Copyrighted Material
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WO 2010/015655 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 11 February 2010 (11.02.2010) WO 2010/015655 Al (51) International Patent Classification: sham Research Centre, Wimblehurst Road, Horsham C07C 233/79 (2006.01) C07D 277/42 (2006.01) West Sussex RH 12 5AB (GB). SVIRIDENKO, Lilya C07C 255/58 (2006.01) A61K 31/166 (2006.01) [GB/GB]; Novartis Horsham Research Centre, Wimble C07C 311/39 (2006.01) A61K 31/427 (2006.01) hurst Road, Horsham West Sussex RH 12 5AB (GB). C07D 213/74 (2006.01) A61K 31/44 (2006.01) (74) Agent: VOEGELI-LANGE, Regina; Novartis Pharma C07D 213/75 (2006.01) A61P 1/00 (2006.01) Ag, Patent Department, CH-4002 Basel (CH). C07D 213/84' (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/EP2009/060150 AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (22) International Filing Date: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, 5 August 2009 (05.08.2009) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (25) Filing Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (30) Priority Data: SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, 08162006.4 7 August 2008 (07.08.2008) EP TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
Guidelines for the Management of Hereditary Colorectal Cancer
Guidelines Guidelines for the management of hereditary Gut: first published as 10.1136/gutjnl-2019-319915 on 28 November 2019. Downloaded from colorectal cancer from the British Society of Gastroenterology (BSG)/Association of Coloproctology of Great Britain and Ireland (ACPGBI)/ United Kingdom Cancer Genetics Group (UKCGG) Kevin J Monahan ,1,2 Nicola Bradshaw,3 Sunil Dolwani,4 Bianca Desouza,5 Malcolm G Dunlop,6 James E East,7,8 Mohammad Ilyas,9 Asha Kaur,10 Fiona Lalloo,11 Andrew Latchford,12 Matthew D Rutter ,13,14 Ian Tomlinson ,15,16 Huw J W Thomas,1,2 James Hill,11 Hereditary CRC guidelines eDelphi consensus group ► Additional material is ABSTRact having a family history of a first-degree relative published online only. To view Heritable factors account for approximately 35% of (FDR) or second degree relative (SDR) with CRC.2 please visit the journal online (http:// dx. doi. org/ 10. 1136/ colorectal cancer (CRC) risk, and almost 30% of the While highly penetrant syndromes such as Lynch gutjnl- 2019- 319915). population in the UK have a family history of CRC. syndrome (LS), familial adenomatous polyposis (FAP) The quantification of an individual’s lifetime risk of and other polyposis syndromes account for account For numbered affiliations see end of article. gastrointestinal cancer may incorporate clinical and for only 5–10% of all CRC diagnoses, advances molecular data, and depends on accurate phenotypic in genetic diagnosis, improvements in endoscopic Correspondence to assessment and genetic diagnosis. In turn this may surgical control, and medical and lifestyle interven- Dr Kevin J Monahan, Family facilitate targeted risk-reducing interventions, including tions provide opportunities for CRC prevention and Cancer Clinic, St Mark’s endoscopic surveillance, preventative surgery and effective treatment in susceptible individuals. -
United States Patent (10) Patent No.: US 8,969,514 B2 Shailubhai (45) Date of Patent: Mar
USOO896.9514B2 (12) United States Patent (10) Patent No.: US 8,969,514 B2 Shailubhai (45) Date of Patent: Mar. 3, 2015 (54) AGONISTS OF GUANYLATECYCLASE 5,879.656 A 3, 1999 Waldman USEFUL FOR THE TREATMENT OF 36; A 6. 3: Watts tal HYPERCHOLESTEROLEMIA, 6,060,037- W - A 5, 2000 Waldmlegand et al. ATHEROSCLEROSIS, CORONARY HEART 6,235,782 B1 5/2001 NEW et al. DISEASE, GALLSTONE, OBESITY AND 7,041,786 B2 * 5/2006 Shailubhai et al. ........... 