kamtschaticum Astragalin (compound 43) [35]

T. undulatum 3,4,5,7‐‐tetrahydroxyflavonetetrahydroxyflavone (compound(compound 44)) [27][27] 3,4,5,7-tetrahydroxyflavone T. undulatumT.T. undulatum undulatum 3,4,5,73,4,5,7‐tetrahydroxyflavone‐tetrahydroxyflavone (compound (compound 44 44) ) [27][27] [27] T. undulatum (compound3,4,5,7‐tetrahydroxyflavone44) (compound 44) [27] T. undulatum 3,4,5,7‐tetrahydroxyflavone (compound 44) [27]

T. undulatum 3,4,5,7‐tetrahydroxyflavone (compound 44) [27]

quercetin 3‐‐O‐‐rutinoside;rutinoside; quercetin 3-O-rutinoside; T. undulatum [3quercetin[3quercetin‐‐O‐‐β‐L‐‐rhamnopyranosylrhamnopyranosyl 3 3‐O‐O‐rutinoside;‐rutinoside; ‐‐(1(1→6)‐β‐‐β‐D‐‐gluc [27][27] quercetinβ L 3‐O‐rutinoside; → T. undulatum [3opyranoside][3-‐OO‐β‐-quercetinL‐-rhamnopyranosyl-rhamnopyranosyl-(1 (compound 3‐O‐rutinoside; 45‐(1) →6)‐β‐D6)-‐gluc [27] T. undulatumT.T. undulatum undulatumT. undulatum opyranoside][3[3‐O‐[3O‐β‐‐‐Oβ‐L‐L‐β‐rhamnopyranosyl‐rhamnopyranosylL‐rhamnopyranosyl (compound 45‐(1‐)(1 ‐→(1→→6)6)6)‐β‐‐β‐‐β‐DD‐Dgluc‐‐glucgluc [27][27][27] [27] T. undulatum β-D-glucopyranoside][3‐O‐β‐L‐rhamnopyranosyl‐(1→6)‐β‐D‐gluc [27] opyranoside]opyranoside]quercetin (compound (compound 3‐O‐rutinoside; 45 45) ) (compoundopyranoside]opyranoside]45 (compound) (compound 45 )45 ) T. undulatum [3‐O‐β‐L‐rhamnopyranosyl‐(1→6)‐β‐D‐gluc [27] opyranoside] (compound 45)

KaempferolKaempferol Kaempferol T. undulatum 3Kaempferol‐Kaempferol‐3-OOKaempferol‐α‐‐α‐-αrhamnosylrhamnosyl-rhamnosyl-(1 ‐‐(1(1→2)→‐‐O2)-‐‐[[α‐Orhamnosylrhamnosyl- ‐‐(( [27][27] T. undulatum T. undulatum 3‐O‐α‐rhamnosyl→‐(1→2)‐O‐[α‐rhamnosyl‐( [27] [27] T.T. undulatum undulatumT. undulatum l3l→3‐[O‐α6)]O3‐α‐-rhamnosyl-(l‐‐α‐O‐β‐‐β‐rhamnosylKaempferol‐α‐rhamnosylglucosiderhamnosyl‐ (1‐(compound(compound(1→‐→(1→6)]-2)2)‐2)O‐βO‐‐O-glucoside[‐α‐[‐α‐[ α‐ rhamnosyl46rhamnosylrhamnosyl)) ‐(‐‐(( [27][27][27] l→6)]l→‐β‐6)]glucoside‐β‐glucoside (compound (compound 46 46) ) T. undulatuml→ l(compound→6)]6)]‐β‐‐β‐3‐glucosideOglucoside‐α‐rhamnosyl46) (compound (compound‐(1→2)‐O 46‐ [46α‐) )rhamnosyl ‐( [27] l→6)]‐β‐glucoside (compound 46)

p‐hydroxymethyl benzyl alcohol T. tschonoskiip ‐‐phydroxymethyl-hydroxymethyl benzyl benzyl alcohol alcohol [42] T. tschonoskiiT. tschonoskiitschonoskii p‐hydroxymethyl(compound 47 )benzyl alcohol [42][42] [42] T. tschonoskii (compoundp(compoundp‐hydroxymethyl‐hydroxymethylp‐hydroxymethyl 47)) benzyl benzyl benzyl alcohol alcohol alcohol [42] T.T. tschonoskii tschonoskiiT. tschonoskii (compound(compound 47)) [42][42] [42] (compound(compound(compound 47 47) ) 47)

