Drug-Induced Movement Disorders
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Physiology of Basal Ganglia Disorders: an Overview
LE JOURNAL CANADIEN DES SCIENCES NEUROLOGIQUES SILVERSIDES LECTURE Physiology of Basal Ganglia Disorders: An Overview Mark Hallett ABSTRACT: The pathophysiology of the movement disorders arising from basal ganglia disorders has been uncer tain, in part because of a lack of a good theory of how the basal ganglia contribute to normal voluntary movement. An hypothesis for basal ganglia function is proposed here based on recent advances in anatomy and physiology. Briefly, the model proposes that the purpose of the basal ganglia circuits is to select and inhibit specific motor synergies to carry out a desired action. The direct pathway is to select and the indirect pathway is to inhibit these synergies. The clinical and physiological features of Parkinson's disease, L-DOPA dyskinesias, Huntington's disease, dystonia and tic are reviewed. An explanation of these features is put forward based upon the model. RESUME: La physiologie des affections du noyau lenticulaire, du noyau caude, de I'avant-mur et du noyau amygdalien. La pathophysiologie des desordres du mouvement resultant d'affections du noyau lenticulaire, du noyau caude, de l'avant-mur et du noyau amygdalien est demeuree incertaine, en partie parce qu'il n'existe pas de bonne theorie expliquant le role de ces structures anatomiques dans le controle du mouvement volontaire normal. Nous proposons ici une hypothese sur leur fonction basee sur des progres recents en anatomie et en physiologie. En resume, le modele pro pose que leurs circuits ont pour fonction de selectionner et d'inhiber des synergies motrices specifiques pour ex£cuter Taction desiree. La voie directe est de selectionner et la voie indirecte est d'inhiber ces synergies. -
Radiologic-Clinical Correlation Hemiballismus
Radiologic-Clinical Correlation Hemiballismus James M. Provenzale and Michael A. Schwarzschild From the Departments of Radiology (J.M.P.), Duke University Medical Center, Durham, and f'leurology (M.A.S.), Massachusetts General Hospital, Boston Clinical History derived from the Greek word meaning "to A 65-year-old recently retired surgeon in throw," because the typical involuntary good health developed disinhibited behavior movements of the affected limbs resemble over the course of a few months, followed by the motions of throwing ( 1) . Such move onset of unintentional, forceful flinging move ments usually involve one side of the body ments of his right arm and leg. Magnetic res (hemiballismus) but may involve one ex onance imaging demonstrated a 1-cm rim tremity (monoballism), both legs (parabal enhancing mass in the left subthalamic lism), or all the extremities (biballism) (2, 3). region, which was of high signal intensity on The motions are centered around the shoul T2-weighted images (Figs 1A-E). Positive der and hip joints and have a forceful, flinging serum human immunodeficiency virus anti quality. Usually either the arm or the leg is gen and antibody titers were found, with predominantly involved. Although at least mildly elevated cerebrospinal fluid toxo some volitional control over the affected plasma titers. Anti-toxoplasmosis treatment limbs is still maintained, the involuntary with sulfadiazine and pyrimethamine was be movements typically can be checked by the gun, with resolution of the hemiballistic patient for only a few moments ( 1). The movements within a few weeks and decrease movements are usually continuous but may in size of the lesion. -
Facial Myokymia: a Clinicopathological Study