530.317 OTHER CARDOVASCULAR DISEASES 2002fOO78683 A1 6/2002 Katayama et al. 2002/O12817.6 A1 9/2002 Forssmann et al. (75) Inventor: Kunwar Shailubhai, Audubon, PA (US) 2003,2002/0143015 OO73628 A1 10/20024, 2003 ShaubhaiFryburg et al. 2005, OO16244 A1 1/2005 H 11 (73) Assignee: Synergy Pharmaceuticals, Inc., New 2005, OO32684 A1 2/2005 Syer York, NY (US) 2005/0267.197 A1 12/2005 Berlin 2006, OO86653 A1 4, 2006 St. Germain (*) Notice: Subject to any disclaimer, the term of this 299;s: A. 299; NS et al. patent is extended or adjusted under 35 2008/0137318 A1 6/2008 Rangarajetal.O U.S.C. 154(b) by 742 days. 2008. O151257 A1 6/2008 Yasuda et al. 2012/O196797 A1 8, 2012 Currie et al. (21) Appl. No.: 12/630,654 FOREIGN PATENT DOCUMENTS (22) Filed: Dec. 3, 2009 DE 19744O27 4f1999 (65) Prior Publication Data WO WO-8805306 T 1988 WO WO99,26567 A1 6, 1999 US 2010/O152118A1 Jun. 17, 2010 WO WO-0 125266 A1 4, 2001 WO WO-02062369 A2 8, 2002 Related U.S. -
GABA Receptors
D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43. -
The American Society of Colon and Rectal Surgeons Clinical Practice Guidelines for the Management of Inherited Polyposis Syndromes Daniel Herzig, M.D
CLINICAL PRACTICE GUIDELINES The American Society of Colon and Rectal Surgeons Clinical Practice Guidelines for the Management of Inherited Polyposis Syndromes Daniel Herzig, M.D. • Karin Hardimann, M.D. • Martin Weiser, M.D. • Nancy Yu, M.D. Ian Paquette, M.D. • Daniel L. Feingold, M.D. • Scott R. Steele, M.D. Prepared by the Clinical Practice Guidelines Committee of The American Society of Colon and Rectal Surgeons he American Society of Colon and Rectal Surgeons METHODOLOGY (ASCRS) is dedicated to ensuring high-quality pa- tient care by advancing the science, prevention, and These guidelines are built on the last set of the ASCRS T Practice Parameters for the Identification and Testing of management of disorders and diseases of the colon, rectum, Patients at Risk for Dominantly Inherited Colorectal Can- and anus. The Clinical Practice Guidelines Committee is 1 composed of society members who are chosen because they cer published in 2003. An organized search of MEDLINE have demonstrated expertise in the specialty of colon and (1946 to December week 1, 2016) was performed from rectal surgery. This committee was created to lead interna- 1946 through week 4 of September 2016 (Fig. 1). Subject tional efforts in defining quality care for conditions related headings for “adenomatous polyposis coli” (4203 results) to the colon, rectum, and anus, in addition to the devel- and “intestinal polyposis” (445 results) were included, us- opment of Clinical Practice Guidelines based on the best ing focused search. The results were combined (4629 re- available evidence. These guidelines are inclusive and not sults) and limited to English language (3981 results), then prescriptive. -
Cell Surface Mobility of GABAB Receptors Saad Bin
Cell surface mobility of GABAB receptors Saad Bin Hannan September 2011 A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy of the University College London Department of Neuroscience, Physiology, and Pharmacology University College London Gower Street London WC1E 6BT UK Declaration ii ‘I, Saad Hannan confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.' ____________________ Saad Hannan September 2011 To Ammu, Abbu, Polu Abstract ivi Abstract Type-B γ-aminobutyric acid receptors (GABABRs) are important for mediating slow inhibition in the central nervous system and the kinetics of their internalisation and lateral mobility will be a major determinant of their signalling efficacy. Functional GABABRs require R1 and R2 subunit co-assembly, but how heterodimerisation affects the trafficking kinetics of GABABRs is unknown. Here, an α- bungarotoxin binding site (BBS) was inserted into the N-terminus of R2 to monitor receptor mobility in live cells. GABABRs are internalised via clathrin- and dynamin- dependent pathways and recruited to endosomes. By mutating the BBS, a new technique was developed to differentially track R1a and R2 simultaneously, revealing the subunits internalise as heteromers and that R2 dominantly-affects constitutive internalisation of GABABRs. Notably, the internalisation profile of R1aR2 heteromers, but not R1a homomers devoid of their ER retention motif (R1ASA), is similar to R2 homomers in heterologous systems. The internalisation of R1aASA was slowed to that of R2 by mutating a di-leucine motif in the R1 C-terminus, indicating a new role for heterodimerisation, whereby R2 subunits slow the internalization of surface GABABRs. -