T. govanianum Govanic acid (compound 48) [19] T. govanianumT. govanianum GovanicGovanic acid acid (compound (compound 48 48) ) [19][19] T. govanianumT. govanianumT. govanianum GovanicGovanic Govanic acid acid (compound acid (compound (compound 48) 48) ) [19][19] [19] T.T. govanianum govanianum GovanicGovanic acid acid (compound (compound 48 48) ) [19][19]

3,7,11‐trimethyl‐3,9,11‐trihydroxyl‐1,6‐dod T. tschonoskii 3,7,11-trimethyl-3,9,11-trihydroxyl- [42] 3,7,113,7,11‐trimethylecadiene‐trimethyl glycerol‐3,9,11‐3,9,11‐ trihydroxyl(compound‐trihydroxyl 49‐1,6‐)1,6 ‐dod‐dod T. tschonoskii 3,7,11‐trimethyl3,7,11‐trimethyl‐3,9,11‐3,9,11‐trihydroxyl‐trihydroxyl‐1,6‐1,6dod‐dod [42] T. tschonoskiiT. tschonoskiitschonoskiiT. tschonoskii 1,6-dodecadieneecadiene glycerol glycerol(compound 49) [42][42][42] [42] ecadiene3,7,11ecadiene3,7,11‐trimethyl‐ecadienetrimethyl glycerol glycerol‐3,9,11‐ 3,9,11(compound(compound‐ trihydroxyl(compound‐trihydroxyl 49)) 49‐1,6‐)1,6 ‐dod‐dod T.T. tschonoskii tschonoskii (compound 49) [42][42] ecadieneecadiene glycerol glycerol (compound (compound 49 49) ) 2‐methyl‐3,4 dihydroxy‐hexanedioic acid T. tschonoskii [42] (compound 50) 2-methyl-3,42‐methyl2‐methyl‐3,4‐ 3,4dihydroxy dihydroxy-hexanedioic dihydroxy‐hexanedioic‐hexanedioic acid acid T. tschonoskii T. tschonoskiiT. tschonoskii 2 ‐‐methyl‐‐3,4 dihydroxy‐‐hexanedioic acid [42][42] [42] T. tschonoskiitschonoskii acid(compound (compound 50) 50 )50 ) [42][42] (compound2(compound2‐methyl‐methyl‐3,4‐3,4 50 dihydroxy dihydroxy)) ‐hexanedioic‐hexanedioic acid acid T.T. tschonoskii tschonoskii [42][42] (compound(compound 50 50) ) 4. Medicinal Importance and Biological Activities of the Genus Trillium