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.37.6.745 on 1 June 1974. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry, 1974, 37, 745-749 Facial myokymia: a clinicopathological study P. K. SETHI1, BERNARD H. SMITH, AND K. KALYANARAMAN From the Department of Neurology, Edward J. Meyer Memorial Hospital anid School of Medicine, State University of New York at Buffalo, N. Y., U.S.A. SYNOPSIS Clinicopathological correlations are presented in a case of facial myokymia with facial palsy. The causative lesions were considered to be metastatic tumours to the pons and it was con- cluded that both the facial palsy and the myokymia were due to interruption of supranuclear path- ways impinging on the facial nucleus. Oppenheim (1916) described a patient with con- CASE REPORT tinuous undulation and fasciculation in the right A 57 year old white man was admitted to hospital on facial muscles. The movements had started in the 30 December 1971, suffering from productive cough, infraorbital region and progressed to involve the haemoptysis, and weight loss of some months' dura- entire territory of the facial nerve. He called the tion. He had been a heavy smoker for many years. Protected by copyright. condition facial myokymia, commented on its There was no history of fever or of pains around the association with sustained facial contraction, face. and expressed the view that, like facial palsy, it He was oriented as to time, place, and person but might be an early sign of multiple sclerosis. Kino confused and lethargic and unable to describe his (1928) reported three patients with undulating symptoms well. -
TWITCH, JERK Or SPASM Movement Disorders Seen in Family Practice
TWITCH, JERK or SPASM Movement Disorders Seen in Family Practice J. Antonelle de Marcaida, M.D. Medical Director Chase Family Movement Disorders Center Hartford HealthCare Ayer Neuroscience Institute DEFINITION OF TERMS • Movement Disorders – neurological syndromes in which there is either an excess of movement or a paucity of voluntary and automatic movements, unrelated to weakness or spasticity • Hyperkinesias – excess of movements • Dyskinesias – unnatural movements • Abnormal Involuntary Movements – non-suppressible or only partially suppressible • Hypokinesia – decreased amplitude of movement • Bradykinesia – slowness of movement • Akinesia – loss of movement CLASSES OF MOVEMENTS • Automatic movements – learned motor behaviors performed without conscious effort, e.g. walking, speaking, swinging of arms while walking • Voluntary movements – intentional (planned or self-initiated) or externally triggered (in response to external stimulus, e.g. turn head toward loud noise, withdraw hand from hot stove) • Semi-voluntary/“unvoluntary” – induced by inner sensory stimulus (e.g. need to stretch body part or scratch an itch) or by an unwanted feeling or compulsion (e.g. compulsive touching, restless legs syndrome) • Involuntary movements – often non-suppressible (hemifacial spasms, myoclonus) or only partially suppressible (tremors, chorea, tics) HYPERKINESIAS: major categories • CHOREA • DYSTONIA • MYOCLONUS • TICS • TREMORS HYPERKINESIAS: subtypes Abdominal dyskinesias Jumpy stumps Akathisic movements Moving toes/fingers Asynergia/ataxia -
Movement Disorders After Brain Injury
Movement Disorders After Brain Injury Erin L. Smith Movement Disorders Fellow UNMC Department of Neurological Sciences Objectives 1. Review the evidence behind linking brain injury to movement disorders 2. Identify movement disorders that are commonly seen in persons with brain injury 3. Discuss management options for movement disorders in persons with brain injury Brain Injury and Movement Disorders: Why They Happen History • James Parkinson’s Essay on the Shaking Palsy • Stated that PD patients had no h/o trauma • “Punch Drunk Syndrome” in boxers (Martland, 1928) • Parkinsonian features after midbrain injury (Kremer 1947) • 7 pts, Varying etiology of injury • Many more reports have emerged over time History Chronic Traumatic Encephalopathy (CTE) • Dementia pugilistica (1920s) • Chronic, repeated head injury (30%) • Football players • Mike Webster, 2005 • Boxers • Other “combat” sports • Domestic violence • Military background • Many neurological sx • Dx on autopsy • Taupoathy Linking Brain Injury to Movement Disorders Timeline Injury Anatomy Severity Brain Injury and Movement Disorders Typically severe injury • Neurology (2018) • Rare after mild-moderate • 325,870 veterans injury • Half with TBI (all severities) Pre-existing movement • 12-year follow-up disorders may be linked • 1,462 dx with PD • Parkinson’s Disease (PD) • 949 had TBI • Caveats: • Mild TBI = 56% increased • Incidence is overall low risk of PD • Environmental factors • Mod-Severe TBI = 83% also at play increased risk of PD • Not all data supports it Timeline: Brain Injury -