Pharmacological Agents Currently in Clinical Trials for Disorders in Neurogastroenterology
Pharmacological agents currently in clinical trials for disorders in neurogastroenterology Michael Camilleri J Clin Invest. 2013;123(10):4111-4120. https://doi.org/10.1172/JCI70837. Clinical Review Esophageal, gastrointestinal, and colonic diseases resulting from disorders of the motor and sensory functions represent almost half the patients presenting to gastroenterologists. There have been significant advances in understanding the mechanisms of these disorders, through basic and translational research, and in targeting the receptors or mediators involved, through clinical trials involving biomarkers and patient responses. These advances have led to relief of patients’ symptoms and improved quality of life, although there are still significant unmet needs. This article reviews the pipeline of medications in development for esophageal sensorimotor disorders, gastroparesis, chronic diarrhea, chronic constipation (including opioid-induced constipation), and visceral pain. Find the latest version: https://jci.me/70837/pdf Review Pharmacological agents currently in clinical trials for disorders in neurogastroenterology Michael Camilleri Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA. Esophageal, gastrointestinal, and colonic diseases resulting from disorders of the motor and sensory functions represent almost half the patients presenting to gastroenterologists. There have been significant advances in under- standing the mechanisms of these disorders, through basic and translational research, and in targeting the recep- tors or mediators involved, through clinical trials involving biomarkers and patient responses. These advances have led to relief of patients’ symptoms and improved quality of life, although there are still significant unmet needs. This article reviews the pipeline of medications in development for esophageal sensorimotor disorders, gastropa- resis, chronic diarrhea, chronic constipation (including opioid-induced constipation), and visceral pain. -
The Role of Antispasmodics in Managing Irritable Bowel Syndrome
DOI: https://doi.org/10.22516/25007440.309 Review articles The role of antispasmodics in managing irritable bowel syndrome Valeria Atenea Costa Barney,1* Alan Felipe Ovalle Hernández.1 1 Internal Medicine and Gastroenterology specialist Abstract in San Ignacio University Hospital, Pontificia Universidad Javeriana, Bogotá, Colombia. Although antispasmodics are the cornerstone of treating irritable bowel syndrome, there are a number of an- tispasmodic medications currently available in Colombia. Since they are frequently used to treat this disease, *Correspondence: [email protected] we consider an evaluation of them to be important. ......................................... Received: 26/10/18 Keywords Accepted: 11/02/19 Antispasmodic, irritable bowel syndrome, pinaverium bromide, otilonium bromide, Mebeverin, trimebutine. INTRODUCTION consistency. The criteria must be met for three consecutive months prior to diagnosis and symptoms must have started Irritable bowel syndrome (IBS) is one of the most fre- a minimum of six months before diagnosis. (3, 4) quent chronic gastrointestinal functional disorders. It is There are no known structural or anatomical explanations characterized by recurrent abdominal pain associated with of the pathophysiology of IBS and its exact cause remains changes in the rhythm of bowel movements with either or unknown. Nevertheless, several mechanisms have been both constipation and diarrhea. Swelling and bloating are proposed. Altered gastrointestinal motility may contribute frequent occurrences. (1) to changes in bowel habits reported by some patients, and a IBS is divided into two subtypes: predominance of cons- combination of smooth muscle spasms, visceral hypersen- tipation (20-30% of patients) and predominance of dia- sitivity and abnormalities of central pain processing may rrhea (20-30% of patients). -