4. Medicinal4. MedicinalPlant Importancespecies Importance belonging and and Biological Biologicalto the genus Activities Activities Trillium of of havethe the Genus Genus been extensivelyTrillium used as a remedy for 4. Medicinal Importance and Biological Activities of the Genus Trillium 4. Medicinal4. Medicinal Importancevarious Importance diseases and in anddifferent Biological Biological traditional ActivitiesActivities healing of ofsystemsthe the Genus Genusand Trillium severalTrillium preclinical studies have 4.4. Medicinal MedicinalPlantPlant Importance speciesImportance species belonging belonging and and Biological Biological to tothe the genus genusActivities Activities Trillium Trillium of of havethe havethe Genus Genus beenbeen extensivelyextensivelyTrillium Trillium usedused asas aa remedyremedy for for Plantcorroborated species belongingthese uses. toThe the reported genus biological/pharmacologicalTrillium have been extensively activities used of different as a remedy species for Plant speciesvariousPlantvarious species belongingdiseases diseases belonging in indifferent to different the to genusthetraditional traditional genusTrillium Trilliumhealing healinghave systemshavesystems been been andand extensivelyextensively several preclinical used used as studies asstudiesa remedy a remedy have have for for various variousPlantPlantindicate diseases speciesspecies the promisingin belongingbelonging different potential to totraditional thethe of genusgenus crude healing extracts,TrilliumTrillium systems solvent havehave beenfractionsbeen and extensively extensivelyseveral and isolated preclinical usedused pure as ascompounds. astudiesa remedyremedy have forfor variouscorroboratedcorroborated diseases thesein these different uses. uses. The Thetraditional reported reported biological/pharmacological healingbiological/pharmacological systems and several activities preclinical ofof differentdifferent studies species species have diseases invariousvarious differentindicate diseasesdiseases traditional the promisinginin differentdifferent healingpotential traditionaltraditional of systems crude healing healingextracts, and systemssolvent severalsystems fractions and preclinicaland several severaland isolated preclinical studiespreclinical pure compounds. have studiesstudies corroborated havehave these corroboratedindicate the thesethese promising uses. potentialThe reported of crude biological/pharmacological extracts, solvent fractions and activities isolated pureof different compounds. species uses. Theindicatecorroboratedindicatecorroborated reported thethe promising biological/pharmacological thesethese uses.uses. potential TheThe reported reportedof crude extracts,biological/pharmacologicalbiological/pharmacological activities solvent fractionsfractions of different and activitiesactivities isolatedisolated species ofpureof differentdifferent compounds. indicate speciesspecies the promising indicateindicate the the promising promising potential potential of of crude crude extracts, extracts, solvent solvent fractions fractions and and isolated isolated pure pure compounds. compounds. potential of crude extracts, solvent fractions and isolated pure compounds.

Molecules 2017, 22, 2156 11 of 15

The rhizomes of T. erectum, named beth roots, have been used in folk medicine for the treatment of hemorrhages from uterus, urinary tract and lungs [43]. T. tschonoskii has been traditionally used in China for at least one thousand years [44,45]. Dried rhizomes of this plant species have been used as herbal remedy for treatment of hypertension, neurasthenia, giddiness, headache, removing carbuncles and ameliorating pains [46,47]. The anticancer and pro-apoptotic activities of n-BuOH extract against human lung cancer cells have also been demonstrated [45]. The ethanol, ethyl acetate and butanol extracts of T. tschonoskii significantly suppressed the edema of rat hind paw swelling elicited by injection of carrageenan [48]. Finally, T. tschonoskii improved learning and memory in rats, by enhancing the expression of anti-oxidase enzymes [49]. Ethanol extract from rhizomes and aerial parts of T. grandiflorum exhibited antifungal activity [40]. The of T. govanianum is commonly known as “matar zela” or “teen patra” in Pakistan, and “nag chatri” in India [19]. In folk medicine, T. govanianum is used to cure dysentery and boils; in wound healing, and menstrual and sexual disorders; and as anti-inflammatory and antiseptic agent [50]. The powdered roots are used as body and sexual tonic [51]. Noteworthy, analgesic, anti-inflammatory, antifungal, free radical scavenging, β-glucuronidase inhibitory activities as well as cytotoxicity against prostate and cervical carcinoma cells of T. govanianum have been recently reported [19,29,50].

5. Bioactivities of the Genus Trillium Phytochemicals The isolated secondary metabolites of the genus Trillium mostly belong to the chemical class of steroidal saponins and steroids, including ecdysteroids, even if flavonoids and trihydroxy fatty acids have also been reported. The isolated compounds exhibited a remarkable potential when tested in different in vitro and in vivo assays. Thus far, among the tested steroidal saponins, both spirostanol and furostanol saponins, many of them exhibited relevant cytotoxicity against different cancer cell lines, few showed high potential against tested fungal strains, while some of them possessed antioxidant and COX-2 inhibitory activity, as reported in Table3.

