Stability Charts for a Tall Tunnel in Undrained Clay
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used As a Training Tool
A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used as a Training Tool Item Type Report Authors Darrow, Margaret M.; Huang, Scott L.; Obermiller, Kyle Publisher Alaska University Transportation Center Download date 26/09/2021 04:55:55 Link to Item http://hdl.handle.net/11122/7546 A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used as a Training Tool Final Report December 2011 Prepared by PI: Margaret M. Darrow, Ph.D. Co-PI: Scott L. Huang, Ph.D. Co-author: Kyle Obermiller Institute of Northern Engineering for Alaska University Transportation Center REPORT CONTENTS TABLE OF CONTENTS 1.0 INTRODUCTION ................................................................................................................ 1 2.0 REVIEW OF UNSTABLE SOIL SLOPES IN PERMAFROST AREAS ............................... 1 3.0 THE NELCHINA SLIDE ..................................................................................................... 2 4.0 THE RICH113 SLIDE ......................................................................................................... 5 5.0 THE CHITINA DUMP SLIDE .............................................................................................. 6 6.0 SUMMARY ......................................................................................................................... 9 7.0 REFERENCES ................................................................................................................. 10 i A STUDY OF UNSTABLE SLOPES IN PERMAFROST AREAS 1.0 INTRODUCTION -
The New Hampshire High Tunnel Story
The New Hampshire High Tunnel Story NATURAL RESOURCES CONSERVATION SERVICE New Hampshire January 2011 BACKGROUND National High Tunnel Conservation Benefits Local Foods Initiatives 3-Year Pilot Program High tunnels can provide a number of Growing food locally, especially before significant conservation benefits such as and after the traditional growing season, NRCS offered seasonal high tunnels an increase in plant and soil quality, a helps strengthen the local economy and (officially called “seasonal high tunnel decrease in pesticide use and foliar (leaf) helps ensure the viability and profitability system for crops”) as a conservation disease, and improved energy savings. of small farms. When NH farms succeed, practice for the first time in fiscal year Many farmers who want to grow toma- valuable farmland and cultural heritage are (FY) 2010 as part of a three-year trial to toes without using pesticides often find protected. High tunnels are important tools determine their effectiveness in con- they can only do so successfully if they for enhancing the availability of local food serving water, improving soil health, are grown in a tunnel. Without rainfall, year-round. foliar disease is often reduced because the leaves stay dry. Insects that are com- “As expected, the seasonal high monly a problem in the field may not be “It is phenomenal that winter tunnel pilot has been popular in so in the tunnel because the tunnel tends farmer’s markets in NH have grown New Hampshire. In just one to disrupt their feeding patterns. Other from none four years ago to twenty year, the NRCS-NH helped fund insects that occur in a high tunnel are today. -
Bray 2011 Pseudostatic Slope Stability Procedure Paper
Paper No. Theme Lecture 1 PSEUDOSTATIC SLOPE STABILITY PROCEDURE Jonathan D. BRAY 1 and Thaleia TRAVASAROU2 ABSTRACT Pseudostatic slope stability procedures can be employed in a straightforward manner, and thus, their use in engineering practice is appealing. The magnitude of the seismic coefficient that is applied to the potential sliding mass to represent the destabilizing effect of the earthquake shaking is a critical component of the procedure. It is often selected based on precedence, regulatory design guidance, and engineering judgment. However, the selection of the design value of the seismic coefficient employed in pseudostatic slope stability analysis should be based on the seismic hazard and the amount of seismic displacement that constitutes satisfactory performance for the project. The seismic coefficient should have a rational basis that depends on the seismic hazard and the allowable amount of calculated seismically induced permanent displacement. The recommended pseudostatic slope stability procedure requires that the engineer develops the project-specific allowable level of seismic displacement. The site- dependent seismic demand is characterized by the 5% damped elastic design spectral acceleration at the degraded period of the potential sliding mass as well as other key parameters. The level of uncertainty in the estimates of the seismic demand and displacement can be handled through the use of different percentile estimates of these values. Thus, the engineer can properly incorporate the amount of seismic displacement judged to be allowable and the seismic hazard at the site in the selection of the seismic coefficient. Keywords: Dam; Earthquake; Permanent Displacements; Reliability; Seismic Slope Stability INTRODUCTION Pseudostatic slope stability procedures are often used in engineering practice to evaluate the seismic performance of earth structures and natural slopes. -