ADCY5 Mutations Are Another Cause of Benign Hereditary Chorea
Published Ahead of Print on June 17, 2015 as 10.1212/WNL.0000000000001720 ADCY5 mutations are another cause of benign hereditary chorea Niccolo E. Mencacci, ABSTRACT * MD Objective: To determine the contribution of ADCY5 mutations in cases with genetically undefined * Roberto Erro, MD benign hereditary chorea (BHC). Sarah Wiethoff, MD Methods: We studied 18 unrelated cases with BHC (7 familial, 11 sporadic) who were negative for Joshua Hersheson, NKX2-1 mutations. The diagnosis of BHC was based on the presence of a childhood-onset move- MRCP ment disorder, predominantly characterized by chorea and no other major neurologic features. Mina Ryten, MRCP, ADCY5 analysis was performed by whole-exome sequencing or Sanger sequencing. ADCY5 and PhD NKX2-1 expression during brain development and in the adult human brain was assessed using Bettina Balint, MD microarray analysis of postmortem brain tissue. Christos Ganos, MD . Maria Stamelou, MD, Results: The c.1252C T; p.R418W mutation was identified in 2 cases (1 familial, 1 sporadic). PhD The familial case inherited the mutation from the affected father, who had a much milder presen- Niall Quinn, MD, FRCP tation, likely due to low-grade somatic mosaicism. The mutation was de novo in the sporadic case. Henry Houlden, PhD, The clinical presentation of these cases featured nonparoxysmal generalized chorea, as well as FRCP dystonia in the most severely affected, but no facial myokymia. We observed significant progres- ADCY5 NKX2-1 Nicholas W. Wood, PhD, sion of symptoms in mutation carriers, in contrast to BHC secondary to muta- FRCP, FMedSci tions. The difference in the clinical course is mirrored by the brain expression data, showing ADCY5 NKX2-1 Kailash P. -
History-Of-Movement-Disorders.Pdf
Comp. by: NJayamalathiProof0000876237 Date:20/11/08 Time:10:08:14 Stage:First Proof File Path://spiina1001z/Womat/Production/PRODENV/0000000001/0000011393/0000000016/ 0000876237.3D Proof by: QC by: ProjectAcronym:BS:FINGER Volume:02133 Handbook of Clinical Neurology, Vol. 95 (3rd series) History of Neurology S. Finger, F. Boller, K.L. Tyler, Editors # 2009 Elsevier B.V. All rights reserved Chapter 33 The history of movement disorders DOUGLAS J. LANSKA* Veterans Affairs Medical Center, Tomah, WI, USA, and University of Wisconsin School of Medicine and Public Health, Madison, WI, USA THE BASAL GANGLIA AND DISORDERS Eduard Hitzig (1838–1907) on the cerebral cortex of dogs OF MOVEMENT (Fritsch and Hitzig, 1870/1960), British physiologist Distinction between cortex, white matter, David Ferrier’s (1843–1928) stimulation and ablation and subcortical nuclei experiments on rabbits, cats, dogs and primates begun in 1873 (Ferrier, 1876), and Jackson’s careful clinical The distinction between cortex, white matter, and sub- and clinical-pathologic studies in people (late 1860s cortical nuclei was appreciated by Andreas Vesalius and early 1870s) that the role of the motor cortex was (1514–1564) and Francisco Piccolomini (1520–1604) in appreciated, so that by 1876 Jackson could consider the the 16th century (Vesalius, 1542; Piccolomini, 1630; “motor centers in Hitzig and Ferrier’s region ...higher Goetz et al., 2001a), and a century later British physician in degree of evolution that the corpus striatum” Thomas Willis (1621–1675) implicated the corpus -
Part Ii – Neurological Disorders