Table 3. Bioactivities of the genus Trillium phytochemicals.

Source Compound Reported Pharmacological Activity

pennogenin 3-O-α-L-rhamnopyranosyl-(1→2) Cytotoxic, anti-proliferative and morphological [α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside effects on lung cancer cell line [52]; cytotoxicity (compound 51) against malignant sarcoma cells [53] T. tschonoskii 7-β-hydroxy trillenogenin 1-O-β-D-apiofuranosyl-(1→3)- Inhibitory activity against COX-2 in in α-L-rhamnopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→3)]- macrophagocytes of the mouse abdominal cavity α-L-arabinopyranoside, Trillenoside A (compound 52) stimulated by LPS [21]

(25R)-17α-hydroxyspirost-5-en-3β-yl O-α-L- Cytotoxicity against HL-60 human promyelocytic rhamnopyranosyl-(1→2)-β-D-glucopyranoside leukemia cells. IC (µg/mL) = 6.10 ± 0.04 [26] (compound 53) 50 (25R)-17α-hydroxyspirost-5-en-3β-yl O-α-L-rhamnopyranosyl-(1→2)-O-[α-L- Cytotoxicity against HL-60 human promyelocytic rhamnopyranosyl-(1→4)]- leukemia cells, IC50 (µg/mL) = 3.58 ± 0.18 [26] β-D-glucopyranoside (compound 9) (25R)-17α-hydroxyspirost-5-en-3β-yl O-α-L-rhamnopyranosyl-(1→2)-O-[O-α-L- Cytotoxicity against HL-60 human promyelocytic T. erectum rhamnopyranosyl-(1→4)-α-L-rhamnopyranosyl- leukemia cells, IC50 (µg/mL) = 2.65 ± 0.22 [26] (1→4)]-α-D-glucopyranoside (compound 54)

(25R)-spirost-5-en-3β-yl O-α–L-rhamnopyranosyl- (1→2)-O-[O-α-L-rhamnopyranosyl-(1→4)-α–L- Cytotoxicity against HL-60 human promyelocytic rhamnopyranosyl-(1→4)]-β-D-glucopyranoside leukemia cells, IC50 (µg/mL) = 1.68 ± 0.11 [26] (compound 55)

(25R)-26-[(β-D-glucopyranosyl)oxy]-22α-methoxyfurost- 5-en-3β-yl O-α-L-rhamnopyranosyl-(1→2)-O-[ Cytotoxicity against HL-60 human promyelocytic α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside leukemia cells, IC50 (µg/mL) = 2.89 ± 0.24 [26] (methylprotodioscin) (compound 56) Molecules 2017, 22, 2156 12 of 15

Table 3. Cont.

Source Compound Reported Pharmacological Activity

(1β,3β,23S,24S)-1-[O-β–D-glucopyranosyl (1→3)-O-β-D-glucopyranosyl (1→6)-O-β-D-apiofuranosyl]-3,23 Antifungal activity against Aspergillus niger, dihydroxyspirosta-5,25-dienyl-24-[O-α-L-rhamnopyranosyl A. flavus, Candida albicans, C. glabrata, Trichophyton T. govanianum (1→4)-β-D-6-deoxygulopyranoside] (govanoside A) rubrum [19,28] (compound 31) boeassoside E (compound 32) 7, 8, 9-trihydroxy-(10Z)-10-octadecenoic acid (compound 48) pennogenin (compound 35), borassoside E (compound 32), ROS inhibitory activity [51] diosgenin (compound 1)

21-O-acetyl-trillenogenin-1-O-β-D-apiofuranosyl-(1→3)- 00 Cytotoxicity against human colorectal cancer cells 4 -acetyl-α-L-rhamnopyranosyl-(1→2)-α-L- (HCT116) IC (µM) = 4.92 ± 1.00 [34] arabinopyranoside (compound 56) 50