Familial Adenomatous Polyposis Polymnia Galiatsatos, M.D., F.R.C.P.(C),1 and William D
American Journal of Gastroenterology ISSN 0002-9270 C 2006 by Am. Coll. of Gastroenterology doi: 10.1111/j.1572-0241.2006.00375.x Published by Blackwell Publishing CME Familial Adenomatous Polyposis Polymnia Galiatsatos, M.D., F.R.C.P.(C),1 and William D. Foulkes, M.B., Ph.D.2 1Division of Gastroenterology, Department of Medicine, The Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec, Canada, and 2Program in Cancer Genetics, Departments of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada Familial adenomatous polyposis (FAP) is an autosomal-dominant colorectal cancer syndrome, caused by a germline mutation in the adenomatous polyposis coli (APC) gene, on chromosome 5q21. It is characterized by hundreds of adenomatous colorectal polyps, with an almost inevitable progression to colorectal cancer at an average age of 35 to 40 yr. Associated features include upper gastrointestinal tract polyps, congenital hypertrophy of the retinal pigment epithelium, desmoid tumors, and other extracolonic malignancies. Gardner syndrome is more of a historical subdivision of FAP, characterized by osteomas, dental anomalies, epidermal cysts, and soft tissue tumors. Other specified variants include Turcot syndrome (associated with central nervous system malignancies) and hereditary desmoid disease. Several genotype–phenotype correlations have been observed. Attenuated FAP is a phenotypically distinct entity, presenting with fewer than 100 adenomas. Multiple colorectal adenomas can also be caused by mutations in the human MutY homologue (MYH) gene, in an autosomal recessive condition referred to as MYH associated polyposis (MAP). Endoscopic screening of FAP probands and relatives is advocated as early as the ages of 10–12 yr, with the objective of reducing the occurrence of colorectal cancer. -
Diagnosis and Treatment of Irritable Bowel Syndrome a Review
Clinical Review & Education JAMA | Review Diagnosis and Treatment of Irritable Bowel Syndrome A Review Michael Camilleri, MD Multimedia IMPORTANCE The prevalence of irritable bowel syndrome (IBS) in the United States is CME Quiz at between 7% and 16%, most common in women and young people, with annual direct costs jamacmelookup.com estimated at more than $1 billion dollars in the United States. Traditionally, the diagnosis of IBS has been based on the positive identification of symptoms that correlate with several different syndromes associated with disorders such as IBS diarrhea, IBS constipation, functional diarrhea, functional constipation, chronic functional abdominal pain, or bloating. Several peripheral and central mechanisms initiate gastrointestinal motor and sensory dysfunctions leading to IBS symptoms. Those dysfunctions may require evaluation in patients whose symptoms do not respond to first-line treatments. OBSERVATIONS Validation studies of consensus symptom-based criteria have identified deficiencies that favor a simpler identification of the predominant symptoms of abdominal pain, bowel dysfunction, and bloating and exclusion of alarm symptoms such as unintentional weight loss, rectal bleeding, or recent change in bowel function. Symptom-based diagnosis of IBS is enhanced with additional history for symptoms of somatoform and psychological disorders and alarm symptoms, physical examination including digital rectal examination, and screening tests to exclude organic disease (by measuring hemoglobin and C-reactive protein concentrations). The initial treatment plan should include patient education, reassurance, and first-line treatments such as fiber and osmotic laxatives for constipation, opioids for diarrhea, antispasmodics for pain and for management of associated psychological disorders. For patients who do not respond to those IBS treatments, testing for specific functional disorders may be required in a minority of patients with IBS. -