Slope Stability Reference Guide for National Forests in the United States
United States Department of Slope Stability Reference Guide Agriculture for National Forests Forest Service Engineerlng Staff in the United States Washington, DC Volume I August 1994 While reasonable efforts have been made to assure the accuracy of this publication, in no event will the authors, the editors, or the USDA Forest Service be liable for direct, indirect, incidental, or consequential damages resulting from any defect in, or the use or misuse of, this publications. Cover Photo Ca~tion: EYESEE DEBRIS SLIDE, Klamath National Forest, Region 5, Yreka, CA The photo shows the toe of a massive earth flow which is part of a large landslide complex that occupies about one square mile on the west side of the Klamath River, four air miles NNW of the community of Somes Bar, California. The active debris slide is a classic example of a natural slope failure occurring where an inner gorge cuts the toe of a large slumplearthflow complex. This photo point is located at milepost 9.63 on California State Highway 96. Photo by Gordon Keller, Plumas National Forest, Quincy, CA. The United States Department of Agriculture (USDA) prohibits discrimination in its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs and marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program informa- tion (Braille, large print, audiotape, etc.) should contact the USDA Mice of Communications at 202-720-5881(voice) or 202-720-7808(TDD). To file a complaint, write the Secretary of Agriculture, U.S. -
An Empirical Approach for Tunnel Support Design Through Q and Rmi Systems in Fractured Rock Mass
applied sciences Article An Empirical Approach for Tunnel Support Design through Q and RMi Systems in Fractured Rock Mass Jaekook Lee 1, Hafeezur Rehman 1,2, Abdul Muntaqim Naji 1,3, Jung-Joo Kim 4 and Han-Kyu Yoo 1,* 1 Department of Civil and Environmental Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Korea; [email protected] (J.L.); [email protected] (H.R.); [email protected] (A.M.N.) 2 Department of Mining Engineering, Faculty of Engineering, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta 87300, Pakistan 3 Department of Geological Engineering, Faculty of Engineering, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta 87300, Pakistan 4 Korea Railroad Research Institute, 176 Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do 16105, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-31-400-5147; Fax: +82-31-409-4104 Received: 26 November 2018; Accepted: 14 December 2018; Published: 18 December 2018 Abstract: Empirical systems for the classification of rock mass are used primarily for preliminary support design in tunneling. When applying the existing acceptable international systems for tunnel preliminary supports in high-stress environments, the tunneling quality index (Q) and the rock mass index (RMi) systems that are preferred over geomechanical classification due to the stress characterization parameters that are incorporated into the two systems. However, these two systems are not appropriate when applied in a location where the rock is jointed and experiencing high stresses. This paper empirically extends the application of the two systems to tunnel support design in excavations in such locations. -
FACT SHEET: BART Silicon Valley
Twin-Bore Single-Bore Running Tunnel Running Tunnel Utilities Utilities Up to ~60' FACT SHEET: VTA’s BART Silicon Valley Phase II Extension Project FACTTunneling MethodologySHEET: BART Silicon Valley VTA’sVTA’s BART BART Silicon Silicon Valley Phase Valley II Project Phase is a six-mile, ll Extension four-stationUp extensionProject to ~75' that will bring BART train service from Berryessa/North San José through downtown San José to the City of Santa Clara. The Phase II Project will include an approximately five-mile tunnel, two mid-tunnel ventilation facilities, a maintenance facility and storage yard, three VTA’sunderground BART Siliconstations (AlumValley Rock/28th Program Street, Overview Downtown San José, Diridon), and one ground-level station (Santa VTAClara). is extending The subway the tunnelBART regionalwill be in heavy one large rail system diameter to Milpitas,tunnel. San Jose, and Santa Clara. The 16-mile extension, called the BART Silicon Valley Program, will extend the BART system south of BART’s future Warm Springs/SouthSingle-Bore Fremont Tunnel Station in Fremont to Milpitas, San Jose, and Santa Clara. When completed, this fully grade-separatedThe tunnel will be project constructed is planned as a tosingle, include large six diameter stations andtunnel. a new The maintenance and storage facility in Santa Clara.approximately VTA’s BART 45 footSilicon tunnel Valley will Program contain istwo being independent delivered trackways,in two phases. one Thefor Berryessa Extension Project (Phaseeach direction I) is under of constructiontravel. Passenger and scheduled platforms willto open be located in 2018, within with thestations tunnel, in Milpitas and the Berryessa areaconnected of San toJose. -