24-O-acetyl-epitrillengenin-1-O-β-D-apiofuranosyl-(1→3)- Cytotoxicity against human colorectal cancer cells T. kamtschaticum α-Lrhamnopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→3)]- (HCT116) IC50 (µM) = 5.84 ± 1.05 [34] α-L-arabinopyranoside (compound 57)

26-O-β-D-glucopyranosyl-17(20)-dehydrokryptogenin- Cytotoxicity against human colorectal cancer cells 3-O-α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranoside (HCT116) IC (µM = 17.28 ± 2.69 [34] (compound 58) 50 (3β,25R)-spirost-5-en-3-yl O-6-deoxy-α-L-mannopyranosyl- Antifungal activity against Candida albicans MIC T. grandiflorum (1→2)-O-[6-deoxy-α-L-mannopyranosyl- (µg/mL) = 1.56 [40] (1→4)]-β-D-glucopyranoside (compound 59)

In addition, the biological activities of steroidal saponins mainly depend on their aglycone moieties (steroidal sapogenins) as well as the number and structure of monosaccharide units in their sugar chains. A slight structural diversity endorses a significant difference on their antifungal and cytotoxic properties, i.e., spirostanol saponins exhibit a higher antifungal potential in comparison to their analogous furostanol saponins. Therefore, it is worth mentioning that further detailed studies on the structure–activity relationships (SAR) and molecular/biochemical targets of steroidal saponins are required to explore the therapeutic potential of this important class of natural products as leads for new drug discovery.

6. Conclusions and Future Perspectives Thus far, more than 40 steroidal saponins having spirostane and furostane type aglycons from the genus Trillium have been isolated. Their structure was determined by the use of spectroscopic techniques, including fast atom bombardment mass spectrometry (FABMS) and extensive 2D nuclear magnetic resonance (NMR) experiments (COSY, TOCSY, NOESY, HSQC, and HMBC). The existing data strongly suggest that plants belonging to the genus Trillium are rich source of steroids and saponins and possess a therapeutic potential in the management of cancers, fungal infections, inflammatory and painful disorders. Noteworthy, most of the plant species are still unexplored, and some are under investigation; therefore, further comprehensive studies are needed to screen new sources of phytochemicals to develop promising phytotherapeutics effective in the treatment of chronic degenerative and infectious diseases. Finally, the most promising Trillium secondary metabolites have to be investigated in humans, in properly designed randomized clinical trials, to reach the highest level of clinical evidence.

Acknowledgments: Authors did not receive any source of funding in support of this study. Author Contributions: All the authors contributed equally to the manuscript. Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shen, B. A new golden age of natural products drug discovery. Cell 2015, 163, 1297–1300. [CrossRef] [PubMed] Molecules 2017, 22, 2156 13 of 15

2. Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products, A review. Biotechnol. Adv. 2015, 33, 1582–1614. [CrossRef][PubMed] 3. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [CrossRef][PubMed] 4. Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites 2012, 2, 303–336. [CrossRef][PubMed] 5. Ngo, L.T.; Okogun, J.I.; Folk, W.R. 21st century natural product research and drug development and traditional medicines. Nat. Prod. Rep. 2013, 30, 584–592. [CrossRef][PubMed] 6. Khan, H.; Khan, Z.; Amin, S.; Mabkhot, Y.N.; Mubarak, M.S.; Hadda, T.B.; Maione, F. Plant bioactive molecules bearing glycosides as lead compounds for the treatment of fungal infection: A review. Biomed. Pharmacother. 2017, 93, 498–509. [CrossRef] [PubMed] 7. Cragg, G.M. Natural product drug discovery and development: The United States National Cancer Institute role. P. R. Health Sci. J. 2002, 21, 97–111. [PubMed] 8. Veeresham, C. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res. 2012, 3, 200–201. [CrossRef][PubMed] 9. Lewington, A. Medicinal Plants and Plant Extracts: A Review of Their Importation into Europe; Traffic International: Cambridge, UK, 1993. 10. Cragg, G.M.; Newman, D.J. Natural product drug discovery in the next millennium. Pharm. Biol. 2001, 39, 8–17. [PubMed] 11. Shibata, S. Saponins with biological and pharmacological activity. In New Natural Products and Plant Drugs with Pharmacological, Biological or Therapeutical Activity; Springer: Berlin, Germany, 1977; pp. 177–196. 12. Podolak, I.; Galanty, A.; Sobolewska, D. Saponins as cytotoxic agents: A review. Phytochem. Rev. 2010, 9, 425–474. [CrossRef][PubMed] 13. Vincken, J.P.; Heng, L.; de Groot, A.; Gruppen, H. Saponins, classification and occurrence in the plant kingdom. Phytochemistry 2007, 68, 275–297. [CrossRef][PubMed] 14. Netala, V.R.; Ghosh, S.B.; Bobbu, P.U.; Anitha, D.A.; Tartte, V.I. Triterpenoid saponins: A review on biosynthesis, applications and mechanism of their action. Int. J. Pharm. Pharm. Sci. 2015, 7, 24–28. 15. Yassin, N.; Melek, F.; Selim, M.; Kassem, I. Pharmacological activities of saponin containing fraction derived from Gleditsia caspica Desf. methanolic fruit extract. Der Pharm. Lett. 2013, 5, 247–253. 16. Yan, L.; Zhang, Y.; Gao, W.; Man, S.; Wang, Y. In vitro and in vivo anticancer activity of steroid saponins of Paris polyphylla var. yunnanensis. Exp. Oncol. 2009, 31, 27–32. [PubMed] 17. Marwat, G.A.; Khan, A.R.; Hussain, I.; Kalsoom, S. A review on naturally occurring steroids. J. Chem. Soc. Pak. 2005, 27, 443–450. 18. Sultan, A.; Rauf Raza, A. Steroids: A diverse class of secondary metabolites. Med. Chem. 2015, 5, 310–317. [CrossRef] 19. Rahman, S.U.; Adhikari, A.; Ismail, M.; Shah, M.R.; Khurram, M.; Anis, I.; Ali, F. A New Trihydroxylated Fatty Acid and Phytoecdysteroids from Rhizomes of Trillium govanianum. Rec. Nat. Prod. 2017, 11, 323–327. 20. Osaloo, S.K.; Utech, F.H.; Ohara, M.; Kawano, S. Molecular systematics of Trilliaceae I. Phylogenetic analyses of Trillium using matK gene sequences. J. Plant Res. 1999, 112, 35–49. [CrossRef] 21. Wang, J.; Zou, K.; Zhang, Y.; Liu, C.; Wu, J.; Zhou, Y.; Dan, F.; Zhang, Y. An 18-norspirostanol saponin with inhibitory action against COX-2 production from the underground part of Trillium tschonoskii. Chem. Pharm. Bull. 2007, 55, 679–681. [CrossRef][PubMed] 22. Nasir, E.; Ali, S. Flora of Pakistan; National Herbarium Publisher: Islamabad, Pakistan, 1989. 23. Torrey, J.; Gray, A. A Flora of North America; Hafner Pub. Co.: New York, NY, USA, 1969. 24. Zhengyi, W.; Raven, P.H.; Deyuan, H. Flora of China, Volume 7: Menispermaceae through Capparaceae; Science Press: Beijing, China, 2008. 25. Hayes, P.Y.; Lehmann, R.; Penman, K.; Kitching, W.; De Voss, J.J. Steroidal saponins from the roots of Trillium erectum (Beth root). Phytochemistry 2009, 70, 105–113. [CrossRef][PubMed] 26. Yokosuka, A.; Mimaki, Y. Steroidal glycosides from the underground parts of Trillium erectum and their cytotoxic activity. Phytochemistry 2008, 69, 2724–2730. [CrossRef][PubMed] 27. Yoshitama, K.; Oyamada, T.; Yahara, S. Flavonoids in the leaves of Trillium undulatum Willdenow. J. Plant Res. 1997, 110, 379–381. [CrossRef] Molecules 2017, 22, 2156 14 of 15