Transampullary Septectomy for Papillary Stenos S
HPB Surgery, 1996, Vol.9, pp.199-207 (C) 1996 OPA (Overseas Publishers Association) Reprints available directly from the publisher Amsterdam B.V. Published in The Netherlands Photocopying permitted by license only by Harwood Academic Publishers GmbH Printed in Malaysia Transduodenal Sphincteroplasty an.d Transampullary Septectomy for Papillary Stenos s S.B. KELLY and B.J. ROWLANDS Depa,rtment of Surgery, Institute of Clinical Science, Royal Victoria Hospital, Grosvenor Road, Belfast. BT12 6BJ (Received 10 February 1994) Twenty patients received transduodenal sphincteroplasty and transampullary septectomy between 1987 and 1993. Seven patients had post-cholecystectomy pain which was much improved or abolished in 5 of 7 patients at a mean follow-up of 4 years and 5 months. Four of five patients with chronic pancreatitis were improved at 3 years and 2 months. Three of five patients with recurrent acute pancreatitis were improved at 4 years and 5 months. One of three patients with chronic abdominal pain of hepatobiliary origin was improved at 3 years. Transduodenal sphincteroplasty and transampullary septectomy can relieve pain in patients with post-cholecystectomy pain, recurrent acute pancreatitis, chronic pancreatitis, and chronic abdominal pain of hepatobiliary origin, presumably by improving drainage of the obstructed ducts. KEY WORDS: Transduodenal sphincteroplasty transampullary septectomy papillary stenosis INTRODUCTION without hyperamylassaemia requires a transduodenal operation. Transduodenal sphincteroplasty and trans- The indications -
Online Supplement
Online Supplement Definition, discrimination, diagnosis, and treatment of central breathing disturbances during sleep. An ERS Statement Randerath W*#1, Verbraecken J*#2, Andreas S3, Arzt M4, Bloch KE5, Brack T6, Buyse B7, De Backer W2, Eckert DJ8, Grote L9, Hagmeyer L1, Hedner J9, Jennum P10, La Rovere MT11, Miltz C1, McNicholas WT12, Montserrat J13, Naughton M14, Pepin J-L15, Pevernagie D16, Sanner B17, Testelmans D7, Tonia T18, Vrijsen B7, Wijkstra P19, Levy P#15 *contributed equally as first authors #co-chaired the Task Force 1 Bethanien Hospital, Institute of Pneumology, Solingen, Germany 2 Dept of Pulmonary Medicine, Antwerp University Hospital and University of Antwerp, Edegem, Belgium 3 Cardiology and Pneumology, University Medical Center Göttingen, Germany and Lung Clinic Immenhausen, Krs. Kassel, Germany 4 Department of Internal Medicine II University Hospital Regensburg, Germany 5 University Hospital Zurich, Department of Pulmonology and Sleep Disorders Center, Zurich, Switzerland 6 Department of Internal and Pulmonary Medicine, Kantonsspital Glarus, Switzerland 7 Department of Pulmonary Medicine – KU Leuven, Leuven, Belgium 8 8 Neuroscience Research Australia (NeuRA) and the University of New South Wales, Sydney, New South Wales, Australia 9 Sleep Disorders Center, Dept. of Pulmonary Medicine, Sahlgrenska University Hospital, Göteborg, Sweden 10 Center for Healthy Aging and Danish Center for Sleep Medicine, Faculty of Health Sciences, University of Copenhagen, Denmark 1 11 Department of Cardiology, Fondazione S. Maugeri, IRCCS, Istituto Scientifico di Montescano (Pavia), Italy 12 Pulmonary and Sleep Disorders Unit, St. Vincent’s University Hospital and University College Dublin, Dublin, Ireland 13 Laboratori del Son, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain. 14 General Respiratory and Transplantation, Alfred Hospital and Monash University, Melbourne, Victoria, Australia 15 Laboratoire du sommeil explorations fonct.