Part ii – Neurological Disorders CHAPTER 14 MOVEMENT DISORDERS AND MOTOR NEURONE DISEASE Dr William P. Howlett 2012 Kilimanjaro Christian Medical Centre, Moshi, Kilimanjaro, Tanzania BRIC 2012 University of Bergen PO Box 7800 NO-5020 Bergen Norway NEUROLOGY IN AFRICA William Howlett Illustrations: Ellinor Moldeklev Hoff, Department of Photos and Drawings, UiB Cover: Tor Vegard Tobiassen Layout: Christian Bakke, Division of Communication, University of Bergen E JØM RKE IL T M 2 Printed by Bodoni, Bergen, Norway 4 9 1 9 6 Trykksak Copyright © 2012 William Howlett NEUROLOGY IN AFRICA is freely available to download at Bergen Open Research Archive (https://bora.uib.no) www.uib.no/cih/en/resources/neurology-in-africa ISBN 978-82-7453-085-0 Notice/Disclaimer This publication is intended to give accurate information with regard to the subject matter covered. However medical knowledge is constantly changing and information may alter. It is the responsibility of the practitioner to determine the best treatment for the patient and readers are therefore obliged to check and verify information contained within the book. This recommendation is most important with regard to drugs used, their dose, route and duration of administration, indications and contraindications and side effects. The author and the publisher waive any and all liability for damages, injury or death to persons or property incurred, directly or indirectly by this publication. CONTENTS MOVEMENT DISORDERS AND MOTOR NEURONE DISEASE 329 PARKINSON’S DISEASE (PD) � � � � � � � � � � � -
Hemiballismus: /Etiology and Surgical Treatment by Russell Meyers, Donald B
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.13.2.115 on 1 May 1950. Downloaded from J. Neurol. Neurosurg. Psychiat., 1950, 13, 115. HEMIBALLISMUS: /ETIOLOGY AND SURGICAL TREATMENT BY RUSSELL MEYERS, DONALD B. SWEENEY, and JESS T. SCHWIDDE From the Division of Neurosurgery, State University of Iowa, College ofMedicine, Iowa City, Iowa Hemiballismus is a relatively uncommon hyper- 1949; Whittier). A few instances are on record in kinesia characterized by vigorous, extensive, and which the disorder has run an extended chronic rapidly executed, non-patterned, seemingly pur- course (Touche, 1901 ; Marcus and Sjogren, 1938), poseless movements involving one side of the body. while in one case reported by Lea-Plaza and Uiberall The movements are almost unceasing during the (1945) the abnormal movements are said to have waking state and, as with other hyperkinesias con- ceased spontaneously after seven weeks. Hemi- sidered to be of extrapyramidal origin, they cease ballismus has also been known to cease following during sleep. the supervention of a haemorrhagic ictus. Clinical Aspects Terminology.-There appears to be among writers on this subject no agreement regarding the precise Cases are on record (Whittier, 1947) in which the Protected by copyright. abnormal movements have been confined to a single features of the clinical phenomena to which the limb (" monoballismus ") or to both limbs of both term hemiballismus may properly be applied. sides (" biballismus ") (Martin and Alcock, 1934; Various authors have credited Kussmaul and Fischer von Santha, 1932). In a majority of recorded (1911) with introducing the term hemiballismus to instances, however, the face, neck, and trunk as well signify the flinging or flipping character of the limb as the limbs appear to have been involved. -
The Paroxysmal Dyskinesias
The Paroxysmal Dyskinesias Kailash Bhatia Institute of Neurology Queen Square, London UK Note: 2008 Course Slides The Paroxysmal Dyskinesias A heterogeneous and rare group of disorders characterised by recurrent brief episodes of abnormal involuntary movements (Interictally the patient is usually normal) Movements may be chorea, ballism, dystonia, or a combination Diagnosis is often missed Paroxysmal Dyskinesias -Historical Aspects • Gowers (1885)- called it epilepsy! • Mount and Reback (1940)- first clear description 23 yr/male with an AD inherited condition, attacks of choreo- athetosis lasting 5 mins to hours, provoked by alcohol, coffee, tea, fatigue and smoking • “Paroxysmal dystonic choreoathetosis” (PDC) • Other similar families- (Forsmann 1961, Lance 1963, Richard and Barnet, 1968, Fink et al, 1997, Jarman et al, 2000) Paroxysmal dyskinesias -Historical aspects •Kertesz (1967) – new term (Paroxysmal “kinesigenic” choreoathetosis: An entity within the paroxysmal choreo-athetosis syndrome. Description of 10 cases including 1 autopsied) • Attacks were induced by sudden movement (i.e. kinesigenic ) and were very brief • Response to antiepileptics Paroxysmal Dyskinesias- Historical Aspects • Lance 1977 - a new form of paroxysmal dyskinesia in a family • Affected members had attacks of dystonia lasting 5-30 minutes provoked by prolonged exercise (not sudden movement) • Paroxysmal exercise-induced dystonia (PED) Paroxysmal Dyskinesias- Classification Lance (1977)- “the time factor” • PKC-sudden, brief (secs-5mins), movement induced attacks -
Facial Myokymia
23 July 1966 Leading Articles MEDICAL JOURNAL 189 2 to 6% calcium oxide in commercial talcs. When the talc intermittent and irregular twitching of the muscles around is wetted the boric acid reacts with the calcium hydroxide to one eye, and later may spread to those around the so mouth, Br Med J: first published as 10.1136/bmj.2.5507.189 on 23 July 1966. Downloaded from produce the highly insoluble calcium borate. Absorption that intermittent sharp and momentary contractions of the from dusting powder when the surface of the skin is intact is entire facial musculature on one side may ensue. The negligible and harmless, but if the surface is broken a dusting probable cause is compression or irritation of the facial nerve powder is probably not the best treatment anyway. within its bony canal, but regrettably there is no certain It should be recognized that there is no single blunderbuss method of determining the site of the lesion, so that operations method of treating napkin rashes, because they are not all of designed to decompress the affected nerve are rarely success- the same type or due to the same cause. The common ful. A similar type of intermittent twitching may be seen ammonia dermatitis, with its diffuse erythema where the wet following a severe Bell's palsy in association with the facial napkin was in contact with the skin, leaving the-creases clear, contracture which can occur as a result of partial regeneration is due to the liberation of ammonia from the urine by in the facial nerve. -
The Clinical Approach to Movement Disorders Wilson F
REVIEWS The clinical approach to movement disorders Wilson F. Abdo, Bart P. C. van de Warrenburg, David J. Burn, Niall P. Quinn and Bastiaan R. Bloem Abstract | Movement disorders are commonly encountered in the clinic. In this Review, aimed at trainees and general neurologists, we provide a practical step-by-step approach to help clinicians in their ‘pattern recognition’ of movement disorders, as part of a process that ultimately leads to the diagnosis. The key to success is establishing the phenomenology of the clinical syndrome, which is determined from the specific combination of the dominant movement disorder, other abnormal movements in patients presenting with a mixed movement disorder, and a set of associated neurological and non-neurological abnormalities. Definition of the clinical syndrome in this manner should, in turn, result in a differential diagnosis. Sometimes, simple pattern recognition will suffice and lead directly to the diagnosis, but often ancillary investigations, guided by the dominant movement disorder, are required. We illustrate this diagnostic process for the most common types of movement disorder, namely, akinetic –rigid syndromes and the various types of hyperkinetic disorders (myoclonus, chorea, tics, dystonia and tremor). Abdo, W. F. et al. Nat. Rev. Neurol. 6, 29–37 (2010); doi:10.1038/nrneurol.2009.196 1 Continuing Medical Education online 85 years. The prevalence of essential tremor—the most common form of tremor—is 4% in people aged over This activity has been planned and implemented in accordance 40 years, increasing to 14% in people over 65 years of with the Essential Areas and policies of the Accreditation Council age.2,3 The prevalence of tics in school-age children and for Continuing Medical Education through the joint sponsorship of 4 MedscapeCME and Nature Publishing Group.