28. Ismail, M.; Shah, M.R.; Adhikari, A.; Anis, I.; Ahmad, M.S.; Khurram, M.; Govanoside, A. A new steroidal saponin from rhizomes of Trillium govanianum. Steroids 2015, 104, 270–275. 29. Ur Rahman, S.; Ismail, M.; Shah, M.R.; Iriti, M.; Shahid, M. GC/MS analysis, free radical scavenging, anticancer and β-glucuronidase inhibitory activities of Trillium govanianum rhizome. Bangladesh J. Pharmacol. 2015, 10, 577–583. [CrossRef] 30. Zhou, Y.; Gao, X.; Fu, Q.; Guo, P.; Xu, X.; Zhang, T.; Ge, Y.; Zhang, B.; Wang, M.; Zeng, A.; Luo, Z. Enrichment of total steroidal saponins from the extracts of Trillium tschonoskii Maxim by macroporous resin and the simultaneous determination of eight steroidal saponins in the final product by HPLC. J. Sep. Sci. 2017, 40, 1115–1124. [CrossRef][PubMed] 31. Yang, Y.J.; Sun, X.G.; Yang, J.; Li, Q.; Zhang, J.; Zhao, Y.; Ma, B.P.; Guo, B.L. Determination of three saponins in rhizoma and fibrous root of Trillium tschonoskii and Trillium kamtschaticum. China J. Chin. Mater. Med. 2017, 42, 1146. 32. Gao, X.; Sun, W.; Fu, Q.; Niu, X. Rapid Identification of Steroidal Saponins in Trillium tschonoskii Maxim by Ultra Performance Liquid Chromatography Coupled to Electrospray Ionization Quadrupole Time-of-Flight Tandem Mass Spectrometry. Phytochem. Anal. 2015, 26, 269–278. [CrossRef][PubMed] 33. Khan, K.M.; Nahar, L.; Mannan, A.; Ul-Haq, I.; Arfan, M.; Ali Khan, G.; Hussain, I.; Sarker, S.D. Cytotoxicity, In vitro anti-Leishmanial and fingerprint HPLC-photodiode array analysis of the roots of Trillium govanianum. Nat. Prod. Res. 2017, 10, 1–9. [CrossRef][PubMed] 34. Qin, X.J.; Si, Y.A.; Chen, Y.; Liu, H.; Ni, W.; Yan, H.; Shu, T.; Ji, Y.H.; Liu, H.Y. Cytotoxic steroidal saponins from Trillium kamtschaticum. Bioorg. Med. Chem. Lett. 2017, 27, 2267–2273. [CrossRef][PubMed] 35. Ono, M.; Takamura, C.; Sugita, F.; Masuoka, C.; Yoshimitsu, H.; Ikeda, T.; Nohara, T. Two new steroid glycosides and a new sesquiterpenoid glycoside from the underground parts of Trillium kamtschaticum. Chem. Pharm. Bull. 2007, 55, 551–556. [CrossRef][PubMed] 36. Nohara, T.; Miyahara, K.; Kawasaki, T. Steroid saponins and sapogenins of underground parts of Trillium kamtschaticum Pall. II. Pennogenin-and kryptogenin 3-O-glycosides and related compounds. Chem. Pharm. Bull. 1975, 3, 872–885. [CrossRef] 37. Nakano, K.; Kashiwada, Y.; Nohara, T.; Tomimatsu, T.; Tsukatani, H.; Kawasaki, T. Steroid saponins and sapogenins of underground parts of trillium-kamtschaticum pall. Yakugaku Zasshi J. Pharm. Soc. Jpn. 1982, 102, 1031–1035. [CrossRef] 38. Ono, M.; Yanai, Y.; Ikeda, T.; Okawa, M.; Nohara, T. Steroids from the Underground Parts of Trillium kamtschaticum. Chem. Pharm. Bull. 2003, 51, 1328–1331. [CrossRef][PubMed] 39. Ono, M.; Hamada, T.; Nohara, T. An 18-norspirostanol glycoside from Trillium tschonoskii. Phytochemistry 1986, 25, 544–545. [CrossRef] 40. Hufford, C.D.; Liu, S.; Clark, A.M. Antifungal activity of Trillium grandiflorum constituents. J. Nat. Prod. 1988, 51, 94–98. [CrossRef][PubMed] 41. Nakano, K.; Maruhashi, A.; Nohara, T.; Tomimatsu, T.; Imamura, N.; Kawasaki, T. A flavonol glycoside and a sesquiterpene cellobioside from Trillium tschonoskii. Phytochemistry 1983, 22, 1249–1251. [CrossRef] 42. Zhang, Z.; Zuo, Y.; Wang, Y.; Cai, M.; Li, Y. Study on chemical constituents in the roots and rhizome of Trillium tschonoskii (III). Zhong yao cai Zhongyaocai. J. Chin. Med. Mater. 2013, 36, 1779–1782. 43. Deni, B. The Royal Horticultural Society Encyclopedia of Herbs and Their Uses; Dorling Kindersley: London, UK, 1996; p. 424. 44. Li, Y.; Liu, C.; Xiao, D.; Han, J.; Yue, Z.; Sun, Y.; Fan, L.; Zhang, F.; Meng, J.; Zhang, R.; et al. Trillium tschonoskii steroidal saponins suppress the growth of colorectal Cancer cells in vitro and in vivo. J. Ethnopharmacol. 2015, 168, 136–145. [CrossRef][PubMed] 45. Huang, W.; Zou, K.; Xiong, B. The Rhizome of Trillium tschonoskii Maxim. Extract Induces Apoptosis in Human Lung Cancer Cells. Z. Naturforschung C 2011, 66, 477–484. [CrossRef] 46. Fu, L.-K.; Jin, J. China Plant Red Data Book-Rare and Endangered Plants; Science Press: Beijing, China, 1992; Volume 1. 47. Zhan, Y. Resources of Medicinal Plants in Shennongjia of China; Hubei Scientific and Technologic Press: Wuhan, China, 1994; p. 249. 48. Yu, L.-L.; Zou, K.; Wang, J.-Z.; Zhu, L.-B.; Zhou, Y.; Yang, J. Study on the anti-inflammatory, analgesic and thrombosis effects of extract of Trillium tschonoskii Maxim. Lishizhen Med. Mater. Med. Res. 2008, 19, 1178–1180. Molecules 2017, 22, 2156 15 of 15