FHWA/TX-07/0-5202-1 Accession No
Technical Report Documentation Page 1. Report No. 2. Government 3. Recipient’s Catalog No. FHWA/TX-07/0-5202-1 Accession No. 4. Title and Subtitle 5. Report Date Determination of Field Suction Values, Hydraulic Properties, August 2005; Revised March 2007 and Shear Strength in High PI Clays 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Jorge G. Zornberg, Jeffrey Kuhn, and Stephen Wright 0-5202-1 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Center for Transportation Research 11. Contract or Grant No. The University of Texas at Austin 0-5202 3208 Red River, Suite 200 Austin, TX 78705-2650 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Texas Department of Transportation Technical Report Research and Technology Implementation Office September 2004–August 2006 P.O. Box 5080 14. Sponsoring Agency Code Austin, TX 78763-5080 15. Supplementary Notes Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Project Title: Determination of Field Suction Values in High PI Clays for Various Surface Conditions and Drain Installations 16. Abstract Moisture infiltration into highway embankments constructed by the Texas Department of Transportation (TxDOT) using high Plasticity Index (PI) clays results in changes in shear strength and in flow pattern that leads to recurrent slope failures. In addition, soil cracking over time increases the rate of moisture infiltration. The overall objective of this research is to determine the suction, hydraulic properties, and shear strength of high PI Texas clays. Specifically, two comprehensive experimental programs involving the characterization of unsaturated properties and the shear strength of a high PI clay (Eagle Ford clay) were conducted. -
Liquefaction, Landslide and Slope Stability Analyses of Soils: a Case Study Of
Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-297, 2016 Manuscript under review for journal Nat. Hazards Earth Syst. Sci. Published: 26 October 2016 c Author(s) 2016. CC-BY 3.0 License. 1 Liquefaction, landslide and slope stability analyses of soils: A case study of 2 soils from part of Kwara, Kogi and Anambra states of Nigeria 3 Olusegun O. Ige1, Tolulope A. Oyeleke 1, Christopher Baiyegunhi2, Temitope L. Oloniniyi2 4 and Luzuko Sigabi2 5 1Department of Geology and Mineral Sciences, University of Ilorin, Private Mail Bag 1515, 6 Ilorin, Kwara State, Nigeria 7 2Department of Geology, Faculty of Science and Agriculture, University of Fort Hare, Private 8 Bag X1314, Alice, 5700, Eastern Cape Province, South Africa 9 Corresponding Email Address: [email protected] 10 11 ABSTRACT 12 Landslide is one of the most ravaging natural disaster in the world and recent occurrences in 13 Nigeria require urgent need for landslide risk assessment. A total of nine samples representing 14 three major landslide prone areas in Nigeria were studied, with a view of determining their 15 liquefaction and sliding potential. Geotechnical analysis was used to investigate the 16 liquefaction potential, while the slope conditions were deduced using SLOPE/W. The results 17 of geotechnical analysis revealed that the soils contain 6-34 % clay and 72-90 % sand. Based 18 on the unified soil classification system, the soil samples were classified as well graded with 19 group symbols of SW, SM and CL. The plot of plasticity index against liquid limit shows that 20 the soil samples from Anambra and Kogi are potentially liquefiable. -
Evaluation of Soil Dilatancy
The Influence of Grain Shape on Dilatancy Item Type text; Electronic Dissertation Authors Cox, Melissa Reiko Brooke Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 24/09/2021 03:25:54 Link to Item http://hdl.handle.net/10150/195563 THE INFLUENCE OF GRAIN SHAPE ON DILATANCY by MELISSA REIKO BROOKE COX ________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF CIVIL ENGINEERING AND ENGINEERING MECHANICS In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN CIVIL ENGINEERING In the Graduate College THE UNIVERISTY OF ARIZONA 2 0 0 8 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Melissa Reiko Brooke Cox entitled The Influence of Grain Shape on Dilatancy and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy ___________________________________________________________________________ Date: October 17, 2008 Muniram Budhu ___________________________________________________________________________ Date: October 17, 2008 Achintya Haldar ___________________________________________________________________________ Date: October 17, 2008 Chandrakant S. Desai ___________________________________________________________________________ Date: October 17, 2008 John M. Kemeny Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. -
Case Study on Slope Stability Changes Caused by Earthquakes—Focusing on Gyeongju 5.8 ML EQ
sustainability Article Case Study on Slope Stability Changes Caused by Earthquakes—Focusing on Gyeongju 5.8 ML EQ Sangki Park , Wooseok Kim *, Jonghyun Lee and Yong Baek Korea Institute of Civil Engineering and Building Technology, 283, Goyang-daero, Ilsanseo-gu, Goyang-si 10223, Gyeonggi-do, Korea; [email protected] (S.P.); [email protected] (J.L.); [email protected] (Y.B.) * Correspondence: [email protected]; Tel.: +82-31-910-0519 Received: 16 July 2018; Accepted: 16 September 2018; Published: 27 September 2018 Abstract: Slope failure is a natural hazard occurring around the world and can lead to severe damage of properties and loss of lives. Even in stabilized slopes, changes in external loads, such as those from earthquakes, may cause slope failure and collapse, generating social impacts and, eventually causing loss of lives. In this research, the slope stability changes caused by the Gyeongju earthquake, which occurred on 12 September 2016, are numerically analyzed in a slope located in the Gyeongju area, South Korea. Slope property data, collected through an on-site survey, was used in the analysis. Additionally, slope stability changes with and without the earthquake were analyzed and compared. The analysis was performed within a peak ground acceleration (PGA) range of 0.0 (g)–2.0 (g) to identify the correlation between the slope safety factor and peak ground acceleration. The correlation between the slope safety factor and peak ground acceleration could be used as a reference for performing on-site slope stability evaluations. It also provides a reference for design and earthquake stability improvements in the slopes of road and tunnel construction projects, thus supporting the attainment of slope stability in South Korea. -
Geotechnical Performance of a Tunnel in Soft Ground
Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in (1993) - Third International Conference on Case Geotechnical Engineering Histories in Geotechnical Engineering 03 Jun 1993, 10:30 am - 12:30 pm Geotechnical Performance of a Tunnel in Soft Ground A. B. Parreira Universidade de São Paulo, Brazil R. F. Azevedo Pontifícia Universidade Católica do Rio de Janeiro, Brazil Follow this and additional works at: https://scholarsmine.mst.edu/icchge Part of the Geotechnical Engineering Commons Recommended Citation Parreira, A. B. and Azevedo, R. F., "Geotechnical Performance of a Tunnel in Soft Ground" (1993). International Conference on Case Histories in Geotechnical Engineering. 17. https://scholarsmine.mst.edu/icchge/3icchge/3icchge-session05/17 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Conference on Case Histories in Geotechnical Engineering by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. !111!!111 Proceedings: Third International Conference on Case Histories in Geotechnical Engineering, St. Louis, Missouri, ~ June 1-4, 1993, Paper No. 5.55 Geotechnical Performance of a Tunnel in Soft Ground A. B. Parreira R.F.Azevedo Assistant Professor, Universidade de Sio Paulo, Brazil Associate Professor, Pontificia Universidade Cat61ica do Rio de Janeiro, Brazil SYNOPSIS The analysis of a tunnel section excavated through soft ground is presented. -
Slope Stability 101 Basic Concepts and NOT for Final Design Purposes! Slope Stability Analysis Basics
Slope Stability 101 Basic Concepts and NOT for Final Design Purposes! Slope Stability Analysis Basics Shear Strength of Soils Ability of soil to resist sliding on itself on the slope Angle of Repose definition n1. the maximum angle to the horizontal at which rocks, soil, etc, will remain without sliding Shear Strength Parameters and Soils Info Φ angle of internal friction C cohesion (clays are cohesive and sands are non-cohesive) Θ slope angle γ unit weight of soil Internal Angles of Friction Estimates for our use in example Silty sand Φ = 25 degrees Loose sand Φ = 30 degrees Medium to Dense sand Φ = 35 degrees Rock Riprap Φ = 40 degrees Slope Stability Analysis Basics Explore Site Geology Characterize soil shear strength Construct slope stability model Establish seepage and groundwater conditions Select loading condition Locate critical failure surface Iterate until minimum Factor of Safety (FS) is achieved Rules of Thumb and “Easy” Method of Estimating Slope Stability Geology and Soils Information Needed (from site or soils database) Check appropriate loading conditions (seeps, rapid drawdown, fluctuating water levels, flows) Select values to input for Φ and C Locate water table in slope (critical for evaluation!) 2:1 slopes are typically stable for less than 15 foot heights Note whether or not existing slopes are vegetated and stable Plan for a factor of safety (hazards evaluation) FS between 1.4 and 1.5 is typically adequate for our purposes No Flow Slope Stability Analysis FS = tan Φ / tan Θ Where Φ is the effective