49. Ai, M.-X. Effects of Trillium tschonoskii Maxim on Learning and Memory and Anti-oxidase in Rats. Lishizhen Med. Mater. Med. Res. 2007, 18.[CrossRef] 50. Ur Rahman, S.; Adhikari, A.; Ismail, M.; Raza Shah, M.; Khurram, M.; Shahid, M.; Li, F.; Haseeb, A.; Akbar, F.; Iriti, M. Beneficial effects of Trillium govanianum rhizomes in pain and inflammation. Molecules 2016, 21, 1095. [CrossRef][PubMed] 51. Khan, S.M.; Page, S.; Ahmad, H.; Shaheen, H.; Ullah, Z.; Ahmad, M.; Harper, D.M. Medicinal flora and ethnoecological knowledge in the Naran Valley, Western Himalaya, Pakistan. J. Ethnobiol. Ethnomed. 2013, 9, 4. [CrossRef][PubMed] 52. Huang, W.; Zou, K. Cytotoxicity of a plant steroidal saponin on human lung cancer cells. Asian Pac. J. Cancer Prev. 2011, 12, 513–517. [PubMed]

53. Huang, W.; Zou, K. Cytotoxicity of the saponin TTB2 on Ewing sarcoma cells. Exp. Ther. Med. 2015, 10, 625–628. [CrossRef][PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).